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Abstract

We study the complexity of deciding whether a given
homogeneous multivariate polynomial has a non-
trivial root over a finite field. Given a homo-
geneous algebraic circuit C that computes an n-
variate polynomial p(x) of degree d over a finite
field Fq , we wish to determine if there exists a
nonzero x ∈ F

n
q with C(x) = 0.

For constant n there are known algorithms for do-
ing this efficiently. However for linear n, the prob-
lem becomes NP hard. In this paper, using interest-
ing algebraic techniques, we show that if d is prime
and n > d/2, the problem can be solved over suffi-
ciently large finite fields in randomized polynomial
time. We complement this result by showing that re-
laxing any of these constraints makes the problem
intractable again.

1 Introduction

Given a homogeneous polynomial p(X) over Fq in
n variables and degree d, consider the projective hy-
persurface of Fq-rational points, Vp = {x ∈ PF

n
q :

p(x) = 0}, defined by p(X). We wish to efficiently
determine whether Vp is nonempty. This is equiv-
alent to deciding whether there is an x ∈ F

n
q , with

x �= 0, such that p(x) = 0.

Let us impose the following conditions on n, d and
q:

• d is a prime,

• d < 2n

• q ≥ Ω(n4).
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Our main result is that under these conditions, given
black-box access to evaluations of p, we can de-
cide whether Vp is nonempty in randomized time
polynomial in n, d and log q. Furthermore, relax-
ing any one of these conditions, makes the question
NP hard. In particular, “2” cannot be replaced by
“2+ ε” for any ε > 0, we cannot drop the condition
that d is prime, nor can we allow q to be constant!

Given access to merely poly(n, d, log q) evalua-
tions of p(X), our algorithm infers the existence of
a nontrivial root of p(X), without actually finding
one. This inference is made by exploiting the rich
algebraic structure of polynomials and their factor-
ization patterns. Indeed, we use some powerful al-
gebraic tools to prove these results. We believe that
that our techniques are of independent interest and
may find further applications in algebraic complex-
ity.

1.1 Detecting Rational Points: His-
tory and Motivation

The problem of determining whether there is a ra-
tional point on a variety over a finite field is a nat-
ural and well studied problem. This problem has
been implicitly studied in number theory for cen-
turies, perhaps beginning with the quadratic reci-
procity theorem of Gauss.

In [7], Huang and Wong gave a randomized polyno-
mial time algorithm for detecting rational points on
varieties for constant n. They further asked if one
could find an algorithm for growing n, aware that
the general case is NP complete. Our work stud-
ies this question for the case of projective hypersur-
faces.

Detecting rational points on projective hypersur-
faces also arises naturally in the problem (due



to Saks and Wigderson) of detecting nonsingular
spaces of matrices. A nonsingular space of matrices
is a linear subspace of F

d×d
q such that all its nonzero

elements are nonsingular. Given A1, . . . , An, a
basis for a linear subspace L of F

d×d
q , consider

the homogeneous degree d polynomial p(X) =
det(

∑n
i=1 AiXi) ∈ Fq[X1, . . . , Xn]. It is easy to

check that the projective hypersurface defined by
p(X) has no nontrivial Fq rational point iff L is
a nonsingular space of matrices. Furthermore, for
any x ∈ F

n
q , there is a polynomial time algorithm

to evaluate p(x). Thus our main result implies that
over sufficiently large fields, when d is prime and
the dimension n of the space L is greater than d/2,
there is a randomized polynomial time algorithm for
detecting nonsingular spaces of matrices.

A number of problems on singularity, nonsingular-
ity, minimum rank and maximum rank of spaces of
matrices have been studied extensively (cf. [3]).
The problem of detecting singular spaces of matri-
ces was studied by Lovász [12], and is intimately
connected with the problem of polynomial identity
testing. We believe that our results shed some light
on the structure and algorithmics of such problems
in linear algebra.

There are several algorithms [1], [11], [14], [15]
for counting rational points on projective hyper-
surfaces. The most powerful, an algorithm of
Lauder [10] counts points on smooth hypersurfaces
in time polynomial in log q and the number of
nonzero coefficients, which may be as large as dn

in general.

