
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2040 | P a g e

End to End Software Testing Estimation Framework for

Digital Products
Shailesh K S, Dr Anant Koppar,

PESU

Abstract - End to end Software testing includes

requirements gathering related to testing, test planning and

scripting, test execution and reporting. In this paper we
propose a novel end to end software testing estimation

framework (STEF) that can be used for various software

testing projects. The STEF provides the estimation methods,

effort calculation formula, sample guidance values for base

lining that can be used for digital testing projects. The STEF

also categorizes various testing activities in each of the

testing phases and provides complexity scale factors for

effective effort estimation. The STEF was used for 3 testing

projects to estimate the overall testing effort with the pred

(0.3) accuracy of 80%

Keywords - Software Engineering, Estimation, Testing

estimation, test requirement estimation, Test Requirements

Gathering, Test strategy and design, Test execution, Test

analysis, monitoring and reporting, Test quality

improvement

I. INTRODUCTION

Software testing is mainly carried out with the intent to

detect defects. Out of total software development effort

about 35% of effort is spent on software testing and more

than half of the overall software development cost is due to

testing (Myers, 1979, Harrold, 2000)
In this paper we propose a novel estimation method,

“Software testing estimation framework” for digital testing

projects that factors in various activities in software testing

phase. We have categorized the software activities into four

main categories: Test Requirements Gathering, Test strategy

and design, Test execution, Test analysis, monitoring and

reporting and Test quality improvement consisting of

activities that belong to each of the categories.

The Software testing estimation framework provides the

estimation guidelines, complexity definition scale and effort

calculation formulae for all the categories such as Test
Requirements Gathering, Test strategy and design, Test

execution, Test analysis, monitoring and reporting and Test

quality improvement consisting The project teams can

compile the historical data and apply the Software testing

estimation framework to predict the testing effort.

II. LITERATURE REVIEW AND RELATED WORK

Generic software estimation models include COCOMO

(Boehm, 1981), Function Point/FP (Albrecht), COCOMO II

(Boehm et al., 2000), SEER-SEM (Jenson 1984), SLIM

(Putnam & Myers, 1992), PRICE-S (Frank Freiman),

Delphi (Boehm, 1984), Rule-based/Rule of thumb, Use case
point (Ochodek, Nawrocki, Kwarciak), Work breakdown

structure (Jorgensen 2004), Planning poker, Story point

estimation, learning (Goldberg 1989), Case based reasoning

(Aamodt & Plaza 1994), Analogy based estimation, Select
Estimator, top-down estimation, bottom-up estimation,

price-to-win, Stepwise ANNOVA (Basha, 2010), Ordinary

Least squares (Griffiths et.al.1993). Other software

estimation method are machine learning-based estimation

(Mair et al.), fuzzy logic based estimation (Gray, 1997),

genetic programming (Burgess et al. 2001) and

 expert based estimating method (Jørgensen, 2004).

For software testing estimation, there are various state of the

art estimation methods. Nageshwaran, 2001 categorized the

main methods for test case execution as ad-hoc methods

(based on budget and other subjective parameters),
percentage of total development effort and function point

estimation. The key data used for estimating the test effort

estimation are use cases (Almedia et al., Nageshwaran,

2001, Xiaochum et al., Zhou et al.), source code (Kushwaha

et al., Thomas Mccabe), test specification (Almedia et al.,),

software requirement specification (Ashish et al.), UML

Class diagram (Baudray et al.) and functional requirements

(Veenendaal et al.).

One of the test effort estimation methodsinvolves estimating

the size and complexity of test cases which uses test

specification written in controlled natural language (Aranha

and Borba, 2007); the authors used the execution points
obtained from functional and non-functional requirements

of the test cases Another popular method is to calculate test

effort in v-model development lifecycle based on use cases

and adjusting the weights and environment factors

(Nageshwaran, 2001); Use case parameters such as actors

and environment factors such as tools, test inputs,

interfaces, are used to calculate test effort (Erika Almeida et.

Al). Another popular estimation technique is to use the

execution points by converting the code to test cases and

other productivity factors to estimate the testing effort

(Aranha et al. 2007, Rajan et al. 2007, Aranha et al. 2007,
Silva et al. 2009). Kushwaha et al., demonstrated that

cyclomatic complexity is an indicator of software

complexity and is an important metric for calculating test

effort. Veenendaal et al. used the test point based on

functional requirements. Deckkers adopted test point

analysis that uses software size, test strategy and

productivity for test effort estimation. Guerreiro e Silva et

al. uses data analysis, hypothesis, evaluation and efficiency

for test effort estimation.

