Optimal Dynamic Hedging of Equity Options
Residual Risks, Transaction Costs & Conditioning

Vivek Kapoor
vivek2.kapoor@citi.com
Citi

Global Derivatives Trading & Risk Management
May 2010

This reflects the opinions and views of the authors and not that of their employers, and no representation as to the accuracy or completeness of the information is provided.
Real Option Price Dynamics

Focus of this work:

- **OHMC2.0**
 Optimal Dynamic Hedging of Equity Options: Residual-Risks, Transaction Costs, & Conditioning on Realized Volatility

 ssrn 1530046, 2010

- **GARAM**
 General Auto-Regressive Asset Model

 ssrn 1428555, 2009

Static replication strategies

Demand-supply

Dynamic replication strategies: expected hedge cost + residual risk

Statistical behavior of underlying & conditioning

Historical facts: conditioning information

Margin capital rules
A Trader’s View of Option Prices

Option Sell Price = Expected Hedging Cost + Residual Risk Premium

- Residual risks dictate option seller hedger’s capital requirements
- Provider of capital-margin have expectations of return!

- **Option prices reflect expected hedging costs & premiums for residual risks**

- An informed view of the option trading risk-premium can be used to develop trading strategies that are aided by
 - realistic statistical description of underlying
 - explicit delineation of hedging strategy
Empirical features of SPX are employed to illustrate the applicability of GARAM & OHMC2.0 to SPX option in this work.

- **Heteroskedasticity**
- **Fat tails**
- **Asymmetry**
- **Multiple time-scales**
Empirical Features of Equity Index Returns

Graphs showing empirical features of equity index returns, including:
- Return kurtosis
- Return skewness
- Auto-correlation
- Cross-correlation

Graphs indicate time series analysis of returns and squared returns over various lags and terms.
General Auto-Regressive Asset Model

GARAM Specification

\[x = \ln\left(\frac{r^2}{R^2}\right) \]
\[y = x\left[1 + p_1\left(\pi/2 + \tan^{-1}\left[p_2(x + p_3)\right]\right)\right] \quad p_1 \geq 0 \]
\[\left(\frac{r}{R}\right)^2 = F(y) \]
\[\rho_y(t) = E[(y(t) - \bar{y})(y(t + \tau) - \bar{y})]/\sigma_y^2 \]
\[I(t) = \begin{cases}
+1 & \text{if } z < z_i \\
-1 & \text{if } z \geq z_i
\end{cases} \]
\[\rho_z(t) = E[(z(t) - \bar{z})(z(t + \tau) - \bar{z})]/\sigma_z^2 \]
\[\rho_y(t) = E[(y(t) - \bar{y})(y(t + \tau) - \bar{y})]/(\sigma_y \sigma_z) \]
\[r(t) = I(z(t))R\left|\sqrt{F(y(t))}\right| \]

- GARAM models the return magnitude & sign as functions of two stationary correlated stochastic processes
- The term-structure of non-normality and the temporal scales of fluctuations are captured by empirical auto & cross covariance functions
- Well developed simulation & filtering methodologies can be applied to create a realistic conditional description of the underlying using GARAM

Probability Density of SPX Returns: Empirical, GARAM, & Normal Distribution

The Normal distribution is clearly unacceptable! The build-up of asymmetry in GARAM is accentuated by the dashed yellow line, that would be horizontal for a symmetric return distribution.

This build-up of asymmetry is driven by the covariance between return sign indicator and future return magnitude, in the GARAM model. This has been called the leverage-effect.

The term-dependence of return kurtosis in GARAM is driven by the auto-covariance of return magnitude (squared return).

(SPX returns: January 3, 1950 - June 2, 2009)
Optimal Hedge Monte-Carlo (OHMC) Method

Cost function

\[C(s(t_k), \sigma_1(t_k), \sigma_2(t_k), \ldots, \sigma_j(t_k), t_k) \]

\[\phi(s(t_k), \sigma_1(t_k), \sigma_2(t_k), \ldots, \sigma_j(t_k), t_k) \]