Recently, Gopalan, Guruswami and Lipton [6] and
Wan [17] considered the problem of counting ratio-
nal roots of a polynomial mod m, for some integer
m. They gave algorithms and hardness results for
different choices of m.

1.2 Results

We will be considering homogeneous polynomials
p(X) in n variables and of degree d over Fq. Our
algorithmic result will only require black-box ac-
cess to evaluations of p(X) at points in F

n
q . For the

corresponding NP hardness results, we will assume
that p(X) is presented as a homogeneous algebraic
circuit1 C over Fq. We assume that the field Fq

1i.e., every intermediate gate computes a homogeneous poly-
nomial

is represented by an irreducible polynomial over a
prime subfield. We are interested in the complexity
of detecting nontrivial roots of p(X) after imposing
various constraints on n, d and q.

For a set of “constraints” S ⊆ N
3, we define

the language Lproj(S) to be the set of all 4-tuples
(C, 1n, 1d, Fq) such that

1. C is a homogeneous algebraic circuit of degree
d over Fq,

2. (n, d, q) ∈ S,

3. There exists x ∈ F
n
q , x �= 0 with C(x) = 0.

We can now state our main algorithmic result.

Theorem 1.1 Let S ⊆ N
3 be the set of all (n, d, q)

such that:

1. d is prime,

2. d < 2n,

3. q ≥ 32n4.

Then Lproj(S) is in RP .

This result will be proved in Section 3. Our main
technical result underlying the algorithm is a struc-
ture theorem for rational-point-free hypersurfaces
over finite fields for the above setting of the pa-
rameters n, d and q. The randomized algorithm
of this theorem “pretends” that the hypersurface is
rational-point-free, attempts to recover the under-
lying structure guaranteed by the structure theo-
rem, and finally verifies its attempt via a polynomial
identity test. Any failure along the way indicates
that the hypersurface must have a rational point.

We complement the above algorithmic result by
showing that, in a certain sense, relaxing any of the
constraints on S above makes Lproj(S) NP hard.
We state these results below. They will be proved in
Section 4.

Theorem 1.2 (Relaxing primality of the degree)
Let S1 ⊆ N

3 be the set of all (n, d, q) such that:

1. d < 2n,

2. q ≥ 32n4.

Then Lproj(S1) is NP complete.

Theorem 1.3 (Relaxing the degree bound) Let
ε > 0 and let S2 ⊆ N

3 be the set of all (n, d, q)
such that:



1. d is a prime,

2. d < (2 + ε)n,

3. q ≥ 32n4.

Then Lproj(S2) is NP complete.

One may also ask if the condition requiring a
growing field size in Theorem 1.1 is really neces-
sary. Here we can only show a slightly weaker
kind of hardness. Let Lweak

proj (S) denote the set of
(C, n, d, Fq), where C is an algebraic circuit, such
that there is a homogenous polynomial p(X) of de-
gree d in n variables over Fq such that C(x) = p(x)
for each x ∈ F

n
q (i.e., we no longer require that

C formally computes p(X), merely that its evalu-
ations agree with evaluations of p(X) at points of
F

n
q ). Clearly, the NP hardness of Lweak

proj (S) still
shows the computational intractibility of detecting
nontrivial roots of p(X), given blackbox access to
its evaluations in F

n
q (for (n, d, q) ∈ S).

Theorem 1.4 (Relaxing the growing field size)
Let q0 be a prime power, and let S3 ⊆ N

3 be the set
of all (n, d, q) such that:

1. d is a prime,

2. d < 2n,

3. q = q0.

Then Lweak
proj (S3) is NP complete.

Organization of this paper: In Section 2, we in-
troduce the algebraic tools that we will use. In Sec-
tion 3 we prove our main technical lemma, and use
it to prove Theorem 1.1 . Finally, in Section 4 we
prove the complementary hardness results: Theo-
rem 1.2 and Theorem 1.3.

2 Algebraic Preliminaries

In this section, we will introduce some algebraic
preliminaries necessary for the proofs of our results.

2.1 Norm polynomials

We give a brief overview of norm polynomials and
some of their many interesting properties. They in-
directly inspired our algorithm and are crucial to our
hardness results.

