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ABSTRACT
A recent paper computes near-optimal strategies for two-
player no-limit Texas hold’em tournaments; however, the
techniques used are unable to compute equilibrium strate-
gies for tournaments with more than two players. Moti-
vated by the widespread popularity of multiplayer tourna-
ments and the observation that jam/fold strategies are near-
optimal in the two player case, we develop an algorithm
that computes approximate jam/fold equilibrium strategies
in tournaments with three — and potentially even more
— players. Our algorithm combines an extension of fic-
titious play to imperfect information games, an algorithm
similar to value iteration for solving stochastic games, and
a heuristic from the poker community known as the Inde-
pendent Chip Model which we use as an initialization. Sev-
eral ways of exploiting suit symmetries and the use of cus-
tom indexing schemes made the approach computationally
feasible. Aside from the initialization and the restriction
to jam/fold strategies, our high level algorithm makes no
poker-specific assumptions and thus also applies to other
multiplayer stochastic games of imperfect information.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Economics

Keywords
Game theory, equilibrium finding, stochastic games, imper-
fect information, poker, Texas hold’em

1. INTRODUCTION
Poker exemplifies many challenging computational prob-

lems in multiagent systems: it is a game of imperfect in-
formation, its strategy spaces are extremely large, and there
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can be many players. There has been significant interest and
progress recently in developing game theory based strate-
gies for poker in AI. For example, the game of heads-up
(i.e., two-player) Rhode Island hold’em has been solved [9].
Regarding Texas hold’em, there has been great progress in
finding good game theory based solutions for playing a hand
of heads-up limit Texas hold’em [2, 7, 8, 10], but relatively
little work has been done on the no-limit variant1 and tour-
nament poker despite the fact that these are perhaps the
most popular variants among humans. (In limit poker bets
must be of a fixed size, while in no-limit poker players can
bet any amount up to the amount of chips they have left.)

One significant exception is a recent paper that studies
no-limit tournaments [13] and presents very interesting re-
sults using a restricted class of strategies called jam/fold
strategies. However, the results and the algorithms of that
paper do not apply to more than two players. This is not
too surprising as there often exists a large complexity gap
between the difficulty of solving two and three-player zero-
sum games. For example, two-player zero-sum matrix games
can be solved in polynomial time by linear programming
while solving three-player zero-sum matrix games is PPAD-
complete [4]. Furthermore, poker tournaments are stochas-
tic games, and while it has been known for decades that
an equilibrium exists in two-player zero-sum undiscounted
stochastic games, it is still unknown whether one exists in
such games with more than two players.

2. NO-LIMIT TEXAS HOLD’EM POKER
No-limit Texas hold’em is by far the most popular form of

poker currently played, and we will briefly review the rules
here. All players at the table are dealt two private hole cards,
and one player is selected to be the button — a designation
which shifts one position clockwise each hand. The player to
the left of the button is called the small blind (SB), and the
player to his left is the big blind (BB). Both the SB and BB
are forced to put some number of chips into the pot before
the hand (normally BB = 2 × SB); these investments are
called blinds. Then there is a round of betting starting with
the player to the BB’s left. After that, three cards (called the
flop) are dealt face up in the middle of the table. Then there
is another round of betting starting with the player directly
left of the button (this player begins all future betting rounds
as well), followed by another card dealt face up (the turn).
Then another round of betting, followed by a fifth card face
up (the river), followed by a final round of betting. If two

1A notable exception is a contemporary paper which studies
a single hand of heads-up no-limit Texas hold’em [11].



or more players remain in the hand after the final betting
round, the player with the best five-card hand (constructed
from his two hole cards and the five community cards) wins
the pot. In case of a tie, the pot is split evenly among those
players.

During each round of betting, each player has four possible
options. (1) fold: pass and forfeit his chance of winning the
pot. (2) call: put a number of chips equal to the size of the
current bet into the pot.(3) raise: put additional chips in the
pot beyond the amount needed to call. (4) jam (also referred
to as moving all-in or pushing): put all of one’s remaining
chips into the pot (even if that amount is smaller than the
amount needed to call; in this case a side pot is created for
the other players so that everyone has invested equally into
the main pot).

Sit-and-go tournaments are an extremely popular form of
poker, especially on online poker sites. They work as follows.
Some number of players (usually 9) all pay an entry fee (say
$15) and are given a number of chips (say 1500), which have
no monetary value per se except that a player is eliminated
from the tournament when he runs out of chips. The first
six players eliminated from the tournament lose their entry
fee, while the three top finishers receive 50%, 30%, and 20%
of the sum of the entry fees (9×$15) respectively. Usually
the blinds increase every five or ten minutes, starting at SB
= 10, BB = 20 and approximately doubling at every level.
Since chips have no explicit monetary value, tournaments
are actually stochastic games, where each state corresponds
to a vector of stack sizes.

3. JAM/FOLD STRATEGIES AND HEADS-
UP RESULTS

When blinds become sufficiently large relative to stack
sizes, rationality dictates more aggressive play. For example,
suppose a player has 1000 chips at the 100/200 level (SB =
100, BB = 200) and is considering making a preflop raise
smaller than going all-in. If he makes a minimum raise to
400 and someone re-raises for all his chips, then he will only
need to put in 600 more chips into a pot of 1700. If all
chips had the same value, then he would only need to expect
to win with probability 600

1700+600
= 0.261 to make calling

correct. Since even the worst starting hand has close to this
probability of beating the best starting hand, it will almost
always be correct to call. If he had gone all-in preflop instead
of raising to 400, the result would probably have been the
same in this case; furthermore, he would have been more
likely to win the blinds for free, since opponents are more
likely to call a raise of 200 than a raise of 800.

