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Abstract:- The Discrete Fourier Transform (DFT) plays a 
significant role in many applications of digital signal 
processing. Basically, it has been applied in a wide range of 
fields such as linear filtering, spectrum analysis, digital video 
broadcasting and orthogonal frequency demodulation 
multiplexing (OFDM). The rapidly increasing demand of 
OFDM based applications, including modern wireless 
telecommunication such as LAN, needs real-time high-speed 
computation in Fast Fourier Transform algorithm. This has 
made the design of FFT processor a critical requirement for 
the upcoming wireless technology. With the advent of this 
requirement, the study of high performance VLSI FFT 
architecture is likewise of increasing importance. Many 
different hardware architectures have been proposed for the 
implementation of FFT algorithms. The main concern of the 
design approach will be power and architectural size. Among 
various FFT algorithms, radix-2 FFT with Cooley-Turkey 
algorithm, is very popular because it makes efficient use of 
symmetry and periodicity properties of the twiddle 
factor/coefficient  

WnN = exp (-j2πn/N).Which reduce the computational 
complexity from 0(N2) to 0(Nlog2N).  

Keywords: FFT; Cooley-Turkey algorithm; radix-22; 
Butterfly structure. 

 

I.  Introduction. 

Several architectures have been proposed based on Cooley 
Turkey algorithm to further reduce the computation 
complexity, including radix-4, radix-2, and split-radix. 
Basically, this Fast Fourier Transform algorithm use Divide-
and-Conquer approach to divide the computation recursively 
and then extract as many common twiddle factors as possible. 
The number of required real additions and multiplications is 
usually used to compare the efficiency of different FFT 
algorithms. 

Structural regularity is also important in implementation of 
FFT algorithms on dedicated chips such as in ASIC 
(Application Specific Integrated Chip). Hence, radix-2 and 
radix-4 FFT algorithm are preferable in terms of speed and 
accuracy. This paper presents an area and power efficient 16- 
point radix-4 Fast Fourier Transform. The approach in re-
utilizing the stored identical component enhances the physical 
fingerprint of the architecture. An improved complex 
multiplication is introduced in FFT butterfly computation to 
realize a cost efficient hardware. 16- point FFT radix-22 

architecture is implemented utilizing 0.18µm technology from 
Artisan. The 16 bit imaginary and 16 bit real input-output is 
realized at 1.8V with operating frequency of 50MHz. The chip 
is designed for fixed-point data format. Great care had been 
taken into account to overcome the overflow issue in fixed-
point data format. During the FFT computation, results at a 
particular stage are rounded and stored in the register memory. 
Since the FFT computation is an iterative process, the 
successive rounding errors at each output of butterfly 
accumulate over the FFT stages. The issue is solved by 
maintaining the error at the successive butterfly small. 
Twiddle factor/coefficient value are pre-calculated and stored 
in the register memory as 16-bit two’s complement signed 
fixed-point words. The comparison results between 
conventional radix-4 and radix-22 architecture realized in 
0.18µm CMOS technology are reported in simulation results. 
Fast Fourier Transform (FFT) has become almost ubiquitous 
and most important in high speed signal processing. Using this 
transform, signals can be moved to the frequency domain 
where filtering and correlation can be performed with fewer 
operations. It has been widely used in communications and 
radar applications. Recent advances in chip technology have 
increased field programmable gate array (FPGA) resources 
and as a consequence, the computation of complex algorithms, 
such as the FFT, can be implemented on a programmable 
device. 

The real time requirements of FFT and the highly flexible 
FPGA form a great combination and improve the speed of 
FFT processing to meet the high-speed of the modern signal 
processing. There are various FFT algorithms such as radix-2, 
radix-4, radix22 , split-radix, wino grad and many more.Radix-
2 algorithm is the simplest one, but its calculation of addition 
and multiplication is more than radix-4's.Though being more 
efficient than radix-2, radix-4 only can process 4n-point FFT. 
The most desirable hardware oriented algorithm will be that it 
has the same number of non-trivial multiplications at the same 
positions in the SFG as of radix-4 algorithms, but has the same 
butterfly structure as that of radix-2 algorithms. In this paper, 
a hardware-oriented radix-22 algorithm is compared with the 
conventional radix-2 algorithm, which has the radix-4 
multiplicative complexity but retains radix-2 butterfly 
structure in the SFG.  