Let Fq be a finite field. For any positive integer n,
a norm polynomial is a homogeneous polynomial
Nn ∈ Fq[x1, . . . , xn] with the following properties:

• deg(Nn) = n,

• For any (c1, . . . , cn) ∈ F
n
q , if

Nn(c1, . . . , cn) = 0 then c1 = . . . = cn = 0.

• An algebraic circuit computing Nn can be gen-
erated in time polynomial in n and q.

Following ([13] p.272), we now give a construction
of norm polynomials Nn. Let {α1, . . . , αn} be a
basis of Fqn over Fq. Put

Nn(x1, . . . , xn) =
n−1∏

j=0

(αqj

1 x1+. . .+αqj

n xn). (1)

Since the {αqj

i }j∈{0,1,...,n−1} are conjugates of αi

over Fq (i.e., they are the roots of the minimal poly-
nomial of αi over Fq), the coefficients of Nn are in
Fq. It is clear that deg(Nn) = n and that Nn is a ho-
mogeneous polynomial. Now let (c1, . . . , cn) ∈ F

n
q

and put γ = c1α1 + . . . + cnαn ∈ Fqn . Then

Nn(c1, . . . , cn) =
n−1∏

j=0

(αqj

1 c1 + . . . + αqj

n cn)

=
n−1∏

j=0

(α1c1 + . . . + αncn)qj

= NFqn /Fq
(γ),

where NFqn /Fq
denotes the field norm from Fqn

to Fq. Thus Nn(c1, . . . , cn) = 0 is equivalent to
NFqn /Fq

(γ) = 0, which holds only for γ = 0, i.e.,
only when c1 = . . . = cn = 0.

It remains to note that one can generate irreducible
polynomials of arbitrary degree n in time polyno-
mial in n and q over arbitrary finite fields [2], [16].
Moreover over fields of constant characteristic this
can be achieved in running time polynomial in n
and log q. Thus given n and Fq one can efficiently
generate an algebraic circuit computing a norm
polynomial of degree n in two steps:

• Generate an irreducible polynomial f(y) ∈
Fq[y] of degree n. Set α1 = 1, α2 =
y, . . . , αn = yn−1.

• Generate an algebraic circuit that on input
x1, . . . , xn ∈ F

n
q computes the expression in

formula (1) modulo f(y).



2.2 Rational points and factoriza-
tion

The algebraic closure of Fq is denoted Fq. A poly-
nomial p(X) ∈ Fq[X1, . . . , Xn] is absolutely irre-
ducible if it is irreducible in Fq[X1, . . . , Xn].

For r ∈ N, let Gal(Fqr/Fq) be the Galois group
of Fqr over Fq. This group is generated by the
Fq-automorphism of Fqr that maps x → xq . For
a polynomial p(X) =

∑
piX

ai1
1 Xai2

2 · · ·Xain
n ∈

Fqr [X1, . . . , Xn] and σ ∈ Gal(Fqr/Fq), define
σ(p(X)) =

∑
σ(pi)Xai1

1 Xai2
2 · · ·Xain

n . We say
σ(p(X)) is a conjugate of p(X).

We will appeal to several powerful theorems on ra-
tional points during the course of our proof. We list
them below.

The theorem of Lang and Weil gives an estimate for
the number of Fq-rational points on any absolutely
irreducible Fq-hypersurface in terms of its degree.
The following refinement (due to Cafure-Matera,
relying heavily on Weil’s theorem and results of
Kaltofen) gives a sufficient condition for an abso-
lutely irreducible polynomial to have several roots.

Theorem 2.1 (Cafure-Matera [4]) Suppose
p(X) ∈ Fq[X1, . . . , Xn] is a degree d absolutely
irreducible polynomial. Then for any positive
constant c, there is a degree bound d0(c), such that
if d ≥ d0(c) and q > 2d4, then

∣∣{x ∈ F
n
q : p(x) = 0}∣∣ ≥ c.

Tracing the dependence of d0 on c in their proof,
one can check that d0(2) may be taken to be 1.

The Chevalley-Warning theorem gives another suf-
ficient condition for a polynomial to have more than
one root. It implies that if a polynomial has low
enough degree and has at least one root, then it has
more than one root.