Gaps with state of the art techniques - The main gap with

state of the art software maintenance estimations models are
challenges in calculating effort for software size and

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2041 | P a g e

productivity (Martin, 1983). Other key gaps in the state of

the art software testing methods are as follows:

 State of the art estimation methods do not estimate end to

end testing lifecycle that includes Test Requirements

Gathering, Test strategy and design, Test execution, Test

analysis, monitoring and reporting and Test quality
improvement.

 State of the art methods do not consider the adjustment

factors such as requirement/domain complexity which is

part of modern digital projects.

 State of the art methods do not provide sample guideline

effort values that can be used as baseline in the absence of

historical effort data.

III. METHOD

In this paper we have proposed an estimation framework

“Software testing estimation framework” (STEF) that
provides comprehensive coverage for various phases for the

testing activities at various lifecycle stages of software

testing:

 Test Requirements Gathering to estimate the effort in

gathering comprehensive requirements for testing activity.

 Test strategy and design to estimate the activities related

to test data modeling, environment setup, test scripts

design and such.

 Test execution includes activities such as test script

development and manual and automated testing.

 Test analysis, monitoring and reporting such as real-time
monitoring of system under test and reporting the test

results.

 Test quality improvement involves activities such as

testing automation, continuous testing, productivity

improvement activities and such that improves the

performance of the system and processes.

The STEF is a framework designed to be used across wide

variety of testing projects. The STEF provides estimation

methodology which can be used along with historical data

for estimating testing effort across all lifecycle stages of

testing project.

High level steps used in the “Software testing estimation
framework” are as follows:

1. Obtain the historical data for various testing activities

under test requirements, test strategy and design, test

execution, test monitoring and reporting and test quality

improvement categories. We have elaborated the factors

to categorize the activities into various complexity scales

under each of the categories.

2. In the absence of historical data, use the guidance value

given by the framework for various categories as a

percentage of the overall testing life cycle effort.

3. Use the effort adjustment factors recommended by the
STEF framework and use the effort calculation formulas

for calculating effort for each of the categories.

4. The overall testing effort is the sum total of effort

involved in under test requirements, test strategy and

design, test execution, test monitoring and reporting and

test quality improvement categories.

In the coming sections we will elaborate the calculation for

each of these categories.

Pre-requisites for Software testing estimation framework

For the software testing estimation framework, we need the

historical testing effort data for base lining. We need to get

the historical data for various categories such as historical
effort data for test requirements, test strategy, test execution,

test monitoring and test quality improvements.

Test Requirements Gathering effort calculation - During

the test requirements phase, we calculate the effort needed

to get overall testing requirements. We use test requirements

to create test plans and test scripts.

Complexity scale factors for test requirements gathering

- The complexity scale factors for various requirements

category is given in table 1.

Table1: Complexity scale factors for test requirements

gathering
 Complexity Scale factors

Test

requirement

Category

Low Medium Complex

Functional

test

requirements

Number

of needed

test cases

is test than

30

Application

architecture

analysis,

Requirement/use

case analysis

Number of needed

test cases is test

than 100

Huge number of

functional

requirements

with more than

100 test cases.

Includes

complex

scenarios like

services testing,

migration

testing, batch

job testing,

business rules

testing,

workflow

testing, process

testing, mobile

testing

Non-

Functional

test

requirements

Minimal

nonfunctio

nal

requireme

nts

Less than 50 test

cases to cover for

non-functional

requirements

Complex

nonfunctional

scenarios related

to security,

scalability,

availability,

accessibility,

localization,

compatibility,

performance

with strict

SLAs.

More than 50

test cases to

cover for non-

functional

requirements

Test requirements adjustment factors - The test

requirements effort is influenced by various factors which

we need to consider while calculating the overall effort.

Table 2 provides the rating value for test adjustment factors.