 

II. Implementation of Radix 22 FFT. 

These discrete Fourier Transforms can be implemented 
rapidly with the Fast Fourier Transform (FFT) algorithm 



IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  880 | P a g e  
 

        N (N-1)2 (N/2)log2N 

256 65,025 1,024 

1,024 1,046529 5,120 

4,096 16,769,025 24,576 

Table.1 Comparison for various Sample values  

FFTs are most efficient if the number of samples, N, is a 
power of 2. Some FFT software implementations require this.  

 

A fast Fourier transform (FFT) is an algorithm that 
samples a signal over a period of time (or space) and divides it 
into its frequency components. These components are single 
sinusoidal oscillations at distinct frequencies each with their 
own amplitude and phase. Over the time period measured, the 
signal contains 3 distinct dominant frequencies. 

Fast Fourier transforms are widely used for many 
applications in engineering, science, and mathematics. The 
basic ideas were popularized in 1965, but some algorithms had 
been derived as early as 1805. In 1994, Gilbert 
Strang described the FFT as the most important numerical 
algorithm of our lifetime and it was included in Top 10 
Algorithms of 20th Century by the IEEE journal computing in 
Science & Engineering. There are many different FFT 
algorithms based on a wide range of published theories, from 
simple complex-number arithmetic to group 
theory and number theory; this article gives an overview of the 
available techniques and some of their general properties, 
while the specific algorithms are described in subsidiary 
articles linked below. 

The DFT is obtained by decomposing a sequence of values 
into components of different frequencies. This operation is 
useful in many fields (see discrete Fourier transform for 
properties and applications of the transform) but computing it 
directly from the definition is often too slow to be practical. 
An FFT is a way to compute the same result more quickly: 
computing the DFT of N points in the native way, using the 
definition, takes O(N2) arithmetical operations, while an FFT 
can compute the same DFT in only O(N log N) operations. 
The difference in speed can be enormous, especially for long 
data sets where N may be in the thousands or millions. In 
practice, the computation time can be reduced by 
several orders of magnitude in such cases, and the 

improvement is roughly proportional to N log N. This huge 
improvement made the calculation of the DFT practical; FFTs 
are of great importance to a wide variety of applications, 
from digital signal processing and solving partial differential 
equations to algorithms for quick multiplication of large 
integers. 

The best-known FFT algorithms depend upon 
the factorization of N, but there are FFTs 
with O(N log N) complexity for all N, even for prime N. Many 
FFT algorithms only depend on the fact that  is an N-
th primitive root of unity, and thus can be applied to analogous 
transforms over any finite field, such as number-theoretic 
transforms. Since the inverse DFT is the same as the DFT, but 
with the opposite sign in the exponent and a 1/N factor, any 
FFT algorithm can easily be adapted for it. The algorithmic 
complexity of an FFT is usually quantified in terms of the total 
number of butterfly operations performed. Let this number be 
C (p) for a 2p point transform. Looking at the DIF routine 
above, it is easy to see that C(p) must satisfy the following 
recurrence relation. This has solution in terms of N 
(=2p).Dropping the constant scaling factors (including the log 
base) we get an algorithmic complexity of O(NlogN) 

Types of FFT 

 DIT-FFT(Decimation In Time-Fast Fourier 
Transform) 

 DIF-FFT(Decimation In Frequency-Fast Fourier 
Transform) 

 

III. Butterfly Structure. 

In the context of fast Fourier transform algorithms, 
a butterfly is a portion of the computation that combines the 
results of smaller discrete Fourier transforms (DFTs) into a 
larger DFT, or vice versa (breaking a larger DFT up into sub 
transforms). The name "butterfly" comes from the shape of the 
data-flow diagram in the radix-2 case, as described below. The 
earliest occurrence in print of the term is thought to be in a 
1969 MIT technical report. The same structure can also be 
found in the Viterbi algorithm, used for finding the most likely 
sequence of hidden states. 

Most commonly, the term "butterfly" appears in the 
context of the Cooley–Turkey FFT algorithm, 
which recursively breaks down a DFT 
of composite size n = rm into r smaller transforms of 
size m where r is the "radix" of the transform. These smaller 
DFTs are then combined via size-r butterflies, which 
themselves are DFTs of size r (performed m times on 
corresponding outputs of the sub-transforms) pre-multiplied 
by roots of unity (known as twiddle factors).  