In line with this example, common strategy when blinds
become sufficiently high relative to stack sizes is to either
go all-in or fold preflop (this is known as a jam/fold strat-
egy). Following this reasoning, a recent paper [13] computes
near-optimal jam/fold strategies for tournaments with two
players and the fixed parameters SB = 300, BB = 600,
and 8000 total chips (at the time, these defined the nor-
mal parameters for the heads-up endgame in tournaments
on PartyPoker.com). In fact, if we let Gi,si denote the re-
striction of the original tournament in which player i starts
with si chips and is limited to playing a jam/fold strat-
egy (while the other player is not), they show that for any
value of s1, V1(G1,s1) + V2(G2,8000−s1) ≥ 0.986 (where the
winner gets payoff 1, the loser gets payoff 0, and Vi de-

notes the value of the game to player i). Thus, neither
player can guarantee more than 0.014 by deviating to a non-
jam/fold strategy; this provides a justification for restricting
attention to jam/fold strategies. They compute the optimal
jam/fold strategies for the full stochastic games G1,s1 and
G2,s2 , where they consider all states in which stack sizes are
a multiple of 50. One important conclusion they draw is
that for any starting stack sizes s1, s2, the probability that
player i will win is very close to

si

s1 + s2
. (1)

In addition to being simple, this formula is nice for another
reason. Consider the following game: two players start with
stacks s1 and s2, and each round they flip a coin and the loser
pays the winner some fixed number ε chips until one player
has no more chips. This is just the gambler’s ruin problem,
with the same solution: player i wins with probability si

s1+s2
.

An additional noteworthy conclusion of [13] is that the
optimal strategy involves very little randomization: at each
state each player only needs to randomize (play an action
with probability not equal to 0 or 1) with at most one hand.
They also note that there is no general strength-ranking of
hands: there exist hands A and B and stack vectors v and w
such that A should be jammed and B should be folded at v,
but B should be jammed and A should be folded at w. Fi-
nally, they prove that the optimal strategy for a single hand
of a cash game is almost identical to that of a tournament.

4. INDEPENDENT CHIP MODEL (ICM)
It is not clear which of the conclusions that hold for two

players extend to more players; however, one thing that is
clear is that chips and money do not necessarily coincide
with more than two players (while they do with two players).
For example, suppose the chip stacks are 5000, 4900, and 100
with blinds at 50/100. If the player with 100 folds and the
player with 5000 jams, should the player A with 4900 be
indifferent between taking a 50-50 for all his chips (in this
hypothetical example we assume he is sure it will be a 50-
50 if he calls)? In a single hand of a cash game he should
be indifferent, because the expected payoff of calling and
folding are both 0 (ignoring the blinds which are negligible
compared to the relevant stack sizes). However this is not
the case in a tournament with 50/30/20 payoffs. If he folds,
then the short stack will be eliminated very soon and A will
expect to come in first and second with probability 1

2
: so

his expected payoff is $40. If he calls, then he will basically
guarantee winning the tournament if he wins, but will come
in third if he loses. So his expected payoff is $35. So he will
gain $5 on average by folding.

Unfortunately, there is no obvious way of generalizing
equation (1) to come up with a heuristic for performing ex-
pected value calculations in tournaments with more than
two players; however, the following formula has been pro-
posed and has received widespread acceptance in the poker
community for the last several years [15]:

Ui = P1 ∗
si

S
+ P2 ×

X
j 6=i

»
sj

S
× si

S − sj

–

+ P3 ×
X
j 6=i

X
k 6=i,k 6=j

»
sj

S
× sk

S − sj
× si

S − sj − sk

–
,

where Ui denotes the expected payoff (ignoring the entry fee)



of player i, si denotes his stack, S =
P

j sj , and P1, P2, P3

are the payoffs to the top three finishers. This formula is
referred to as the Independent Chip Model (ICM), and all
of the popular tournament software tools (such as [14]) use
ICM to determine expected payoffs.

5. OUR TWO-LEVEL ITERATIVE ALGO-
RITHM FOR EQUILIBRIUM FINDING

We will now present our approach. It consists of iteration
at two nested levels. In the “inner loop,” we use an exten-
sion of fictitious play to determine ε-equilibrium strategies
for playing a hand at a given state (stack vector) given the
values of possible future states. We do this for all states.
Then, in the iteration of the “outer loop,” we use value it-
eration to adjust the values of the different states in light
of the new payoffs obtained from the inner loop. Then we
execute the inner loop again, then the outer loop, and so on.
We terminate when no state’s payoff changes by more than
δ between outer loop iterations.

In the following subsection, we describe the inner loop.
It entails generalizing fictitious play to games of incomplete
information. In the subsection after that, we will discuss the
outer loop in detail.