We will use this for test requirements effort calculation.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2042 | P a g e

Table 2: Adjustment factors for test requirements
Test

requirement

adjustment

factor

Characteristic Rating

value

Requirement

clarity

Highly detailed requirements 0.98

Requirements need to be detailed 0.95

Minimal or ambiguous requirements 0.85

Domain

knowledge

Testing team has in-depth knowledge of

application domain

0.98

Testing team has moderate knowledge

of application domain

0.95

Testing team lacks knowledge of

application domain

0.85

Application

complexity

The application under test is highly

complex

0.98

The application under test is moderately

complex

0.95

The application under test is simple 0.90

The overall test adjustment factor score is the product of

three adjustment factor values:

𝑨𝑭𝒐𝒗𝒆𝒓𝒂𝒍𝒍 = ∏ 𝒂𝒇𝒊

3

𝑖=1

Where 𝑨𝑭𝒐𝒗𝒆𝒓𝒂𝒍𝒍is the overall adjust factor score and 𝒂𝒇𝒊is
therating value for each of the adjustment factors.

Overall Test requirements effort calculation - Overall

test requirement effort estimate is given by equation 1:

𝑻𝒆𝒔𝒕_𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

= 𝑨𝑭𝒐𝒗𝒆𝒓𝒂𝒍𝒍

× ∑(𝑟𝑒𝑞_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖)

𝑛

𝑖=1

Equation 1

Where

𝑻𝒆𝒔𝒕_𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕_𝒆𝒇𝒇𝒐𝒓𝒕is the overall effort for test

requirements, n is the total number of complexity

categories, the 𝑟𝑒𝑞_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 is the baseline

effort for each of the complexity categories (simple,

medium or complex) obtained from the historical

data.𝑨𝑭𝒐𝒗𝒆𝒓𝒂𝒍𝒍is the overall adjustment score.

Where 𝑻𝒆𝒔𝒕_𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕_𝒆𝒇𝒇𝒐𝒓𝒕is the overall effort

for test requirements, n is the total number of complexity

categories, the 𝑟𝑒𝑞_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 is the baseline

effort for each of the complexity categories (simple,
medium or complex) obtained from the historical

data.𝑨𝑭𝒐𝒗𝒆𝒓𝒂𝒍𝒍is the overall adjustment score.

Test strategy and design effort calculation - During the

test strategy and design phase, we analyze the workload and

historical data and identify the overall test strategy. During

this phase we design the testing strategy and create a

detailed test plan with schedule, deliverable, roles and plan.

The complexity scale factors for various categories is given

in table 3.

Table 3: Complexity scale factors for test strategy and

design
 Complexity Scale factors

Category Low Medium Complex

Workload

modeling

Workload

model

data

readily

available

Workload

model

numbers

obtained

from

stakeholder

interviews.

Workload needs to be

modeled based on the

requirements and

historical data

analysis (user traffic,

data volume,

transaction rate etc.)

Workload model

should be obtained

from log analysis to

understand the traffic

pattern, transaction

rate etc.

Test case

planning

Test tool

readily

available,

No test

plan

needed.

Test

environment

setup,

Test data

setup and

transaction

data creation,

Load test

data planning

and

identification

,

Check for

reusable test

cases,

Minimal

planning

needed.

Requirement for

automated testing,

Test tool selection,

Test script design for

services testing,

migration testing,

batch job testing,

Test monitoring tool

selection,

Define testing

milestones and

schedule; identify

roles and

dependencies/assump

tions and deliverable

planning,

Risk analysis and

contingency

planning,

Defining automation

strategy,

Defining test

objectives and

success metrics.

Tool

validation

Testing

tools

readily

available

for reuse

Existing tools

need to be

configured

for testing

Conduct proof-of-

concept (PoV) to

evaluate the testing

tools and monitoring

tools for the given

requirement and test

scenarios.

We need to collect the historical data for each of the

categories for each of the complexity categories (simple,

medium, complex). Complexity scale factors are used to

categorize the activities into each of the complexity

categories (simple, medium, complex).

Overall test requirement effort estimate is given by equation

2:

𝑻𝒆𝒔𝒕_𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚_𝒅𝒆𝒔𝒊𝒈𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

= ∑(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖)

𝑛

𝑖=1

Equation 2

Where

𝑻𝒆𝒔𝒕_𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚_𝒅𝒆𝒔𝒊𝒈𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔is the overall effort

needed for test strategy and design, n is the total number of

categories, the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 is the

baseline effort for each of the complexity categories

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2043 | P a g e

(simple, medium or complex) obtained from the historical

data.