Theorem 2.2 (Chevalley-Warning [13]) Suppose
p(X) ∈ Fq[X1, . . . , Xn] is a degree d polynomial.
If d < n, then

∣∣{x ∈ F
n
q : p(x) = 0}∣∣ ≡ 0 mod char(Fq)

If d = n, there are examples of polynomials that
have only one root. Indeed, norm polynomials have
this property. Our main lemma implies that, for
some n, q, the norm polynomials are the only such
examples.

3 The Algorithm

In this section we prove Theorem 1.1.

3.1 The Main Lemma

Given a homogeneous polynomial p(X) in n vari-
ables of degree d over Fq, recall that we wish to
decide whether Vp is nonempty or empty; equiva-
lently whether p(X) has a nontrivial Fq root or not.
In this subsection we prove our main technical re-
sult, Lemma 3.2, which gives structural information
about any polynomial that has no nontrivial Fq root,
under certain conditions on n, q and d.

We begin with a preliminary lemma about factor-
ization of Fq-irreducible polynomials over Fq.

Lemma 3.1 Suppose p(X) ∈ Fq[X1, . . . , Xn] is
of degree d and is irreducible in Fq[X1, . . . , Xn].
Then there exists r with r|d and an absolutely ir-
reducible polynomial h(X) ∈ Fqr [X1, . . . , Xn] of
degree d/r such that

p(X) = c
∏

σ∈G

σ(h(X))

where G = Gal(Fqr/Fq) and c ∈ Fq. Further-
more, if p(X) is homogeneous, then so is h(X).

Proof Let h(X) be an absolutely irreducible fac-
tor of p(X), scaled so that one of its nonzero coef-
ficients is in Fq . Let r be the smallest integer such
that the coefficients of h lie in Fqr . Furthermore,
for any σ ∈ Gal(Fqr/Fq), σ(h(X))|σ(p(X)) =
p(X). Thus all conjugates of h(X) are also factors
of p(X).

For σ ∈ Gal(Fqr/Fq), σ �= identity, we claim that
h(X) and σ(h(X)) are relatively prime. Indeed,
suppose h(X) and σ(h(X)) have a common fac-
tor in Fq[X1, . . . , Xn]. By the absolute irreducib-
lity of h(X), this means that σ(h(X)) must be a
scalar multiple of h(X). This means that for any
two nonzero coefficients β, γ ∈ Fqr , σ(β)/β =
σ(γ)/γ, and so β/γ ∈ F

σ
qr (the subfield of Fqr

fixed by σ). Thus, by the initial scaling of h(X),
every coefficient of h(X) lies in F

σ
qr . By definition

of r, this means that Fqr = F
σ
qr , which implies that

σ = identity, a contradiction.



We can now conclude that
∏

σ∈G σ(h(X))|p(X).
However

∏
σ∈G σ(h(X)) ∈ Fq[X1, . . . , Xn] and p

is irreducible. The result follows.

We can now state and prove our main lemma.

Lemma 3.2 Suppose d is prime, d < 2n and q >
32n4. Let p(X) ∈ Fq[X1, . . . , Xn] be a homoge-
neous degree d polynomial in n variables with coef-
ficients in Fq with no nontrivial Fq-rational points.
Then there exists a homogeneous degree 1 polyno-
mial h(X) ∈ Fqd [X1, . . . , Xn] such that:

p(X) = c
∏

σ∈G

σ(h(X))

where G = Gal(Fqd/Fq) and c ∈ Fq .

Proof Note that there is one trivial rational point
(the origin). To prove our theorem, we will infer
facts about the factorization of p(X) using the hy-
pothesis (i.e.,the absence of another rational point).

1. p(X) is irreducible over Fq[X1, . . . , Xn]:
If p(X) = g1(X)g2(X), where gi(X) ∈
Fq[X1, . . . , Xn] are of positive degree, then
they are both homogeneous polynomials and at
least one of them has degree < n. This poly-
nomial has a nontrivial rational point by Theo-
rem 2.2, and thus so does p, a contradiction.

2. Therefore, by Lemma 3.1, for some r|d, p(X)
factors as a product of r conjugates, each of
degree d/r. However d is prime, and so r = 1
or r = d. r = 1 corresponds to p(X) being
absolutely irreducible.

3. p(X) is not absolutely irreducible: If p(X)
was absolutely irreducible, we would have a
contradiction to Theorem 2.1 with c = 2.