Hedge ratio function

\[\Delta W_{t_k}^{option}(t_k, t_{k+1}) = C(s(t_k), \sigma(t_k), t_k) - G(t_k) \]

\[G(t_k) = C(s(t_{k+1}), \sigma(t_{k+1}), t_{k+1}) df(t_k, t_{k+1}) + P(t_{k,i}) df(t_k, t_{k,i}) \]

\[\Delta W_{t_k}^{hedge}(t_k, t_{k+1}) = \phi(s(t_k), \sigma(t_k), t_k) H(t_k) \]

\[H(t_k) = \left[s(t_{k+1}) - \frac{s(t_k)}{DF(t_k, t_{k+1})} \right] df(t_k, t_{k+1}) + \pi_i df(t_k, t_i) \]

\[\Delta W_{t_k}^{ic}(t_k, t_{k+1}) = -[\delta \phi(s(t_{k+1}), \sigma(t_{k+1}), t_{k+1}) - \phi(s(t_k), \sigma(t_k), t_k)] + \epsilon df(t_k, t_{k+1}) \]

\[\Delta W_{t_k}(t_k, t_{k+1}) = \Delta W_{t_k}^{option}(t_k, t_{k+1}) + \Delta W_{t_k}^{hedge}(t_k, t_{k+1}) + \Delta W_{t_k}^{ic}(t_k, t_{k+1}) \]

OHMC solves for the unknown functions \(C(s(t_k), \sigma(t_k), t_k) \) \(\phi(s(t_k), \sigma(t_k), t_k) \)
so that:

\[E[\Delta W_{t_k}(t_k, t_{k+1})] = \Delta W_{t_k}(t_k, t_{k+1}) \]

minimize \(\sigma_{\Delta W_{t_k}(t_k, t_{k+1})}^2 \equiv E[(\Delta W_{t_k}(t_k, t_{k+1}) - \Delta W_{t_k}(t_k, t_{k+1}))^2] \)

OHMC SAMPLE ANALYSIS PARAMETERS

<table>
<thead>
<tr>
<th>Tenor Range:</th>
<th>10, 21, 42 trading days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options & Strikes:</td>
<td>Puts 100% 95% 85%</td>
</tr>
<tr>
<td></td>
<td>Calls 100% 105% 115%</td>
</tr>
<tr>
<td>Initial Volatility Regime:</td>
<td>Low, High</td>
</tr>
<tr>
<td>Position:</td>
<td>Option Seller-Hedger, Option Buyer-Hedger</td>
</tr>
<tr>
<td>Hedging Mode:</td>
<td>(a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>Transaction Costs</td>
<td>off on off off on</td>
</tr>
<tr>
<td>Local Risk Premium*</td>
<td>off off on off on</td>
</tr>
<tr>
<td>Hedge Conditioning**</td>
<td>off off off on on</td>
</tr>
</tbody>
</table>

*The mean change in wealth constraint of OHMC is used to incorporate a risk-premium *locally* in time. Specifically, the annualized Sortino ratio over the hedging interval (daily in our examples) is set to 1.*

**I condition hedging and valuation on the 10-day trailing realized volatility, in addition to the spot value.
High-Volatility Conditioning Return Data
The return volatility over the 63 day conditioning window is 67.6% and over the last 10 days 21.6%.

Dividend payments are assumed to be constant and paid uniformly every day over the option horizon (10-42 days) and are taken as 3.28%/yr of spot value at inception.

Fixed transaction costs are set to zero and the per-share transaction cost (includes commissions and spread from mid price) = 2.77 bps of spot at inception.

Low Volatility Conditioning Return Data
The return volatility over the 63 day conditioning window is 7.56% and over the last 10 days 7.15%.

Dividend payments are assumed to be constant and paid uniformly every day over the option horizon (10-42 days) and are taken as 1.78%/yr of spot value at inception.

Fixed transaction costs are set to zero and the per-share transaction cost (includes commissions and spread from mid price) = 1.83 bps of spot at inception.
OPTION PRICING DYNAMICS

Intuition about option trading can be built based on the framework advanced here by recognizing the roles of the following:

- **realized volatility** – long term & short term

- **fluctuations and autocorrelation of realized volatility**

- **cross-correlation of return sign-indicator & realized volatility**

- **average hedge costs**
 - when the average hedge P&L = 0 then the value function is the average hedge cost
 - when a risk-premium constraint is embedded then the value function is the average hedge costs plus the risk premium

- **hedge slippage metrics and their strike and term dependence**

- **inferred option price implied risk premium**
Median total P&L sample path hedge performance from OHMC analysis of sell-hedge 42 day 95% strike put in high volatility regime (hedge mode e)

The hedging strategy is cognizant of transaction costs and is conditioned on the trailing 10 day realized volatility.

The hedging strategy also seeks to maintain an expected P&L over each hedging interval to achieve a target Sortino-Ratio of 1.