For instance, if the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 effort

for “medium” complex category is 20 person days for

“Workload modeling” category from historical data and if
the current project is of “medium” complexity for

“Workload modeling”, category, then we need to consider

20 person days of effort for “Workload modeling” category

and similarly calculate the effort for “Test case planning”

category and “Tool validation” category. Overall

𝑻𝒆𝒔𝒕_𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚_𝒅𝒆𝒔𝒊𝒈𝒏_𝒆𝒇𝒇𝒐𝒓𝒕 is the sum total of effort

from “Workload modeling” category, “Test case planning”

and “Tool validation” categories

Test execution effort calculation - During test execution

stage, we develop the test cases (for manual testing) and test
scripts (for automated testing). The developed test cases and

test scripts are then executed at various stages of test

execution phase.

The complexity scale factors for various categories is given

in table 4.

Table 4: Complexity scale factors for test execution
 Complexity Scale factors

Category Low Medium Complex

Test cases

and test

script

development

Number of

test cases <

50

Test cases

are readily

available

for reuse

Number of

test cases <

100,

Test cases

need to be

developed for

functional

testing and

basic security

testing and

basic

performance

testing,

Tool based

test script

development

Number of test cases

> 100,

Test cases need to be

developed for

functional testing,

security testing, load

testing, stress testing,

availability testing,

endurance testing,

Test scripts need to

be developed to

automate testing,

Manual test script

development.

Test cases

and test

script

execution

Execute

readily

available

test cases,

Execute/sch

edule

automated

test scripts

Execute < 100

functional test

cases,

Configure

automated test

cases.

Manually execute >

100 test cases for

white box and black

box testing,

Execute test cases

belonging to various

testing types such as

functional testing,

smoke testing, stress

testing, failover

testing, integration

testing, system

testing, load testing,

multi-device testing,

endurance testing,

performance testing,

security testing,

accessibility testing,

localization testing,

Execute load testing

at various loads for

various transactions.

Multiple rounds and

iterations of testing

for each test type.

We need to collect the historical data for each of the

categories for each of the complexity categories (simple,

medium, complex). Complexity scale factors are used to

categorize the activities into each of the complexity

categories (simple, medium, complex).

Overall test requirement effort estimate is given by equation
3:

𝑻𝒆𝒔𝒕_𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

= ∑(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖)

𝑛

𝑖=1

Equation 3

Where

𝑻𝒆𝒔𝒕_𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔 is the overall effort needed for
test execution, n is the total number of complexity

categories, the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 is the

baseline effort for each of the complexity categories

(simple, medium or complex) obtained from the historical

data.

For instance, if the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 effort

for “medium” complex category is 30 person days for “Test

cases and test script development” category from historical

data and if the current project is of “medium” complexity

for “Test cases and test script development” category, then
we need to consider 30 person days of effort for “Test cases

and test script development” category and similarly

calculate the effort for “Test cases and test script execution”

category. Overall 𝑻𝒆𝒔𝒕_𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔 is the sum

total of effort from “Test cases and test script development

category” and “Test cases and test script execution”

categories.

Test analysis, monitoring and reporting effort

calculation - While executing various test scenarios, the test
systems and the applications need to be constantly

monitored. Post testing, the test results need to be analyzed

and reported to all the concerned teams.

The complexity scale factors for test analysis, monitoring

and reporting category is given in table 5.

Table 5: Complexity scale factors for test analysis,

monitoring and reporting
 Complexity Scale factors

Category Low Medium Complex

Test result

analysis

Minimal test

results

analysis

needed.

Basic test

metrics such

as response

time,

throughput are

analyzed.

The test metrics

such as response

time, throughput,

user load specific

performance, 90

percentile values

need to be analyzed,

Performance

bottleneck analysis

and profiling need

to be analyzed to

identify the root

cause.

Test

monitoring

Minimal

monitoring

needed

Basic system

parameters

such as CPU

Monitoring tools

are setup to monitor

various system

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2044 | P a g e

utilization,

memory

utilization are

monitored

during testing.

health parameters

such as CPU

utilization, memory

utilization, system

throughput,

response times at

various loads.