Thus r = d and the result follows.

In fact, we can say something further about h(X).
Suppose h(X) =

∑n
i=1 aiXi. Then, by the ab-

sence of nontrivial Fq rational points, {a1, . . . , an}
are linearly independent over Fq. Conversely, if
the ai are independent, then p(X) has no nontriv-
ial roots.

The lemma says that if p(X) has no rational points,
then p(X) is a product of conjugate degree 1 poly-
nomials. This lays out a natural plan of attack for

our algorithm. The algorithm first pretends that
p(X) has no rational point, and through some judi-
cious substitutions2, determines the coefficients of
the degree 1 factors that p(X) is supposed to fac-
tor into. Then, the algorithm will verify that p(X)
is indeed the product of these conjugate degree 1
polynomials via a randomized polynomial identity
test.

If p(X) has no rational point, then the substitutions
will go through successfully, we will correctly de-
termine the coefficients of the linear factors, and the
polynomial identity test will pass. If the polynomial
identity test passes with high probability, then p(X)
is the product of some known degree 1 polynomials,
and hence we can directly check if it has a rational
point.

3.2 Substitutions

Suppose p(X) has no nontrivial root. The lemma
above tells us that we may write p(X) =
c
∏

σ∈G σ(h(X)), where G = Gal(Fqd/Fq) Let
h(X) =

∑n
i=1 aiXi. Indeed, there are many repre-

sentations of p(X) in this form (an Fq-multiple of
a product of degree 1 conjugate polynomials over
F

d
q), and the purpose of the first phase of our algo-

rithm will be to determine one such representation
(c,h(X)).

In our representation, we can assume a1 = 1 (pos-
sibly changing c). The algorithm will rely on the
following observations.

• p(1, 0, 0, . . . , 0) = c

• p(1, X2, 0, 0, . . . , 0) =
c
∏

σ∈G σ (1 + a2X2) =
c
∏

σ∈G (1 + σ(a2)X2)

• p(1, X2, 0, . . . , 0, Xk, 0, . . . , 0) =
c
∏

σ∈G σ (1 + a2X2 + akXk) =∏
σ∈G (1 + σ(a2)X2 + σ(ak)Xk)

As remarked earlier, we will only require black-
box access to evaluations of the polynomial. In
this model, note that we can efficiently compute
p(1, T, 0, . . . , 0, S, 0, . . . , 0) (where T and S are in-
determinates) by substituting values in Fq for T and
S and then interpolating.

2Indeed, at this point one could use Kaltofen factorization,
but this will introduce two-sided error



3.3 The Algorithm

The algorithm has two phases. The first phase of
the algorithm will attempt to recover a represen-
tation (c, h(X)) of p(X), as suggested in the pre-
vious subsection. We note that univariate and bi-
variate polynomial factorization and the generation
of an explicit description of field Fqd can all be
done in randomized polynomial time (with zero er-
ror) [2, 8]. In our algorithm, if any of these proce-
dures fail, the algorithm REJECTs.

We describe the first phase of the algorithm below
(here bi will be our guess for ai):

Phase 1

1. Compute c = p(1, 0, . . . , 0). If c = 0, AC-
CEPT

2. Set b1 = 1

3. Compute g(T ) = p(1, T, 0, 0, . . . , 0), where T
is an indeterminate. If g(T ) = 0, ACCEPT

4. Factor g(T ) over Fqd as c
∏d

j=1(1 + βjT ).

5. Set b2 = β1 (say). If the βj are not all the
distinct conjugates of β1 over Fqd , ACCEPT

6. For each k ∈ {3, 4, . . . , n}, do the following:

• Compute gk(T, S) =
p(1, T, 0, . . . , 0, S, 0, 0), where T
and S are indeterminates, and S is
substituted into the kth input variable. If
gk(T, S) = 0, ACCEPT

• Factor gk(T, S) over Fqd in the form∏d
j=1(1 + βjT + γk,jS) (if possible). If

factorization into this form is not possi-
ble, ACCEPT

• Set bk = γk,1

7. Store (c,
∑n

i=1 biXi) for use in the second
phase

In the second phase, the algorithm harvests the in-
formation gathered in the first. Using the purported
representation of p(X), it verifies that it is correct
via an identity test.