The attempted replication is full of slips even in this relatively benign outcome. The risk-premium charged by the seller hedger towards the goal of maintaining a Sortino-Ratio of 1 every day is fulfilled insofar as the total P&L at the end of 42 days slightly exceeds the initially expected P&L in pricing the put.

The P&L outcome is of course uncertain, and can be far less favorable if the underlying moves sharply, as shown next.
Tail loss scenario (1 yr 99.9 confidence level) total P&L sample path hedge performance from OHMC analysis of sell-hedge 42 day 95% strike put in high volatility regime (hedge mode e)

While the hedging strategy seeks to maintain an expected P&L over a hedging interval such that the Sortino-Ratio is 1 the total P&L outcome is negative.

Due to the sudden drop in the asset around the 7th day the losses incurred on the sell option position are greater in magnitude than the gains from the hedge position in the underlying. In the sharp upswing in the asset near the 20th trading day, the gains arising from the sell option position are less than the losses incurred due to the hedge position.

Such steep losses incurred by the derivative seller-hedger outline the need for risk-capital by the seller-hedger.
Hedge slippage measures for a 42 day 95% strike put in high volatility regime (hedge mode e)

The hedging strategy includes local risk-premium constraints on the expected change in wealth, in addition to considering transaction costs and conditioning on 10-day realized volatility.

The positive modal wealth change for the option seller-hedger is also accompanied by a punishing loss-tail, and limited upside. Conversely, the option buyer-hedger’s wealth change distribution has a modal wealth change value that is slightly negative, but is also accompanied by a limited loss-tail, and larger potential gains.

Understanding these asymmetries is central to developing successful investment & trading strategies involving options.
Information about the volatility regime enters into our analysis through the GARAM simulations of the asset returns. OHMC further propagates that information into hedge performance assessment.

Comparison of option sell-hedge total wealth change distribution in low and high volatility regime, for 42 day 95% strike put (hedge mode e). The hedging strategy imposed the same risk-premium constraints at each hedge time step (Sortino-Ratio = 1). The resultant total wealth change distributions are widely different, owing to different regimes of realized volatility.

OHMC helps define trading strategies that are explicitly informed of such differences. For example, to limit the volatility of a option trading strategy, the gearing of the trading strategy needs to respond to changing regimes.
The shorter the option tenor is, the greater the hedging errors are compared to the average hedge cost.

As longer options typically incur average higher hedging costs, the hedge-slippage associated with sharp moves in the underlying, that can be particularly troublesome to hedge if the option expiry is imminent, becomes a smaller fraction of the average hedging costs.

Low-volatility regimes (at inception) exhibit greater treachery of tail-risks!
STRIKE DEPENDENCE

Strike dependence of residual risk for a seller-hedger of a 21 day put (hedge mode-a)

- Out of money options have a larger hedging error compared to average hedging costs than options with strikes closer to the spot asset value at inception.

- While the body residual-risk measures are increasing multiples of the average hedging costs as one looks at strikes further out of money, the tail risks increase even more, relative to the average hedging costs.

- Low-volatility regimes (at inception) exhibit greater treachery of tail-risks!

Low-Volatility Regime

<table>
<thead>
<tr>
<th>Strike (% spot)</th>
<th>Std Dev (x avg hedge cost)</th>
<th>Neg Std Dev (x avg hedge cost)</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>147</td>
<td>200</td>
<td>-168</td>
<td>41086</td>
</tr>
<tr>
<td>95</td>
<td>4.5</td>
<td>6.1</td>
<td>-6.1</td>
<td>113</td>
</tr>
<tr>
<td>100</td>
<td>0.58</td>
<td>0.74</td>
<td>-2.3</td>
<td>19</td>
</tr>
</tbody>
</table>

High-Volatility Regime

<table>
<thead>
<tr>
<th>Strike (% spot)</th>
<th>Std Dev (x avg hedge cost)</th>
<th>Neg Std Dev (x avg hedge cost)</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>2.8</td>
<td>3.8</td>
<td>-5.5</td>
<td>91</td>
</tr>
<tr>
<td>95</td>
<td>0.79</td>
<td>1.1</td>
<td>-2.9</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>0.42</td>
<td>0.55</td>
<td>-2.4</td>
<td>21</td>
</tr>
</tbody>
</table>

![Graph showing hedging costs and residual risks](image_url)
Impact of conditioning hedging and valuation on 10 day trailing realized volatility for a sell 95% strike 42 day put in a high volatility regime