5.1 Iteration at a given state using fictitious
play

Our basic inner-loop algorithm is an extension of fictitious
play to multiplayer incomplete-information games (a similar
algorithm was used by [1] in the case of two players in a
single hand of a cash game). In standard fictitious play, each
player plays a best response to the average strategies of his
opponents thus far. More formally, each player i applies the
following update rule at each time step t :

si,t =

„
1− 1

t

«
si,t−1 +

1

t
s′i,t,

where s′i,t is a best response of player i to the profile s−i,t−1

of the other players played at time t−1 (strategies can be ini-
tialized arbitrarily at t = 0). This algorithm was originally
developed as a simple learning model for repeated games,
and was proven to converge to a Nash equilibrium in two-
player zero-sum games [5]; however, it is not guaranteed to
converge to an equilibrium in two-player general-sum games
or games with more than two players.

In extensive-form games the strategy spaces can be expo-
nential in the number of possible private signals. In particu-
lar, in Texas hold’em there are 169 strategically distinct pre-
flop hands (see, e.g., [7]) and two jam/fold moves each player
can make at each information set. Therefore, the strategy
spaces (for any given stack vector) are of size 2169, 2× 2169,
and 3 × 2169 for the button, small blind, and big blind, re-
spectively (the big blind does not need to act when the other
two players fold). To deal efficiently with this exponential
blowup, the algorithm works with the extensive form of the
game instead of enumerating the strategies. In the extensive
form, each player’s best response can be computed by simply
traversing his information sets one at a time (assuming the
payoffs at the other stack vectors are known). The button
has 169 information sets, the small blind has 2 × 169, and
the big blind has 3× 169. Therefore, the best response (for
each player in turn) can be computed efficiently.

While fictitious play is not guaranteed to converge in our
setting, we fortunately have the following result:

Theorem 1. [5] Under fictitious play, if the empirical
distributions over each player’s choices converge, the strat-
egy profile corresponding to the product of these distributions
is a Nash equilibrium.

5.2 Tying the states together: solving the
tournament by value iteration

As stated earlier, poker tournaments are stochastic games
in which each state corresponds to a vector of stack sizes.
In particular, we analyze the tournament in which there are
13500 total chips, and blinds are SB = 300, BB = 600.
These correspond to common endgame parameters of sit-
and-go tournaments at Pokerstars.com, the most popular
online poker site.2 Each state in our game G is defined by a
triple (x1, x2, x3), where x1 denotes the stack of the button,
x2 denotes the stack of the small blind, x3 denotes the stack
of the big blind,

P
i xi = 13500, and all xi are multiples of

300. When one of the xi becomes zero, that player is elim-
inated, and we can already solve the remaining game with
the prior techniques because there are at most two players
left. So we can treat these states as terminal states and sub-
stitute the corresponding payoffs to players when we arrive
in such states. G has 946 non-terminal states.3

Our algorithm for solving the game is the following. First
we initialize the assignment V 0 of payoffs to each player at
each game state using ICM, described above.4 Then, sup-
pose we start at some game state x. If we assume that the
payoffs of V0 at all states are the actual values of those game
states to the players, then the whole stochastic game just
becomes a standard game in which every transition from x
leads to a terminal payoff. So we can run the fictitious play
algorithm described in the previous section at state x until
it (hopefully) converges. Supposing it does converge to an
approximate equilibrium y, each player will now have some
new expected payoff at state x if profile y is played that
might differ from the payoff of V0. If we do this for all 946
nonterminal game states, we come up with a new assign-
ment V1 of payoffs to each player at each game state. Now

2Actually tournaments on Pokerstars generally have the
players post an additional ante of 50 at the beginning of
every hand at this blind level, but as in the prior work on
jam/fold strategies [13], we ignore these extra antes.
3In order to guarantee that we always remain in a valid
state of G, we must resolve a slight ambiguity involving split
pots. For example, suppose s = (12300, 600, 600), the but-
ton jams, the small blind folds, the big blind jams, and the
button and big blind end up tying after the community cards
are dealt. Then the outcome is that both the button and
big blind gain 150 chips and the small blind loses 300 chips.
This would take us out of a valid state of our game since the
button and big blind’s stacks are no longer multiples of 300.
Our solution is to use a tiebreaking rule for this situation
and state that instead of giving 150 to both the button and
big blind, we will give 300 to the button and 0 to the big
blind with probability 0.5, and give 300 to the big blind and
0 to the button with probability 0.5.
4We recently became aware of a website [12] that claims to
use a similar inner loop algorithm to ours on tournaments.
Unlike in our work, they make the significantly simplifying
assumption of ICM payoffs at all states (we only use ICM for
initialization and thus do not have any such assumptions).
Furthermore, they ignore certain card removal effects and
use restricted strategy spaces.



suppose we repeat this process and that hypothetically the
payoffs remain the same between iterations k and k + 1 (all
the payoffs in Vk and Vk+1 are equal). This would suggest
that the strategies computed by fictitious play at iteration k
(assuming they converge) are close to an equilibrium of the
full game G.

So our overall algorithm for computing an approximate
Nash equilibrium of the tournament is as follows. First, fix
some ε, δ > 0. Initialize the V0 to ICM, and run fictitious
play using V0 as payoffs until an ε-equilibrium is reached (a
strategy profile in which no player can gain more than ε in
expectation by deviating). Then use the payoffs V1 which
result from the computed strategy profile and repeat. The
algorithm halts when it reaches an iteration k such that each
payoff of Vk differs from the corresponding payoff of Vk−1 by
less than δ.