Phase 2

1. If the bi are linearly dependent over Fq, AC-
CEPT

2. Perform a Randomized Identity Test (with fail-
ure probability at most 1/2) for the identity

“p(X) = c
∏

σ∈G

σ(
n∑

i=1

biXi)”

• If they are not equal ACCEPT

• Otherwise REJECT

The following claim completes the proof of Theo-
rem 1.1.

Claim 3.3 If p(X) has no nontrivial root, then the
above algorithm REJECTs with probability 1. If
p(X) has a nontrivial root, then the above algo-
rithm ACCEPTs with probability at least 1/2.

Proof We consider two cases.

• Suppose p(X) has no nontrivial root: Then
p(X) is of the form c

∏
σ∈G σ(h(X)) where

h(X) =
∑n

i=1 aiXi, for some Fq-linearly-
independent ai ∈ Fqd with a1 = 1. The al-
gorithm will proceed “as planned”; in particu-
lar it will not ACCEPT during the first phase.
By the observations made earlier, b2 will be
set to τ(a2) for some τ ∈ G, and further-
more for each k, bk will be set to τ(ak). Thus∑n

i=1 biXi = τ(
∑n

i=1 aiXi) and so p(X) =
c
∏

σ∈G σ(
∑n

i=1 biXi). Therefore the bi are
linearly independent over Fq, and the algo-
rithm always REJECTs in the second phase.

• Suppose p(X) has nontrivial roots: Now we
do not care about what happens in the first
phase. If we do not make it to the final iden-
tity test, then we must have ACCEPTed during
some earlier step. So let us assume we have
reached the identity test; in particular, the bi

are linearly independent over Fq . In the final
test of p(X) against c

∏
σ∈G σ(

∑
biXi), ob-

serve that the second polynomial has no non-
trivial rational points, while the first does, and
hence with probability at least 1/2 the polyno-
mials will be exposed as unequal by the iden-
tity test, and the algorithm will ACCEPT.

This completes the proof of the claim, and hence of
Theorem 1.1.



3.4 Finding roots

Given a homogeneous degree d polynomial in n
variables over Fq, one could also consider the al-
gorithmic question of finding a nontrivial root (if
any). The Chevalley-Warning theorem guarantees
that every d-dimensional projective hyperplane con-
tains a rational point. Our algorithm allows us to
identify a projective hyperplane of dimension at
most d/2 with a rational point in time polynomial
in n, d, q, when d is prime and q > 32n4. In-
deed, using the detection algorithm one can suc-
cessively find smaller dimensional projective hyper-
planes containing a rational point until the dimen-
sion becomes at most d/2.

4 Hardness results

In this section we establish Theorem 1.2 and The-
orem 1.3, that show that relaxing the conditions in
Theorem 1.1 makes Lproj NP complete.

4.1 Proofs of hardness results

Proof of Theorem 1.2:

Consider the language L of 3DNF formulae F
for which there exists an assignment x, such that
F (x) = 0 and x �= 0. It is easy to see that language
L is NP complete. We will now give a reduction
from L to Lproj(S1).

Let F be a 3-DNF formula of length l in variables
x1, . . . , xm. Assume F has t clauses. Clearly, m ≤
l and t ≤ l. Fix some integer s ≥ 2. Fix a finite field
Fq of size at least 100s4l8. This is the right field size
to meet the requirements of the theorem. However
one can carry out our reduction over arbitrary finite
fields independent of their size.

In what follows we demonstrate an efficient pro-
cedure that given F generates an algebraic circuit
over Fq computing a homogeneous polynomial pF

in n = m + m(s − 1)(3t + 1) variables such that
the following holds,

∃ x ∈ {0, 1}m such that F (x) = 0 and x �= 0
(2)

⇔∃ x ∈ F
n
q , such that pF (x) = 0 and x �= 0.