At high confidence levels, conditioning on trailing volatility shrinks the tail losses

This is due to the anticipatory nature of hedging while conditioning on realized volatility – owing its origin in the temporal persistence of the squared returns
The results of OHMC on the 21st day are depicted above. The 10-day realized volatility in the low-vol case is 17% and the 10-day realized volatility in the high-vol case is 32%. By accounting for such forward realized volatility sensitivity of the hedging strategy, OHMC with conditioning on realized volatility results in a trading strategy with thinner tail-losses. While accounting for the forward realized volatility dynamics yields benefits even for simple European style options, they can be even more pertinent for derivative contracts with embedded forward starting options (e.g., Cliquets).
FRAMEWORK FOR INFERRING OPTION RISK-PREMIA

Trading Calendar
Time t_a Value of Unit Cash Inflow at t_b
Asset Value
Asset Evolution Joint Density Function
Conditioning Variables
Hedging Strategy
Cost of Hedging Strategy
Change in Wealth in Hedge Interval

Total Wealth Change

Probability Density of Change in Wealth

Average Change in Wealth

Actual Traded Option Price

Option Seller’s Average Change in Wealth
FRAMEWORK FOR INFERRING OPTION RISK-PREMIA

<table>
<thead>
<tr>
<th>Term</th>
<th>Equation/Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk-Capital at Confidence Level $p_s(T)$</td>
<td>$Q = \left{ \frac{\Delta W - q}{q} \right}^T \epsilon$ Probability ${\Delta W > q} = p_s(T)$</td>
</tr>
<tr>
<td>Implied Return on Risk-Capital</td>
<td>$\Theta = \Psi / Q$</td>
</tr>
<tr>
<td>Implied Rate of Return on Risk-Capital</td>
<td>$\theta = (1/T) \ln(\Theta + 1)$</td>
</tr>
<tr>
<td>Standard Deviation of Wealth Change</td>
<td>$(\sigma_{\Delta W})^2 = \int_{-\infty}^{\infty} (x - \Delta W)^2 f_{\Delta W}(x) dx$</td>
</tr>
<tr>
<td>Implied Sharpe-Ratio</td>
<td>$\Lambda = \left(\frac{\Psi}{\sigma_{\Delta W}} \right) \sqrt{1/T}$</td>
</tr>
<tr>
<td>Negative Semi-Deviation of Wealth Change</td>
<td>$(\sigma^-{\Delta W})^2 = \frac{\int{-\infty}^{\Delta W} \min(x - \Delta W, 0)^2 f_{\Delta W}(x) dx}{\int_{-\infty}^{\Delta W} f_{\Delta W}(x) dx}$</td>
</tr>
<tr>
<td>Implied Sortino-Ratio</td>
<td>$\Lambda^- = \left(\frac{\Psi}{\sigma^-_{\Delta W}} \right) \sqrt{1/T}$</td>
</tr>
<tr>
<td>Positive Semi-Deviation of Wealth Change</td>
<td>$(\sigma^+{\Delta W})^2 = \frac{\int{-\infty}^{\Delta W} \max(0, x - \Delta W)^2 f_{\Delta W}(x) dx}{\int_{-\infty}^{\Delta W} f_{\Delta W}(x) dx}$</td>
</tr>
<tr>
<td>Implied Artemis-Ratio</td>
<td>$\Lambda^+ = \left(\frac{\Psi}{\sigma^+_{\Delta W}} \right) \sqrt{1/T}$</td>
</tr>
</tbody>
</table>
EXAMPLE OPTION RISK-PREMIA INFERENCE