Test

reporting

Basic test

reporting

Reuse of

existing

reports

through

configuration

Development of test

results dashboard

and visualizations

to depict all test

metrics such as

coverage metrics,

performance SLAs,

defect rate and

such,

Periodic and

iterative reporting,

Automated

notifications setup

upon test

completion.

We need to collect the historical data for each of the

categories for each of the complexity categories (simple,

medium, complex). Complexity scale factors are used to

categorize the activities into each of the complexity

categories (simple, medium, complex).

Overall test monitoring effort estimate is given by:

𝑻𝒆𝒔𝒕_𝒎𝒐𝒏𝒊𝒕𝒐𝒓𝒊𝒏𝒈_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

= ∑(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖)

𝑛

𝑖=1

Equation 4

Where

𝑻𝒆𝒔𝒕_𝒎𝒐𝒏𝒊𝒕𝒐𝒓𝒊𝒏𝒈_𝒆𝒇𝒇𝒐𝒓𝒕𝒔 is the overall effort needed

for test analysis, monitoring and reporting, n is the total

number of complexity categories, the

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 is the baseline effort for

each of the complexity categories (simple, medium or

complex) obtained from the historical data.

For instance, if the 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑒𝑓𝑓𝑜𝑟𝑡𝑖 effort

for “medium” complex category is 20 person days for “test

reporting” category from historical data and if the current

project is of “medium” complexity for “test reporting”

category, then we need to consider 20 person days of effort

for “test reporting” category and similarly calculate the

effort for “Test analysis” and ”test monitoring” categories.

Overall 𝑻𝒆𝒔𝒕_𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚_𝒅𝒆𝒔𝒊𝒈𝒏_𝒆𝒇𝒇𝒐𝒓𝒕 is the sum total

of effort from “test reporting” category, “Test analysis” and

”test monitoring”

Note: The “test result analysis” category includes activities

based on the nature of the testing project. For instance, in a

performance testing project the “test result analysis”

includes bottleneck analysis, profiling and such

performance related activities. For a data migration testing

scenario, the “test result analysis” category includes data

integrity analysis, data duplication analysis, data mismatch

analysis and such.

Test quality improvement effort calculation - In some of

the digital projects, we include pro-active quality

improvements for testing activities. These pro-active quality

improvements include productivity improvements, testing

automation, real-time application monitoring and reporting,

knowledge management and such. As test quality
improvement is not needed in all digital projects, this is an

optional category that STEF provides for large and complex

digital testing projects. Various test quality improvement

initiatives are as follows:

 Automation - The testing team has to automate various

test activities such as test execution (regression testing,

smoke testing, creation of test suites), test monitoring

(system monitoring, performance monitoring) to

minimize manual efforts and to improve overall

productivity.

 Test case reusability - Test team can enhance the
reusability through test script parameterization wherein a

single test script can be reused across multiple test

scenarios (by varying the parameters such as load value,

application end point etc.)

 Productivity - Improvement/Continuous improvement: In

this category testing team minimizes the overall test

execution time through automation, reusability and usage

of various tools. Adopt parallel testing wherever possible

to optimize the test execution time. Test iteratively using

continuous integration tools.

 Knowledge management - This includes creation of

defect and test script knowledge base for easier
management of testing activities. The test knowledge base

can also be used for test result trend analysis, reporting

and such activities.

The effort for pro-active test quality enhancements is

normally estimated using the overall complexity of the

involved activities and the regular effort estimation methods

(such as function point estimation or use case point based

estimation). The overall effort for quality improvements is

the sum total of effort needed for automation, reusability,

Productivity Improvement/Continuous improvement and

knowledge management activities:

𝑇𝑒𝑠𝑡_𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑒𝑓𝑓𝑜𝑟𝑡

= 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝑒𝑓𝑓𝑜𝑟𝑡

+ 𝑡𝑒𝑠𝑡_𝑐𝑎𝑠𝑒_𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑒𝑓𝑓𝑜𝑟𝑡

+ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑒𝑓𝑓𝑜𝑟𝑡

+ 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒_𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑒𝑓𝑓𝑜𝑟𝑡

Equation 5

Sample testing effort guidance values - For green field

digital projects with niche technologies, we won’t be having

historical data. Even when there is historical data, the

application domain, technologies may be different from the

current project leading to quality issues in the historical

data. In such scenarios the STEF provides a sample

guidance value for effort estimation.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2045 | P a g e

The effort guidance value is obtained from 15 digital testing

projects. This can be used as a sample baseline in the

absence of the correct historical data.