Algorithm 5.1: ComputeEquilibrium(ε, δ)

V0 = ICM
DiffOuter = ∞
i = 0
while (DiffOuter > δ)

do

8>>>>>>>>><>>>>>>>>>:

i = i + 1
Regret = ∞
Initialize(strat)
while (Regret > ε)

do


strat = FictP lay(strat)
Regret = MaxRegret(strat)

Vi = getNewV alues(Vi−1, strat)
DiffOuter = MaxDev(Vi, Vi−1)

return (strat)

6. IMPLEMENTATION DISCUSSION

6.1 11-card rollout
The main computational challenge of this project was pre-

computing the probabilities of all of the events that occur
when all three players are all-in preflop (e.g., player 1 wins,
players 2 and three tie for second): there are 13 such proba-
bilities for each set of hole cards. In order to do this, we had
to perform an 11-card rollout — essentially iterating over
all possible hole cards for the players (6 total) and all possi-
ble sets of community cards (5 total). The straightforward
approach of iterating over all 

52

2

! 
50

2

! 
48

2

! 
46

5

!
= 2.51× 1015

possibilities would take too long, and we were forced to find
ways of exploiting suit symmetries to hopefully reduce the
running time.

6.1.1 Exploiting suit symmetries
Gilpin, Sandholm and Sørensen [10] faced similar issues

when they performed a nine-card rollout for two players.
Unfortunately their techniques do not extend directly to
three players, and we were forced to come up with a new
method of exploiting symmetries which works as follows.

First, fix an order of the players a, b, c and number the
cards from 0 to 51 (0 is 2♣, 1 is 2♦, etc.). Also order the
suits from 0 to 3: (♣,♦,♥,♠). For each player, fix an or-
dering of his hole cards: a1 < a2, b1 < b2, and c1 < c2.
We restrict a1 to be of suit 0, then proceed as follows in
the order a2, b1, b2, c1, c2. Each of these cards can either be
a suit of one of its predecessors, or can be 1 more than the
maximum suit of one of its predecessors. For example, a2

can either have suit 0 or 1, since its only predecessor a1 had
suit 0. Then every set of hole cards for the three players is
equivalent (up to a permutation of players and suits) to a set
of cards meeting the above requirements; thus we only need
to iterate over this smaller set of hole cards in the rollout.

We will now give an example that demonstrates how to
transform a particular hand to the canonical form discussed
in the preceding paragraph. Suppose the three sets of hole
cards are as follows: (7♠, K♥), (A♦, A♣), (6♦, J♠). Since
the 6♦ is the lowest of the six cards, we fix the last player
to be player 1. Similarly we fix the first player to be player
2 since 7♠ is the lowest card of the remaining players, and
the middle player becomes player 3. Since player 1’s lowest
card must be a club, we must apply a permutation mapping
♦ → ♣. Since 6♦ and J♠ are of different suits, we must
map ♠ → ♦. So far we have a1 = 6♣, a2 = J♦. Since ♠
has already been mapped to a suit, we set b1 = 7♦. Now
K♥ does not match any of the suits seen so far: so we
must set it to the lowest ranked unseen suit, which is ♥. So
our permutation maps ♥ → ♥ and therefore ♣ → ♠. Thus
b2 = K♥, c1 = A♣, c2 = A♠.

6.1.2 Indexing in the rollout
The previous section discussed how we were able to reduce

the number of possible hole card combinations we needed to
iterate over. Once we fixed a set of six hole cards for the
players, we now had to iterate over all possible sets of five
community cards. Let us denote the hole cards as in the pre-
vious section and call the community cards t1, . . . , t5. With-
out loss of generality, we can assume that t1 < t2 < . . . < t5:
this reduces the number of community card possibilities we
need to iterate over by a factor of 5! = 120. However, while
the authors of [10] were able to come up with some clever
ways of further reducing the number of community card
possibilities with two players, this proved to be more dif-
ficult with three players and we were not able to do so. So
for each set of hole cards, we were forced to iterate over`
46
5

´
= 1370754 combinations of community cards.

Given a fixed set of hole cards and community cards, our
strategy for computing the desired probabilities was the fol-
lowing. First, we construct the seven-card hand for the
first player (a1, a2, t1, t2, t3, t4, t5), and do the same for the
other two players. We next compute the ranking of this
hand, which denotes the value of the best possible five-
card hand our of these seven cards. Since performing all
of these calculations at run time would make the rollout
take too long, we precomputed all of these rankings of seven
card hands and output them to a file, which we read into
an array before we started the seven card rollout. The
straightforward method of doing this would require an ar-
ray with 527 = 1012 elements. Such a large array would
slow down the rollout too much, so we were forced to find
a way to make it smaller. Fortunately, we were able to ap-
ply the same indexing technique used by Gilpin, Sandholm
and Sørensen [10, 3]. The colexicographical index of a set



of integers x = {x1 . . . , xk} ⊂ {0, . . . , n − 1} with xi < xj

whenever i < j is

colex(x) =

kX
i=1

 
xi

i

!
.

This index has the important property that for a given n,
each of the

`
n
k

´
sets of size k has a distinct colexicographical

index. Furthermore, these indices are compactly encoded
as the integers from 0 to

`
n
k

´
− 1. Since the ranking of a

hand is not affected by the order of the seven cards, we
can assume without loss of generality that the cards are
given in increasing order. So if we index each seven-card
hand by the index obtained after permuting the cards so
they are in increasing order, we only require an array of size`
52
7

´
= 133784650. This results in a reduction of memory

by a factor of 7685, which proved to be crucial given the
number of iterations we had to perform.