<table>
<thead>
<tr>
<th>strike</th>
<th>avg-hedge-cost</th>
<th>hedge-slip stddev</th>
<th>hedge-slip stdevneg</th>
<th>1 yr 99.9% risk-capital</th>
<th>hedge-ratio (%)</th>
<th>BID</th>
<th>ASK</th>
<th>seller-hedger expected P&L</th>
<th>buyer-hedger expected P&L</th>
<th>seller-hedger Sortino Ratio</th>
<th>buyer-hedger Artemis Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1135</td>
<td>25.86</td>
<td>11.67</td>
<td>15.04</td>
<td>164.6</td>
<td>-49.65</td>
<td>33.0</td>
<td>35.0</td>
<td>7.14</td>
<td>-9.14</td>
<td>1.63</td>
<td>-2.09</td>
</tr>
<tr>
<td>1100</td>
<td>12.91</td>
<td>10.04</td>
<td>13.42</td>
<td>152.2</td>
<td>-31.52</td>
<td>22.1</td>
<td>23.7</td>
<td>9.19</td>
<td>-10.79</td>
<td>2.35</td>
<td>-2.76</td>
</tr>
<tr>
<td>1065</td>
<td>6.03</td>
<td>7.78</td>
<td>10.81</td>
<td>134.7</td>
<td>-18.02</td>
<td>15.1</td>
<td>16.5</td>
<td>9.07</td>
<td>-10.47</td>
<td>2.88</td>
<td>-3.32</td>
</tr>
<tr>
<td>1030</td>
<td>2.71</td>
<td>5.98</td>
<td>8.34</td>
<td>116.5</td>
<td>-9.60</td>
<td>10.4</td>
<td>11.8</td>
<td>7.69</td>
<td>-9.09</td>
<td>3.16</td>
<td>-3.74</td>
</tr>
<tr>
<td>995</td>
<td>1.20</td>
<td>4.66</td>
<td>6.34</td>
<td>112.8</td>
<td>-4.92</td>
<td>7.0</td>
<td>8.6</td>
<td>5.80</td>
<td>-7.40</td>
<td>3.14</td>
<td>-4.00</td>
</tr>
<tr>
<td>960</td>
<td>0.53</td>
<td>3.59</td>
<td>4.88</td>
<td>117.0</td>
<td>-2.45</td>
<td>4.8</td>
<td>6.2</td>
<td>4.27</td>
<td>-5.67</td>
<td>3.01</td>
<td>-3.99</td>
</tr>
<tr>
<td>925</td>
<td>0.23</td>
<td>2.69</td>
<td>3.71</td>
<td>115.8</td>
<td>-1.20</td>
<td>3.1</td>
<td>4.5</td>
<td>2.87</td>
<td>-4.27</td>
<td>2.65</td>
<td>-3.94</td>
</tr>
<tr>
<td>890</td>
<td>0.10</td>
<td>1.94</td>
<td>2.73</td>
<td>100.7</td>
<td>-0.58</td>
<td>2.1</td>
<td>3.4</td>
<td>2.00</td>
<td>-3.30</td>
<td>2.51</td>
<td>-4.15</td>
</tr>
<tr>
<td>855</td>
<td>0.04</td>
<td>1.35</td>
<td>1.93</td>
<td>77.9</td>
<td>-0.27</td>
<td>1.6</td>
<td>2.5</td>
<td>1.56</td>
<td>-2.46</td>
<td>2.77</td>
<td>-4.37</td>
</tr>
<tr>
<td>820</td>
<td>0.02</td>
<td>0.92</td>
<td>1.33</td>
<td>47.7</td>
<td>-0.12</td>
<td>1.1</td>
<td>2.0</td>
<td>1.03</td>
<td>-1.93</td>
<td>2.67</td>
<td>-5.00</td>
</tr>
<tr>
<td>785</td>
<td>0.008</td>
<td>0.63</td>
<td>0.90</td>
<td>14.8</td>
<td>-0.06</td>
<td>0.7</td>
<td>1.6</td>
<td>0.64</td>
<td>-1.54</td>
<td>2.44</td>
<td>-5.85</td>
</tr>
<tr>
<td>750</td>
<td>0.003</td>
<td>0.44</td>
<td>0.64</td>
<td>2.1</td>
<td>-0.02</td>
<td>0.3</td>
<td>1.0</td>
<td>0.30</td>
<td>-1.00</td>
<td>1.60</td>
<td>-5.37</td>
</tr>
</tbody>
</table>

Recent sample calculations for short dated listed SPX PUT options

- In general the listed SPX PUT options are axed toward the seller-hedger…….
- Risk-premiums vary, driven by demand and supply and realized volatility….
- Occasionally SPX PUT options may be axed towards the buyer-hedger…….
Given an option price a buy-sell decision is made by inferring its risk-premium, and investor risk tolerance and goals, accounting for market conditions.

Underlying is traded to hedge portfolio of traded options.

Absolute portfolio risk profile is maintained to limit large losses.

Conditioning hedging on attributes of underlying in addition to spot value helps control risks.
Optimal Dynamic Hedging of Equity Options
Residual Risks, Transaction Costs & Conditioning

Vivek Kapoor
vivek2.kapoor@citi.com
Citi

Global Derivatives Trading & Risk Management
May 2010

This reflects the opinions and views of the authors and not that of their employers, and no representation as to the accuracy or completeness of the information is provided.