
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 879 | P a g e

Implementation of Area Efficient 16point Radix 22 FFT
Algorithm

P.Rajeshkumar*, K.Sai Tejaswini, D.Sushma Reddy, M.Akshita, A.Sarath Bala, N.Deepika

 Department of Electronics and Communication Engineering, BVRIT Hyderabad College of
Engineering for Women, Hyderabad

Abstract:- The Discrete Fourier Transform (DFT) plays a
significant role in many applications of digital signal
processing. Basically, it has been applied in a wide range of
fields such as linear filtering, spectrum analysis, digital video
broadcasting and orthogonal frequency demodulation
multiplexing (OFDM). The rapidly increasing demand of
OFDM based applications, including modern wireless
telecommunication such as LAN, needs real-time high-speed
computation in Fast Fourier Transform algorithm. This has
made the design of FFT processor a critical requirement for
the upcoming wireless technology. With the advent of this
requirement, the study of high performance VLSI FFT
architecture is likewise of increasing importance. Many
different hardware architectures have been proposed for the
implementation of FFT algorithms. The main concern of the
design approach will be power and architectural size. Among
various FFT algorithms, radix-2 FFT with Cooley-Turkey
algorithm, is very popular because it makes efficient use of
symmetry and periodicity properties of the twiddle
factor/coefficient

WnN = exp (-j2πn/N).Which reduce the computational
complexity from 0(N2) to 0(Nlog2N).

Keywords: FFT; Cooley-Turkey algorithm; radix-22;
Butterfly structure.

I. Introduction.

Several architectures have been proposed based on Cooley
Turkey algorithm to further reduce the computation
complexity, including radix-4, radix-2, and split-radix.
Basically, this Fast Fourier Transform algorithm use Divide-
and-Conquer approach to divide the computation recursively
and then extract as many common twiddle factors as possible.
The number of required real additions and multiplications is
usually used to compare the efficiency of different FFT
algorithms.

Structural regularity is also important in implementation of
FFT algorithms on dedicated chips such as in ASIC
(Application Specific Integrated Chip). Hence, radix-2 and
radix-4 FFT algorithm are preferable in terms of speed and
accuracy. This paper presents an area and power efficient 16-
point radix-4 Fast Fourier Transform. The approach in re-
utilizing the stored identical component enhances the physical
fingerprint of the architecture. An improved complex
multiplication is introduced in FFT butterfly computation to
realize a cost efficient hardware. 16- point FFT radix-22

architecture is implemented utilizing 0.18µm technology from
Artisan. The 16 bit imaginary and 16 bit real input-output is
realized at 1.8V with operating frequency of 50MHz. The chip
is designed for fixed-point data format. Great care had been
taken into account to overcome the overflow issue in fixed-
point data format. During the FFT computation, results at a
particular stage are rounded and stored in the register memory.
Since the FFT computation is an iterative process, the
successive rounding errors at each output of butterfly
accumulate over the FFT stages. The issue is solved by
maintaining the error at the successive butterfly small.
Twiddle factor/coefficient value are pre-calculated and stored
in the register memory as 16-bit two’s complement signed
fixed-point words. The comparison results between
conventional radix-4 and radix-22 architecture realized in
0.18µm CMOS technology are reported in simulation results.
Fast Fourier Transform (FFT) has become almost ubiquitous
and most important in high speed signal processing. Using this
transform, signals can be moved to the frequency domain
where filtering and correlation can be performed with fewer
operations. It has been widely used in communications and
radar applications. Recent advances in chip technology have
increased field programmable gate array (FPGA) resources
and as a consequence, the computation of complex algorithms,
such as the FFT, can be implemented on a programmable
device.

The real time requirements of FFT and the highly flexible
FPGA form a great combination and improve the speed of
FFT processing to meet the high-speed of the modern signal
processing. There are various FFT algorithms such as radix-2,
radix-4, radix22 , split-radix, wino grad and many more.Radix-
2 algorithm is the simplest one, but its calculation of addition
and multiplication is more than radix-4's.Though being more
efficient than radix-2, radix-4 only can process 4n-point FFT.
The most desirable hardware oriented algorithm will be that it
has the same number of non-trivial multiplications at the same
positions in the SFG as of radix-4 algorithms, but has the same
butterfly structure as that of radix-2 algorithms. In this paper,
a hardware-oriented radix-22 algorithm is compared with the
conventional radix-2 algorithm, which has the radix-4
multiplicative complexity but retains radix-2 butterfly
structure in the SFG.

II. Implementation of Radix 22 FFT.

These discrete Fourier Transforms can be implemented
rapidly with the Fast Fourier Transform (FFT) algorithm

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 880 | P a g e

 N (N-1)2 (N/2)log2N

256 65,025 1,024

1,024 1,046529 5,120

4,096 16,769,025 24,576

Table.1 Comparison for various Sample values

FFTs are most efficient if the number of samples, N, is a
power of 2. Some FFT software implementations require this.

A fast Fourier transform (FFT) is an algorithm that
samples a signal over a period of time (or space) and divides it
into its frequency components. These components are single
sinusoidal oscillations at distinct frequencies each with their
own amplitude and phase. Over the time period measured, the
signal contains 3 distinct dominant frequencies.