With these techniques, the computation of determining
the 11-card rollout took a month using 16 processors. The
output includes for each combination of three pairs of hole
cards the probability distribution over rollout outcomes (who
wins, who comes second, and who comes third, treating
outcomes with ties counting as separate outcomes). We
then stored that database, which is used heavily in our
equilibrium-finding algorithm discussed above.

6.2 Indexing within the equilibrium finding
Another implementation issue of note arose when we

needed to access the rollout probabilities within our equi-
librium computation. First, notice that each player is play-
ing a strategy that only depends on his hand ranking and
not the specific cards per se. That is, each player treats
Q♥8♠ and Q♦8♣ the same strategically, even though the
actual cards are different (there are 169 strategically distinct
hands). The straightforward method of reading in the out-
put of the 11-card rollout would involve using an array with
526 × 13 = 2.57 × 1011 entries (13 outcomes for each set of
6 hole cards). However, for the purposes of our algorithm,
we can combine all of the results in which a player has two
different but strategically equivalent hands together into a
single entry of the array. Thus we can collapse this array
into one of size 1693×13 which has about 63 million entries.
However, even after this reduction the time needed to ac-
cess elements of this array made the running time too long
(since the accesses were nested inside several loops in each
iteration of the inner loop).

We observed that we could obtain a further reduction in
memory by fixing a permutation of the hand rankings. That
is, suppose the three hand rankings are a, b, and c. The
array described in the previous paragraph would have up
to six different entries corresponding to different permuta-
tions of these rankings. However, suppose we fix an order-
ing of the hand rankings and suppose a ≤ b ≤ c using this
ordering (note that there can be equalities: for example,
two players can be dealt pocket aces). Then our new ar-
ray would just have an element corresponding to the triple
(a, b, c) and not all of the other permutations. However, we
cannot use the indexing scheme of the previous section be-
cause of the possibility of equalities between hand rankings.
Fortunately, Troels Sørenson suggested to us the following
indexing scheme, which is able to deal with multisets of this
form. Now we define the multiset-colexicographical index of
a set of integers x = {x1 . . . , xk} ⊂ {0, . . . , n − 1} with

xi ≤ xj whenever i < j to be

multi− colex(x) =

kX
i=1

 
xi + i− 1

i

!
.

Using this indexing scheme, we only require an array of size
881805 × 13, which has about 11 million entries. This is
about a factor of 5.5 further reduction and proved to be
enough for our algorithm to run sufficiently fast.

We also found it useful to map each stack vector s =
(s1, s2, s3) to a unique index using the following formula,
where we assume 0 < si ≤ n and si is an integer for each i
(we divided the stacks by 300 before applying this):

stack − colex(s) = (s2 − 1) +

s1−1X
i=1

n−i−1X
j=1

1

= −0.5s2
1 + s1(n− 0.5) + s2 − n.

7. RESULTS FROM OUR EQUILIBRIUM
COMPUTATION

We were able to compute an approximate equilibrium for
the tournament with ε = $0.001 and δ = 0.05. (We started
running value iterations with ε = $0.01 and decreased it over
time.) This required 21 iterations of our outer loop (value
iteration), each lasting several hours. Within each value
iteration, fictitious play usually converged in several hundred
iterations for ε = $0.001 and in less than 100 iterations for
ε = $0.01. We also computed an approximate equilibrium
in a single hand of a cash game for the same blind and stack
parameters, where each chip represents $1. In this case we
compute an ε-equilibrium with ε = $0.01.

Although we do not prove that our algorithm can only
converge to an equilibrium in the tournament setting, in our
follow-up work we have devised a procedure to determine
precisely how much a player can gain by deviating from our
computed strategy profile [6]. The conclusion is that for any
starting state of the tournament, no player can gain more
than $0.0488 by deviating. This represents less than 0.1%
of the highest possible payoff and 0.05% of the total prize
pool of the tournament.

(In that follow-up paper we also argue that the algorithm
in this paper may converge to a strategy profile that is not
an equilibrium. In that paper we proceed to present three
new algorithms, each of which has the property that if the
algorithm converges, it converges to an equilibrium.)

7.1 Assessing the Independent Chip Model
After we computed the approximate equilibrium strategies

in the tournament, we compared the payoffs for each player
at each stack vector (when our new equilibrium strategy
is played) to ICM predictions. Our findings are listed in
Table 1. The left column denotes the absolute value of the
difference between the ICM prediction and our final result
in dollars (where the total prize pool is $100). Since there
are 946 possible stack scenarios and three players, there are
2838 total deviations. The average deviation was $0.3703,
and the range was from $4.42× 10−5 to $2.99.

The largest deviation of $2.99 occurs at the following
stacks: s1 = 300, s2 = 12300, s3 = 900 (for button, small
blind, big blind). ICM predicts that the prize winnings of
the big blind are $28.848, while we obtain $25.856. ICM also
undervalues the button’s prize equity by $2.49 ($22.96 vs.