Table 6 Guidance values for testing effort
Testing categories % of overall test lifecycle

effort

Test requirements 15%

Test strategy and design (including

test case/test script preparation)

35%

Test execution 35%

Test monitoring and reporting 5%

Test quality improvement 10%

In order to use the sample guidance values, we need to

calculate the overall testing effort and then we can use the

guidance values given in table 6 to get the approximate
effort for each of the test categories. Overall testing effort

can be obtained from historical data. For instance, based on

the analysis of historical project data we find that overall

testing effort is approximately same as overall development

effort; then take the overall development effort as the

overall testing effort baseline and calculate the effort for

individual testing categories (such as test requirements, test

execution etc.) using guidance values from table 6.

Overall Software Testing effort calculation - The overall

end to end software testing effort is calculated by the sum of
testing effort across all testing phases. The overall testing

effort is given by the equation 6:

𝑻𝒆𝒔𝒕_𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

= 𝑻𝒆𝒔𝒕_𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒆𝒏𝒕_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

+ 𝑻𝒆𝒔𝒕_𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚_𝒅𝒆𝒔𝒊𝒈𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

+ 𝑻𝒆𝒔𝒕_𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

+ 𝑻𝒆𝒔𝒕_𝒎𝒐𝒏𝒊𝒕𝒐𝒓𝒊𝒏𝒈_𝒆𝒇𝒇𝒐𝒓𝒕𝒔

+ 𝑻𝒆𝒔𝒕_𝒒𝒖𝒂𝒍𝒊𝒕𝒚𝒆𝒇𝒇𝒐𝒓𝒕

Equation 6

IV. RESULT
We used the “software testing estimation framework”

(STEF) to predict the testing efforts for three complex long

running testing projects. The table7provides the details of

MRE and MMRE for each of the core testing activities.

The effort prediction of DPMEF for five digital

maintenance project are given in table 7:

Table 7 Testing Effort prediction using STEF for 3 projects

Project

Testing

project

Actual

Effort

(person

days)

Predicted

Effort

(person

days) MRE

Test Requirements

Gathering

Performance

testing

project 2.6 3.2

0.230

769

Digital

commerce

project

testing 3.4 4.1

0.205

882

Digital portal

project

testing 1.6 1.4 0.125

Test strategy and

design

Performance

testing

project 5.3 5.9

0.113

208

Digital

commerce

project

testing 7.5 8.2

0.093

333

Digital portal

project

testing 3.2 4.3

0.343

75

Test execution

Performance

testing

project 4.6 4.2

0.086

957

Digital

commerce

project

testing 8.3 9.1

0.096

386

Digital portal

project

testing 4.1 3.9

0.048

78

Test analysis,

monitoring and

reporting

Performance

testing

project 0.7 0.5

0.285

714

Digital

commerce

project

testing 1.2 1.1

0.083

333

Digital portal

project

testing 0.4 0.6 0.5

Test quality

improvement

Performance

testing

project 1.3 0.7

0.461

538

Digital

commerce

project

testing 2.2 1.5

0.318

182

Digital portal

project

testing 1.1 0.9

0.181

818

The MMRE is 0.211 and the pred (0.25) is 73% and pred

(0.3) is 80%.

V. DISCUSSION

As we can see from the prediction tables above, the MMRE

is 0.187, 0.183, 0.0773, 0.289 and 0.320 for Test

Requirements Gathering, Test strategy and design, Test
execution, Test monitoring and reporting Test quality

improvement activities respectively. On an average, the

Software testing estimation framework was able to predict

with 21.1% deviation for all four categories.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2046 | P a g e

The average Pred (0.3) for all four categories is 80%

indicating that 80% of effort predictions from Software

testing estimation framework are within 30% error margin.

The MMRE was most optimal for test execution effort and

the pred (0.25) is optimal for Test strategy and design and

test execution activities. The STEF high effort prediction
accuracy for Test strategy and design and test execution

activities is due to the easily quantifiable activities and

presence of accurate historical data for those activities.

We have also noticed that the prediction error margin is

relatively high for the “Test quality improvement” category.

The MMRE for “Test quality improvement” category is

0.32 which is highest among all the five categories and pred

(0.3) is 30% which is lowest among all the four categories.