(3)

First for every clause ci = xσ1
i1

∧ xσ2
i2

∧
xσ3

i3
construct a polynomial wci(xi1 , xi2 , xi3) =

lσ1(xi1)lσ2(xi2 )lσ3(xi3 ), where lσ(x) is a linear
form defined by l0(x) = x and l1(x) = 1 − x. Our
first attempt for the polynomial pF (x) would be to
define

p̂F (x) = Nt(wc1 , . . . , wct), (4)

where Nt is a norm polynomial. One can verify
that the polynomial p̂F (x) defined above has a root
in Fq if and only if there exists an x ∈ {0, 1}n such
that F (x) = 0. The obvious problem with this re-
duction is that p̂F (x) need not be a homogeneous
polynomial.

We go around this problem by defining ho-
mogenizing the polynomial p̂F , once with
respect to each input variable xj . Intro-
duce new polynomials wci,j(xi1 , xi2 , xi3) =
lσ1,j(xi1 )lσ2,j(xi2)lσ3,j(xi3 ), where lσ,j(x) is a
homogeneous linear form defined by l0,j(x) = x
and l1,j(x) = xj − x. We also define polynomials

pF,j(x) = Nt(wc1,j , . . . , wct,j), (5)

for all j ∈ {1, 2, . . . , m}. Essentially, the polyno-
mial pF,j(x) is obtained by homogenization of the
polynomial p̂F (x) defined by (4), where variable xj

is used to carry out the homogenization procedure.
Polynomials pF,j are homogeneous. However they
may have roots that do not correspond to boolean
assignments to F that set it to zero.

The picture below represents the structure of our
final polynomial pF . pF is a polynomial in n =
m + T variables, where T = m(s − 1)(3t + 1).
Of these, m variables are just x1, . . . , xm and the
other T variables are labelled z1, . . . , zT . We need
zi’s to achieve the right ratio between the number
of variables and the degree of the polynomial.

Ns

Nm

......

....

X1 P
F,

Xm P
F,

Z1 Z

N
m(3t+1)

m(3t+1)

Z
T-3t Z

Nm(3t+1)

T

1 m

... .... .

The general idea behind our construction is
the following. We combine the products



xjpF,j(x1, . . . , xm) using the norm polynomial
Nm. This polynomial already has the property (2).
The only problem that we still have at this point
is that the degree of the norm of products is d =
m(3t + 1) while the number of variables is only
m. So we are quite far from the the desired relation
d < 2m. To resolve this problem we add yet another
norm polynomial Ns on top of Nn. Other argu-
ments of Ns are norms in new variables z1, . . . , zT .

Note that for every norm gate in the pF the argu-
ments are polynomials of the same degrees. Thus
pF is a homogeneous polynomial. pF is a polyno-
mial in n = m+m(s−1)(3t+1)variables of degree
d = sn(3t + 1). Therefore we have the relation

d < ((s)/(s − 1))n. (6)

Recall that pF is a polynomial over Fq where q ≥
100s4l8. Thus we also have the relation q ≥ 32n4.
It remains to verify that the property (2) does hold.

Assume we are given a nonzero boolean assign-
ment a ∈ {0, 1}m such that F (a) = 0. We set
all variables z1, . . . , zT to zero. We shall now
verify that pF (a1, . . . , am, 0, . . . , 0) = 0. First
note that for every j ∈ {1, 2, . . . , n} the prod-
uct ajpF,j(a1, . . . , am) = 0. This happens ei-
ther because aj = 0 or because aj = 1 and
pF,j(a1, . . . , am) computes the value of F (a). Fur-
ther recall that the norm polynomials on zero inputs
evaluate to zero. Therefore (a1, . . . , an, 0, . . . , 0) is
a nontrivial zero of pF .

The other direction is slightly more complicated.
Let (a1, . . . , am, v1, . . . , vT ) ∈ F

m
q be a nontriv-

ial zero of pF . Note that vi needs to be zero for all
i ∈ {1, . . . , T}, since otherwise the value of Ns will
be nonzero. Therefore there should be a non-zero
value among (a1, . . . , am). Without loss of gener-
ality assume that a1 �= 0. Observe the following
chain of implications:

Ns = 0 ⇒ Nm = 0 ⇒ pF,1(a1, . . . , am) = 0.
(7)

For all i = 1, n set bi = 0 if ai = 0 and
set bi = 1 otherwise. Observe that b1 = 1.
The structure of polynomials wci,1 implies that
pF,1(b1, . . . , bm) = 0. It remains to notice that
b1 = 1 and pF,1(b1, . . . , bm) = 0 imply that
F (b1, . . . , bm) = 0.