Table 1: Deviations between ICM and our payoffs
Range Frequency
0-0.1 510

0.1-0.2 460
0.2-0.3 368
0.3-0.4 363
0.4-0.5 403
0.5-1 626
1-3 108

$25.45), and undervalues the small blind’s equity by $0.50
($48.19 vs. $48.69) at these stacks. The reason for this large
deviation is that ICM thinks that the big blind is three times
as likely to win the tournament as the button (because his
stack is three times as large); however, this does not take
into account the fact that the big blind must post 2

3
of his

stack as blinds the next hand. If the button folds on the
next hand and the small blind jams, the big blind will be
getting 6–1 odds to call. If he calls and loses then he will
finish in 3rd, while if he wins then he will almost ensure fin-
ishing in second. On the other hand, if he folds then both
he and the button will be all-in on the next hand, and it
will be a coin-flip as to who will finish in second and third.
Thus, the prize equities of the button and big blind should
actually be very close to each other (as our results confirm).

7.2 Comparing tournament strategies and
single-hand strategies

In this section we compare the strategies we computed for
tournaments with the strategies we computed for a single
hand. Interestingly, the conclusions are very different from
those resulting from the same comparison in the two-player
game [13]. In the multiplayer setting, there is a big difference
between the tournament case and the single-hand case, while
in the two-player setting there was not.

Tables 5–10 give our computed approximate equilibrium
strategies for all players in a tournament with even chip
stacks s1 = s2 = s3 = 4500 and blinds at SB = 300,
BB = 600, while tables 11–16 give the strategies for a sin-
gle hand of a cash game with the same parameters. Each
square in the tables represents one of the 169 distinct start-
ing hands, with suited hands being in the upper right and
unsuited hands in the lower left. The numbers in each square
denote the probability the player should jam with that hand,
rounded to the nearest 1%. A ‘P’ (for ‘push’) means that the
probability of jamming is 100%, and ‘F’ (for ‘fold’) means
the probability of jamming is 0%. So for example, in Table 7
the small blind should jam 93 suited with probability 0.23,
and should always fold 93 unsuited.

Table 2 gives the total probabilities of the different out-
comes when both players use their computed strategies in a
tournament and a single hand. The chart suggests that the
equilibrium strategies are fairly similar in a tournament and
single hand for the first player to enter the pot, but that
players should be much more aggressive in a single hand
when someone else has already jammed. The difference is
most significant in the final situation: big blind jams with
probability 0.197 in a single hand after both of the other
players jam, but only probability 0.021 in a tournament (a
factor of 9.4 difference). In a tournament, the big blind
only calls with the four highest pocket pairs and AKs (‘s’
denotes ‘suited,’ ‘o’ denotes ‘offsuit’). In a single hand, his
range includes hands like 33, A9o, K9s, QJo, T8s, and 87s.

Table 2: Differences between tournament and single
hand strategy with equal stacks.

Situation Tournament prob. Single hand prob.
Button jam 0.376 0.355

SB jam after jam 0.088 0.234
SB jam after fold 0.652 0.633

BB jam after jam/fold 0.145 0.308
BB jam after fold/jam 0.273 0.466
BB jam after jam/jam 0.021 0.197

Interestingly, despite the fact that the small blind jams
slightly more often following a fold in the tournament than
single hand, the big blind jams following fold/jam almost
twice as often in a single hand as in a tournament. Hands
that the small blind jams following a fold in a tournament
but not a single hand include T3s, 94s, 52s, 96o, 65o. The
small blind also jams some hands in a single hand that he
folds in a tournament such as Q5o and Q4o. Despite the
fact that the small blind is jamming less often following a
fold in the single hand, the big blind still calls with dozens of
marginal hands that he would fold in a tournament, includ-
ing 33, 22, A2o, K5s–K2s, K8o–K2o, Q8s–Q3s,Q9o–Q7o,
J9s–J7s, JTo–J8o, T9s–T8s, T9o, and 98s.

7.3 Nonexistence of a fixed ranking of hands
Two player results [13] show that there is no single ranking

of the hands (i.e., there exist two hands h and h′ such that
at one stack vector, h should be jammed and not h′, but
at another stack vector, h′ should be jammed and not h).
In particular, when SB = 1800, BB = 6200 the small blind
should fold 43s and jam J2o, but when SB = 3600 and BB =
4400 the small blind should jam 43s and fold J2o. We obtain
similar results with three players. For example, we observe
such a phenomenon in the small blind’s strategy given a
fold between the cases of equal stacks (Table 7) and the
stacks: BUT = 3300, SB = 1500, BB = 8700 (Table 3). In
the latter, the small blind jams with Q2o–Q5o, J5o–J6o but
folds T2s–T4s, 94s–95s, 96o–97o, 84s–85s, 86o–87o, 74s–75s,
76o, 63s–65s, 65o,52s–54s, 43s (all of which mark deviations
from the first case).

Table 3: Small blind strategy after button folds with
stacks (3300, 1500, 8700).

A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P P P P
J P P P P P P P P P P 99 97 91
T P P P P P P P P 99 90 F F F
9 P P P P P P P P 95 F F F F
8 P P P P P 97 P 97 90 F F F F
7 P P P P 95 21 F P 85 F F F F
6 P P P 96 F F F F P F F F F
5 P P P 91 F F F F F P F F F
4 P P P F F F F F F F P F F
3 P P 97 F F F F F F F F P F
2 P P 93 F F F F F F F F F P

It is also interesting to compare our results to the Karlson-
Sklansky (K-S) hand ranking system; these rankings are
given in Table 4, where 0 denotes the best hand and 168
denotes the worst hand. This system has often been pro-
posed as a good heuristic for evaluating hand strength, and
many software tools use hand ranges based on K-S rank-
ings. However, our results for the even stack case show that
equilibrium strategies might drastically contradict K-S rank-
ings. For example, in the even stack case after the button
has folded (Table 7) the small blind should fold Q5o (K-S



ranking 84), but jam with 52s (K-S ranking 155). Inter-
estingly, it seems that equilibrium strategy actually agrees
pretty closely with K-S rankings for players acting after an-
other player has already jammed. For example, strategy for
the big blind contradicts K-S rankings only on a few hands.