The main reason for this relatively high error margin for

“Test quality improvement” category is due to the variation

in efforts of Automation, test case reusability, Productivity

Improvement/Continuous improvement, and knowledge
management activities from one project to another. Each

project has its own goals and tasks under quality

improvements category and as a result the historical data is

not an accurate predictor of the future effort for quality

improvement category.

Threats to validity - The sample testing effort guidance

suggested by Software testing estimation framework uses

historical data from 15 digital testing projects. The sample

guidance values need to be fine-tuned using historical data

from larger number of projects. The effort prediction for
“Test quality improvements” has highest error margin due

to availability of quality historical data. The framework

needs to be tested against larger sample set and fine-tuned.

VI. FUTURE SCOPE OF IMPROVEMENT

The Software testing estimation framework needs to be

tested against higher number of historical projects and the

framework needs to be fine-tuned wherever required.

VII. CONCLUSION

In this paper we defined “Software testing estimation

framework” that provides end to end estimation framework
for estimating effort for various testing activities in the

testing lifecycle stages. The Software testing estimation

framework provided estimation template, effort estimation

formula, categorized activities, complexity scale factors,

adjustment factors for various testing stages such as Test

Requirements Gathering, test strategy and design, Test

execution, Test analysis, monitoring and reporting and Test

quality improvement. The Software testing estimation

framework was validated for three testing projects with pred

(0.3) of 80% and MMRE of 0.2116.

VIII. REFERENCES

[1]. Ahn, Yunsik, et al. "The software maintenance project effort
estimation model based on function points." Journal of

Software: Evolution and Process 15.2 (2003): 71-85.

[2]. Ziauddin, S. K. T., & Zia, S. (2012). An effort estimation
model for agile software development. Advances in computer
science and its applications (ACSA), 2(1), 314-324.

[3]. Boehm, B., Abts, C., & Chulani, S. (2000). Software
development cost estimation approaches—A survey. Annals of

software engineering, 10(1-4), 177-205.
[4]. Sarro, F., Petrozziello, A., & Harman, M. (2016, May). Multi-

objective software effort estimation. In Proceedings of the 38th
International Conference on Software Engineering (pp. 619-
630). ACM.

[5]. Shepperd, M., & MacDonell, S. (2012). Evaluating prediction
systems in software project estimation. Information and
Software Technology, 54(8), 820-827.

[6]. Jorgensen, M., & Shepperd, M. (2007). A systematic review of
software development cost estimation studies. IEEE
Transactions on software engineering, 33(1).

[7]. Kemerer C.F. (1987), “An Empirical Validation of Software
Cost Estimation Models,” Comm. ACM, vol. 30, no. 5, pp. 416
– 429, May

[8]. Sneed H.M., Huang S. (2007), "Sizing Maintenance Tasks for
Web Applications," 11th European Conference on Software

Maintenance and Reengineering, 2007. CSMR '07.
[9]. Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B. K.,

Horowitz, E., Madachy, R., Reifer, D., and
[10]. Steece, B. 2000. Software cost estimation with Cocomo II.

New Jersey: Prentice-Hall.
[11]. Boehm, B. W. 1981. Software engineering economics. New

Jersey: Prentice-Hall.
[12]. Boehm, B. W. 1984. Software engineering economics, IEEE

Transactions on Software Engineering 10(1): 4–21.
[13]. Shepperd, M., Shofield, C., and Kitchenham, B. 1996. Effort

estimation using analogy. In International Conference on
Software Engineering, pp. 170–178, IEEE Comput. Soc. Press,
Los Alamitos, CA, USA, Berlin, Germany.

[14]. Reifer, D. J. 2000. Web development: Estimating quick-to-
market software. IEEE Software 17(6): 57–64.

[15]. Jørgensen, M. 2004. A review of studies on expert estimation
of software development effort. Journal of Systems and

Software 70(1–2): 37–60.
[16]. Idri, A., Abran, A., Khoshgoftaar, T., 2001. Fuzzy Analogy: a

New Approach for Software Effort Estimation, In: 11th
International Workshop in Software Measurements, pp. 93-
101.

[17]. Pfleeger, S. L., Wu, F. & Lewis, R.(2005), Software cost
estimation and sizing methods: issues, and guidelines, RAND
corporation.