Fast Fourier transforms are widely used for many
applications in engineering, science, and mathematics. The
basic ideas were popularized in 1965, but some algorithms had
been derived as early as 1805. In 1994, Gilbert
Strang described the FFT as the most important numerical
algorithm of our lifetime and it was included in Top 10
Algorithms of 20th Century by the IEEE journal computing in
Science & Engineering. There are many different FFT
algorithms based on a wide range of published theories, from
simple complex-number arithmetic to group
theory and number theory; this article gives an overview of the
available techniques and some of their general properties,
while the specific algorithms are described in subsidiary
articles linked below.

The DFT is obtained by decomposing a sequence of values
into components of different frequencies. This operation is
useful in many fields (see discrete Fourier transform for
properties and applications of the transform) but computing it
directly from the definition is often too slow to be practical.
An FFT is a way to compute the same result more quickly:
computing the DFT of N points in the native way, using the
definition, takes O(N2) arithmetical operations, while an FFT
can compute the same DFT in only O(N log N) operations.
The difference in speed can be enormous, especially for long
data sets where N may be in the thousands or millions. In
practice, the computation time can be reduced by
several orders of magnitude in such cases, and the

improvement is roughly proportional to N log N. This huge
improvement made the calculation of the DFT practical; FFTs
are of great importance to a wide variety of applications,
from digital signal processing and solving partial differential
equations to algorithms for quick multiplication of large
integers.

The best-known FFT algorithms depend upon
the factorization of N, but there are FFTs
with O(N log N) complexity for all N, even for prime N. Many
FFT algorithms only depend on the fact that is an N-
th primitive root of unity, and thus can be applied to analogous
transforms over any finite field, such as number-theoretic
transforms. Since the inverse DFT is the same as the DFT, but
with the opposite sign in the exponent and a 1/N factor, any
FFT algorithm can easily be adapted for it. The algorithmic
complexity of an FFT is usually quantified in terms of the total
number of butterfly operations performed. Let this number be
C (p) for a 2p point transform. Looking at the DIF routine
above, it is easy to see that C(p) must satisfy the following
recurrence relation. This has solution in terms of N
(=2p).Dropping the constant scaling factors (including the log
base) we get an algorithmic complexity of O(NlogN)

Types of FFT

 DIT-FFT(Decimation In Time-Fast Fourier
Transform)

 DIF-FFT(Decimation In Frequency-Fast Fourier
Transform)

III. Butterfly Structure.

In the context of fast Fourier transform algorithms,
a butterfly is a portion of the computation that combines the
results of smaller discrete Fourier transforms (DFTs) into a
larger DFT, or vice versa (breaking a larger DFT up into sub
transforms). The name "butterfly" comes from the shape of the
data-flow diagram in the radix-2 case, as described below. The
earliest occurrence in print of the term is thought to be in a
1969 MIT technical report. The same structure can also be
found in the Viterbi algorithm, used for finding the most likely
sequence of hidden states.

Most commonly, the term "butterfly" appears in the
context of the Cooley–Turkey FFT algorithm,
which recursively breaks down a DFT
of composite size n = rm into r smaller transforms of
size m where r is the "radix" of the transform. These smaller
DFTs are then combined via size-r butterflies, which
themselves are DFTs of size r (performed m times on
corresponding outputs of the sub-transforms) pre-multiplied
by roots of unity (known as twiddle factors).

A. DIT-FFT:

DIT algorithm is used to calculate the DFT of a N-point
sequence.The idea is to break the N-point sequence into two
sequences, the DFTs of which can be obtained to give the
DFT of the original N-point sequence. Initially the N-point

https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Applications
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/Gilbert_Strang
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Group_theory
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Orders_of_magnitude
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Multiplication_algorithm
https://en.wikipedia.org/wiki/Multiplication_algorithm
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Primitive_root_of_unity
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Number-theoretic_transform
https://en.wikipedia.org/wiki/Number-theoretic_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Root_of_unity
https://en.wikipedia.org/wiki/Twiddle_factor

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 881 | P a g e

sequence is divided into N/2-point sequences xe(n) and x0(n) ,
which have even and odd numbers of x(n) respectively.

The N/2-point DFTs of these two sequences are evaluated
and combined to give the N-point DFT.Similarly the N/2-point
DFTs can be expressed as a combination of N/4-point
DFTs.This process is continued until we are left with two
point DFT.This algorithm is called decimation-in-time
because the sequence x(n) is often split into smaller
sequences.

B. DIF-FFT

In DIF-FFT algorithm, the output of DFT sequence is
broken into smaller and smaller subsequences. The process of
dividing the frequency components into even and odd parts is
what gives this algorithm its name 'Decimation In Frequency'.
If N is a regular power of 2, we can apply this method
recursively until we get to the trivial 1 point transform. The
factors TN are conventionally referred to as 'twiddle factors'.