Table 4: Karlson-Sklansky hand rankings
A K Q J T 9 8 7 6 5 4 3 2

A 0 2 6 10 12 17 19 23 27 25 28 32 34
K 4 1 20 24 30 42 46 47 50 53 55 58 59
Q 8 33 3 39 45 52 60 67 69 72 75 77 81
J 13 38 51 5 48 62 71 79 87 89 91 96 99
T 16 44 56 65 7 68 78 88 97 106 107 112 116
9 22 49 64 76 86 9 83 94 104 114 123 127 132
8 26 54 74 85 95 102 11 100 108 118 128 138 141
7 31 57 80 92 103 111 117 14 113 122 133 142 151
6 36 61 82 101 110 119 126 131 15 125 137 146 155
5 35 63 84 105 120 129 136 140 144 18 134 145 154
4 37 66 90 109 124 139 147 150 153 152 21 149 157
3 40 70 93 115 130 143 156 159 161 160 163 29 162
2 43 73 98 121 135 148 158 164 166 165 167 168 41

7.4 Rarity of randomization
As in the two-player case [13], we observe that approx-

imate equilibrium strategy for three players involves little
randomization (many of the probabilities are actually very
close — but not equal to — 0% or 100% because we halted
fictitious play as soon as the ε-approximation guarantee was
met which did not allow it to fully converge). For example,
the tables show that in the case of even stacks, our equilib-
rium involves randomization on only a few hands. In fact,
the small blind’s strategy after button jams, and the big
blind’s strategy following two jams, involve no randomiza-
tion. In all other stack sizes we make the similar observation
that each player only needs to randomize on at most a small
number of hands.

8. CONCLUSIONS AND FUTURE WORK
We computed an approximate Nash equilibrium among

jam/fold strategies in a no-limit Texas hold’em tournament
with three players. Our results show that many of the phe-
nomena which occur in jam/fold equilibrium strategies with
two players also occur with three players, such as the nonex-
istence of a fixed ranking of hands and using very little ran-
domness. However, while equilibrium strategies in a tourna-
ment and single hand of a cash game are very similar in the
two-player setting, we showed that they differ substantially
with three players and that play tends to be much more
aggressive in a single hand. We also analyzed a widely ac-
cepted heuristic known as the Independent Chip Model and
observed that in some cases its predictions differ substan-
tially from the expected payoffs in our approximate equilib-
rium strategy profile.

Several important questions remain to be answered. First,
it would be nice to show that our computed strategies actu-
ally constitute an approximate equilibrium in the full tour-
nament when we allow play other than jam/fold (we conjec-
ture that this is the case). This appears much more difficult
to do with three players than two players, partially because
of the possibility of collusion between players. We also con-
jecture that colluders cannot hurt a player very much if the
player restricts himself to jam/fold strategies, because such
strategies reduce the others’ strategy spaces drastically. We
thus suspect that our strategies might also achieve approxi-
mate maximin payoffs for each player. We also suspect that
the equilibrium for the three player tournament might be

unique (at least with respect to information sets that have
nonzero probability of being reached); however, proving this
seems difficult.
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Tournament strategy with equal stacks
(suited hands in upper right, unsuited in lower left)

Table 5: Button
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P 99 99 99 99 99 97 25
Q P P P P 99 99 99 96 95 31 8 1 1
J P P 99 P 99 99 99 94 F F F F F
T P P 99 99 P 99 99 94 F F F F F
9 P 99 95 93 94 P 99 95 6 F F F F
8 P 13 1 F F F P 96 17 F F F F
7 P 5 F F F F F P 82 F F F F
6 99 2 F F F F F F P F F F F
5 99 1 F F F F F F F P F F F
4 99 1 F F F F F F F F P F F
3 99 F F F F F F F F F F 99 F
2 99 F F F F F F F F F F F 99

Table 6: Small blind after button jams
A K Q J T 9 8 7 6 5 4 3 2

A P P P P 99 98 F F F F F F F
K P P F F F F F F F F F F F
Q P F P F F F F F F F F F F
J P F F P F F F F F F F F F
T 99 F F F P F F F F F F F F
9 F F F F F P F F F F F F F
8 F F F F F F 99 F F F F F F
7 F F F F F F F 98 F F F F F
6 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F

Table 7: Small blind after button folds
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P 99 99 99 99 99
J P P P P P P P 99 99 99 99 99 94
T P P P P P P P 99 99 99 99 93 88
9 P P P 99 99 P P 99 99 99 90 23 2
8 P P 99 99 99 99 P 99 99 99 99 2 2
7 P P 91 91 99 99 99 P 99 99 99 3 2
6 P P 90 3 3 87 94 99 P 99 99 92 2
5 P 99 3 2 1 2 2 3 91 P 99 99 85
4 P 99 3 2 1 1 1 1 2 3 P 93 2
3 P 99 2 1 F F F F F 1 1 P 2
2 P 99 2 1 F F F F F F F F P