[18]. Jones, C. (2007). Estimating software costs: Bringing realism
to estimating. New York: McGraw-Hill Companies.

[19]. Chemuturi, M. (2011). Analogy based software estimation.
Chemuturi Consultants.

[20]. Highsmith, J. 2001. History: The Agile Manifesto,
http://agilemanifesto.org/history.html.

[21]. Jørgensen, M., and M. Shepperd. 2007. A systematic review
of software development cost estimation studies. IEEE

Transactionson Software Engineering 33 (1):33-53.
[22]. Lang, M., Conboy, K., & Keaveney, S. (2013). Cost

estimation in agile software development projects. In
Information Systems Development (pp. 689-706). Springer,
New York, NY.

[23]. Basha, S., & Ponnurangam, D. (2010). Analysis of empirical
software effort estimation models. arXiv preprint
arXiv:1004.1239.

[24]. Buglione, L., & Abran, A. (2007, May). Improving
Estimations in Agile Projects: issues and avenues. In

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2047 | P a g e

Proceedings of the 4th Software Measurement European
Forum (SMEF 2007), Rome (Italy) (pp. 265-274).

[25]. Abrahamsson, P., & Koskela, J. (2004, August). Extreme
programming: A survey of empirical data from a controlled
case study. In Empirical Software Engineering, 2004.

ISESE'04. Proceedings. 2004 International Symposium on(pp.
73-82). IEEE.

[26]. Bhalerao, S., & Ingle, M. (2009). Incorporating Vital Factors
in Agile Estimation through Algorithmic Method. IJCSA, 6(1),
85-97.

[27]. Ziauddin, S. K. T., & Zia, S. (2012). An effort estimation
model for agile software development. Advances in computer
science and its applications (ACSA), 2(1), 314-324.

[28]. Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J.,
Wilson, P., ... & Springsteel, F. (1991). IEEE standard
computer dictionary: Compilation of IEEE standard computer
glossaries. IEEE Press.

[29]. Lientz, B.P., and Swanson, E.B. Software Maintenance
Management, Addison-Wesley Publishing Company, 1980.

[30]. Aranha, E., & Borba, P. (2007, September). An estimation
model for test execution effort. In Empirical Software

Engineering and Measurement, 2007. ESEM 2007. First
International Symposium on (pp. 107-116). IEEE.\

[31]. Suresh Nageshwaran, Test Effort Estimation Using USE
CASE Points. Quality Week 2001, San Francisco,California
USA, 2001

[32]. Erika R. C De Almeida, Bruno T. de Abreu, Regina Moraes.
An Alternative Approach to Test Effort Estimation Based on
Use Case. IEEE-International Conference on Software Testing

Verification and Validation, 2009
[33]. Eduardo Aranha, Filipe de Almeida, ThiagoDiniz,

VitorFontes, Paulo Borba. Automated Test Execution Effort
Estimation Based On Functional Test Specification.
Proceedings of Testing Academic and Industrial Conference
Practice and Research Techniques, MUTATION 2007.

[34]. AjithaRajan, Michael W Whalen, Mats P. E. Heimdahl.2007.
Model Validation Using Automatically Generated
Requirements- Based Tests. 10th IEEE- High Assurance

Systems Engineering Symposium, 2007.
[35]. Aranha E, Borba P. Test Effort Estimation Model Based On

Test Specifications. Testing : Academic and Industrial
Conference- Practice and Research Techniques,IEEE
Computer Society, 2007

[36]. AnielGuerreiro e Silva, Bruno T. de Abreu, Mario Jino. A
Simple Approach For Estimation of Execution of Function
Test Case. IEEE-International Conference on Software Testing

Verification and Validation, 2009
[37]. Myers GJ (1979) The Art of Software Testing, 1st Edition,

John Wiley and Sons, USA.
[38]. Harrold MJ (2000) Testing: A Roadmap, Proc. of 22nd

International Conference on Software Engineering,
[39]. Future of Software Engineering Track, Limerick, Ireland.
[40]. Beizer B (1990) Software Testing Techniques, 2nd Edition,

Van Nostrand Reinhold Company Limited, UK.

[41]. Nageswaran S (2001) Test Effort Estimation using Use Case
Points, Quality Week, San Francisco, California, USA.

[42]. H. Rubin (1995) Worldwide Benchmark Project Report,
Rubin Systems Inc.