A. DIT-FFT: 

DIT algorithm is used to calculate the DFT of a N-point 
sequence.The idea is to break the N-point sequence into two 
sequences, the DFTs of which can be obtained to give the 
DFT of the original N-point sequence. Initially the N-point 
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sequence is divided into N/2-point sequences xe(n) and x0(n) , 
which have even and odd numbers of x(n) respectively. 

The N/2-point DFTs of these two sequences are evaluated 
and combined to give the N-point DFT.Similarly the N/2-point 
DFTs can be expressed as a combination of N/4-point 
DFTs.This process is continued until we are left with two 
point DFT.This algorithm is called decimation-in-time 
because the sequence x(n) is often split into smaller 
sequences. 

B. DIF-FFT  

In DIF-FFT algorithm, the output of DFT sequence is 
broken into smaller and smaller subsequences. The process of 
dividing the frequency components into even and odd parts is 
what gives this algorithm its name 'Decimation In Frequency'. 
If N is a regular power of 2, we can apply this method 
recursively until we get to the trivial 1 point transform. The 
factors TN are conventionally referred to as 'twiddle factors'. 

C. Radix-22 DIF-FFT 

 
 

Fig1 Butterfly Structure of 16-point Radix 22 FFT 

 

  

Fig2 Block Diagram of 16-point Radix 22 FFT 

IV. Hardware Schematic 

The Schematic of proposed architecture consists of 
following components: 

1. Butterfly structure 

            2. Control unit 

            3. Delay Units 

            4. Processing Elements 

Figure 3 RTL Schematic of 16-point Radix 22  FFT 

 

A. Butterfly structure 

This section presents the identical radix-22 FFT 
algorithms, which are generated by using binary tree 
representation. Now based on the binary tree presentation of 
Cooley- Tukey FFT algorithm,. These algorithms can be 
generated by splitting N-point FFT into 2 k -point and N − 2 k 
-point. Apply this decomposition recursively until all sizes 
will become 2 k . This decomposition can apply in different 
ways to get identical radix-2 k FFT algorithms. Then apply 
radix-2 decomposition on all 2 k -point FFTs as shown in 
Fig1. 

B. Control unit 

Control Logic Unit: Control the implementation of the 
whole hardware operation that FFT/IFFT mode, FFT point, 
FFT stage are included. AGU: Controlled by Control Logic 
Unit, generates the read-address, write-address of memories 
and read-address of twiddle factor. Data Memory Group 1&2: 
Store raw data, intermediate processing data and result data. 
Twiddle Factor Unit: Store the twiddle factors for butterfly 
operation. Data Memory Group1&2 and Twiddle Factor Unit 
are included in Memory Unit. Butterfly Operation Unit: It 
contains two radix2 butterfly operation units and 
simultaneously reads 4 data for twice butterfly operations, 
then generates 4 results. Each unit works under the control of 
Logic Control U  

C.Delay Unit 

Delay units which provide delay of Delay1, Delay 2, Delay 
4, and Delay 8 are used in this 16 point FFT. 

D. Processing Elements 

 Processing elements processing element1 Processing 
element 2 are used in the two stage butterfly structure. 
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V. Results. 

 

      Fig 4 Simulation Output of Butterfly 

 

       Fig 5  Simulation Output of Multiplier 

 

      Fig 6  Simulation Output of Control Unit 

Simulation results are observed using Xilinx version 10.1 
and are shown in various figures in results section. 

 

 

Fig 7  Simulation Output of Delay8 

 

 

Fig 8 Simulation Output of Processing Element2 

 

 

Fig 9 Simulation result of 16-point Radix 22  FFT 

 

VI. Conclusion. 

The paper introduces the design and implementation of a large 
points FFT acceleration unit in multi-processor system based 
on FPGA. The structure of hardware implementation is 
simple. It passes the software and hardware co verification as 
a part of the multi-processor image processing system. Results 
of FPGA verification are right within the range of allowable 
error. FPGA evaluation results prove that the design of this 
large point FFT acceleration unit is valid. With the 
development of FPGA technologies, it will become feasible 
for the implementation of large point FFT operation and make 
more progress in speed, volume and flexibility. 
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