Table 8: Big blind after jam/fold
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P 99 99 89 87 F F F
K P P 99 99 89 F F F F F F F F
Q P 99 P F F F F F F F F F F
J P F F P F F F F F F F F F
T P F F F P F F F F F F F F
9 99 F F F F P F F F F F F F
8 99 F F F F F P F F F F F F
7 F F F F F F F P F F F F F
6 F F F F F F F F P F F F F
5 F F F F F F F F F 99 F F F
4 F F F F F F F F F F 15 F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F

Table 9: Big blind after fold/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P 99
K P P P P P P 99 99 87 4 F F F
Q P P P 99 99 98 3 F F F F F F
J P P 99 P 98 1 F F F F F F F
T P P 91 F P F F F F F F F F
9 P 99 F F F P F F F F F F F
8 P 6 F F F F P F F F F F F
7 P 2 F F F F F P F F F F F
6 99 F F F F F F F P F F F F
5 99 F F F F F F F F P F F F
4 99 F F F F F F F F F P F F
3 99 F F F F F F F F F F 3 F
2 5 F F F F F F F F F F F F

Table 10: Big blind after jam/jam
A K Q J T 9 8 7 6 5 4 3 2

A P 96 1 F F F F F F F F F F
K 2 P F F F F F F F F F F F
Q F F P F F F F F F F F F F
J F F F P F F F F F F F F F
T F F F F 1 F F F F F F F F
9 F F F F F F F F F F F F F
8 F F F F F F F F F F F F F
7 F F F F F F F F F F F F F
6 F F F F F F F F F F F F F
5 F F F F F F F F F F F F F
4 F F F F F F F F F F F F F
3 F F F F F F F F F F F F F
2 F F F F F F F F F F F F F

Single hand strategy with equal stacks
(suited hands in upper right, unsuited in lower left)

Table 11: Button
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P 98 F
Q P P P P P P P 96 94 F F F F
J P P P P P P 98 95 F F F F F
T P P P P P P 98 96 F F F F F
9 P P F F 20 P 99 97 F F F F F
8 P 2 F F F F P 98 95 F F F F
7 P F F F F F F P 97 F F F F
6 P F F F F F F F P 94 F F F
5 P F F F F F F F F P F F F
4 P F F F F F F F F F P F F
3 P F F F F F F F F F F P F
2 P F F F F F F F F F F F P

Table 12: Small blind after button jams
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P 1 1 1 F F F F
Q P P P P P 1 F F F F F F F
J P P 91 P P 1 F F F F F F F
T P P 1 F P 1 F F F F F F F
9 P 1 F F F P F F F F F F F
8 P F F F F F P F F F F F F
7 P F F F F F F P F F F F F
6 P F F F F F F F P F F F F
5 P F F F F F F F F P F F F
4 1 F F F F F F F F F P F F
3 1 F F F F F F F F F F P F
2 1 F F F F F F F F F F F P

Table 13: Small blind after button folds
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P P P P
J P P P P P P P P P P 99 99 99
T P P P P P P P P 99 99 99 17 F
9 P P P P P P P P 99 99 F F F
8 P P P P P 99 P P 99 99 98 F F
7 P P P P 99 99 99 P 99 99 98 F F
6 P P P F F F 8 98 P 99 99 11 F
5 P P P F F F F F F P 99 98 F
4 P P P F F F F F F F P 98 F
3 P P 4 F F F F F F F F P F
2 P P F F F F F F F F F F P

Table 14: Big blind after jam/fold
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P 92 1 1 1
Q P P P P P P 89 1 1 P F F F
J P P P P P 95 1 F F F F F F
T P P P 48 P 95 1 F F F F F F
9 P P 1 F F P F F F F F F F
8 P 1 F F F F P F F F F F F
7 P 1 F F F F F P F F F F F
6 P 1 F F F F F F P F F F F
5 P 1 F F F F F F F P F F F
4 P F F F F F F F F F P F F
3 P F F F F F F F F F F P F
2 P F F F F F F F F F F F P

Table 15: Big blind after fold/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P P P P
K P P P P P P P P P P P P P
Q P P P P P P P P P P 99 96 1
J P P P P P P P 98 1 F F F F
T P P P P P P P 5 F F F F F
9 P P P P 97 P 99 1 F F F F F
8 P P P 93 F F P F F F F F F
7 P P 97 F F F F P F F F F F
6 P P 1 F F F F F P F F F F
5 P P F F F F F F F P F F F
4 P P F F F F F F F F P F F
3 P P F F F F F F F F F P F
2 P 99 F F F F F F F F F F P

Table 16: Big blind after jam/jam
A K Q J T 9 8 7 6 5 4 3 2

A P P P P P P P P P P 5 3 2
K P P P P P P 2 1 1 1 F F F
Q P P P P P P 2 F F F F F F
J P P P P P P 3 F F F F F F
T P 8 2 2 P P P F F F F F F
9 P 1 F F F P P 2 F F F F F
8 4 F F F F F P P F F F F F
7 2 F F F F F F P 7 F F F F
6 1 F F F F F F F P F F F F
5 1 F F F F F F F F P F F F
4 1 F F F F F F F F F P F F
3 1 F F F F F F F F F F P F
2 F F F F F F F F F F F F 2