Remark The above proof shows that we may
even add the additional constraint d < (1 + ε)n for

any ε > 0 to the definition of S1. Indeed, we may
choose s to be a suitably large constant so that (6)
gives us the desired bound on d.

Proof of Theorem 1.3: We exhibit a reduction
from the same NP complete language as in the
proof of theorem 1.2. Given a 3DNF formula F of
length l we follow the procedure of theorem 1.2 to
construct an algebraic circuit computing a polyno-
mial p̂(x1, . . . , xn) of degree d over a field of size
at least 32n4 such that the condition (2) is satisfied.
We also require d ≤ (1 + ε/2)n. The possibility of
such a construction is implied by the above remark.

Next we choose a prime r between (2 + ε/2)n and
(2+ ε)n. Note that the existence of such a prime for
sufficiently large n follows from the prime number
theorem [5]. We can find r by brute force search
since we are allowed to run in time polynomial in
n. Put g = r − d. Note that g ≥ n. We now define
our final polynomial to be

pF (x1, . . . , xn) = p̂F (x1, . . . , xn)
· Ng(x1, . . . , xn, x1, . . . , x1).

The first n arguments of Ng are x1, . . . , xn and
all other arguments are x1. One can easily see that
a circuit for pF can be constructed in polynomial
time. pF has prime degree r and the required re-
lations between n and r are satisfied. Proving the
condition (2) is also easy. It suffices to show that
every nontrivial root of pF is also a nontrivial root
of p̂F . This follows from the fact that Ng depends
on all the variables x1, . . . , xn and always evaluates
to nonzero at nonzero inputs.

Proof of Theorem 1.4: Again, our reduction is
from the same NP complete language as in the pre-
vious proofs. We fix some value of ε > 0. Given
a formula F we use the construction from the re-
mark after the proof of Theorem 1.2 to get an alge-
braic circuit that evaluates a homogeneous polyno-
mial p̂F (x1, . . . , xn) such that p̂F satisfies the prop-
erty (2). Moreover deg p̂F ≤ (1 + ε)n. Also, we
choose the field size q to be q0.

The polynomial p̂F has all the properties that we
want except that the degree of p̂F is not prime.
Our idea to go around this problem is the follow-
ing. We will prove that there exists a polynomial
pF (x1, . . . , xn) of prime degree such that pF and
the p̂F are identical over Fq. Then we can can use



the circuit that computes p̂F to compute pF and our
reduction will be complete. Note that the further ar-
gument is aimed only to prove the existence of pF

of prime degree and we do not need to construct an-
other circuit (recall that we are showing hardness of
Lweak

proj (S3), not Lproj(S3)).

For a later part of the argument, we need d to be
relatively prime to q. Recall that d = ms(3t + 1),
where m, s and t are defined in the proof of theo-
rem 1.2. Closer look at that proof shows that we
can increase each of these quantities by one without
affecting the reduction. In particular,

• In order to increase m by one just add a new
variable y to F and consider a new formula
F ∨ (y ∧ y ∧ y).

• Increasing s is trivial since s is just a parameter
of the reduction and it can set to be arbitrarily
large.

• It order to increase t one can just duplicate
some clause of F.

Applying the tricks from above one can force d =
ms(3t + 1) to be relatively prime to q. The simple
way to increase the degree of a polynomial over a
finite field of size q is to increase the degree of one
variable in each monomial from b to b + q. Clearly,
this does not affect the values of polynomial over
Fq but increases the degree by q.

Therefore to complete the reduction we only need
to show that assuming d ≤ (1 + ε)n an arithmetic
progression of the form {d + qk}k≥1, contains a
prime that is less than 2n. Assuming that n is suf-
ficiently large this follows from the known facts
about the distribution of primes in arithmetic pro-
gressions [5] 3.

5 Conclusions

We studied the complexity of deciding whether a
given multivariate polynomial has a root over a fi-
nite field. In this paper we found a randomized
polynomial time algorithm for solving this problem
given black-box access in a setting amenable to in-
teresting algebraic techniques. We hope the tech-
niques find wider applicability.

3We may actually choose q to be slightly superconstant
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