C. Radix-22 DIF-FFT

Fig1 Butterfly Structure of 16-point Radix 22 FFT

Fig2 Block Diagram of 16-point Radix 22 FFT

IV. Hardware Schematic

The Schematic of proposed architecture consists of
following components:

1. Butterfly structure

 2. Control unit

 3. Delay Units

 4. Processing Elements

Figure 3 RTL Schematic of 16-point Radix 22 FFT

A. Butterfly structure

This section presents the identical radix-22 FFT
algorithms, which are generated by using binary tree
representation. Now based on the binary tree presentation of
Cooley- Tukey FFT algorithm,. These algorithms can be
generated by splitting N-point FFT into 2 k -point and N − 2 k
-point. Apply this decomposition recursively until all sizes
will become 2 k . This decomposition can apply in different
ways to get identical radix-2 k FFT algorithms. Then apply
radix-2 decomposition on all 2 k -point FFTs as shown in
Fig1.

B. Control unit

Control Logic Unit: Control the implementation of the
whole hardware operation that FFT/IFFT mode, FFT point,
FFT stage are included. AGU: Controlled by Control Logic
Unit, generates the read-address, write-address of memories
and read-address of twiddle factor. Data Memory Group 1&2:
Store raw data, intermediate processing data and result data.
Twiddle Factor Unit: Store the twiddle factors for butterfly
operation. Data Memory Group1&2 and Twiddle Factor Unit
are included in Memory Unit. Butterfly Operation Unit: It
contains two radix2 butterfly operation units and
simultaneously reads 4 data for twice butterfly operations,
then generates 4 results. Each unit works under the control of
Logic Control U

C.Delay Unit

Delay units which provide delay of Delay1, Delay 2, Delay
4, and Delay 8 are used in this 16 point FFT.

D. Processing Elements

 Processing elements processing element1 Processing
element 2 are used in the two stage butterfly structure.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 882 | P a g e

V. Results.

 Fig 4 Simulation Output of Butterfly

 Fig 5 Simulation Output of Multiplier

 Fig 6 Simulation Output of Control Unit

Simulation results are observed using Xilinx version 10.1
and are shown in various figures in results section.

Fig 7 Simulation Output of Delay8

Fig 8 Simulation Output of Processing Element2

Fig 9 Simulation result of 16-point Radix 22 FFT

VI. Conclusion.

The paper introduces the design and implementation of a large
points FFT acceleration unit in multi-processor system based
on FPGA. The structure of hardware implementation is
simple. It passes the software and hardware co verification as
a part of the multi-processor image processing system. Results
of FPGA verification are right within the range of allowable
error. FPGA evaluation results prove that the design of this
large point FFT acceleration unit is valid. With the
development of FPGA technologies, it will become feasible
for the implementation of large point FFT operation and make
more progress in speed, volume and flexibility.

VII. References.

[1]. Anoop Thomas, Lakshmi Santhosh. “Implementation of Radix 2
and Radix 22FFT Algorithms on Spartan6 FPGA”(IEEE –
31661).

[2]. Anwar Bhasha Pattan, Dr. M. Madhavi Latha - “Fast Fourier
Transform Architectures: A survey and state of the Art”.

[3]. C. Sidney Burrus, Matteo Frigo, Steven G. Johnson, Markus
Pueschel, Ivan Selesnick -“Fast Fourier Transforms”.

[4]. FPGA implementation of a 64 point Radix-2 Single path Delay
feedback FFT architecture by Anwar Bhasha Pattan, Makkena
Madhavi Latha.

AUTHOR’S BIOGRAPHY

P.Rajeshkumar received B.Tech degree in Electronics &
Communication Engineering from Bapatla Engineering College
Bapatla, A.P, India and M.Tech degree in VLSI SYSTEMS DESIGN
from JNTUK, Kakinada, A,P, India in 2004 and 2012 respectively.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 883 | P a g e

Having 11 years of teaching experience currently he is working as
Asst. Professor in the department of Electronics and Communication
Engineering, BVRIT Hyderabad College of Engineering for Women,
Hyderabad, Telangana, India. His research interests include VLSI.

K.Sai Tejaswini is a Final year student of department of Electronics
and Communication Engineering, BVRIT Hyderabad College of
Engineering for Women, Hyderabad, Telangana, India. She is a
member of ISTE and IETE. Her area of interest includes
Communication.

D.Sushma Reddy is a Final year student of department of Electronics
and Communication Engineering, BVRIT Hyderabad College of
Engineering for Women, Hyderabad, and Telangana, India. She is a
member of ISTE and IETE. Her area of interest includes Embedded
Systems.

N.Deepika is a Final year student of department of Electronics and
Communication Engineering, BVRIT Hyderabad College of
Engineering for Women, Hyderabad, and Telangana, India. She is a
member of ISTE and IETE. Her area of interest includes
Communication.

M.Akshita is a Final year student of department of Electronics
and Communication Engineering, BVRIT Hyderabad College
of Engineering for Women, Hyderabad, and Telangana, India.
She is a member of ISTE and IETE. Her area of interest
includes Communication.

A.Sharath Bala is a Final year student of department of
Electronics and Communication Engineering, BVRIT
Hyderabad College of Engineering for Women, Hyderabad,
Telangana, India. She is a member of ISTE and IETE. Her
area of interest includes Communication.

