LAWRENCE WATER SUPPLY CORPORATION 2023 DRINKING WATER QUALITY REPORT

(CONSUMER CONFIDENCE REPORT FOR PWS 1290018)

TO OUR MEMBERS

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The data contained in this report is for the period of January 1 to December 31, 2023. Lawrence WSC is Purchased Surface Water from the City of Terrell. For more information regarding this report, contact Janine Burnett, Office Manager at 972-563-7422. Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (972)563-7422.

SOURCES OF DRINKING WATER

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

CRYPTOSPORIDIUM

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

SOURCE WATER ASSESSMENT

The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. Lawrence WSC is Purchased Surface Water from the City of Terrell 1290006. For more information on source water assessments and protection efforts at our system, contact 972-563-7422.

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/

PUBLIC PARTICIPATION OPPORTUNITIES

The public is welcomed to attend the Lawrence Water Supply Corporation Board Meeting held at 5632 CR 237A, Terrell, Texas 75160. Please check the website www.lawrencewsc.com for meeting dates, times, and agendas.

DEFINITIONS

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. **Maximum Contaminant Level or MCL:** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. **Maximum Contaminant Level Goal or MCLG:** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL: million fibers per liter (a measure of asbestos)

na: not applicable.

NTU: nephelometric turbidity units (a measure of turbidity)

pCi/L: picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

ppt: parts per trillion, or nanograms per liter (ng/L)

ppq: parts per quadrillion, or picograms per liter (pg/L)

2021 WATER QUALITY TEST RESULTS

LEAD AN	D COPPER							
Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90 th Percentile	# Sites Over AL	Units	Violation (Y/N)	Likely Source of Contamination
Copper	09/29/21	1.3	1.3	.348	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

REGULATED CO	DNTAMINA	NTS						
Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation (Y/N)	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	23	15 - 31.2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	38	25.3- 47.5	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

The value in the Highest Level or Averaged Detected column is the highest average of all HAA5 and TTHM sample results collected at a location over a year.

INORGANIC (CONTAMIN	ANTS						
Contaminant	Collection Date	Highest Level Detecte d	Range of Levels Detected	MCLG	MCL	Unit s	Violation (Y/N)	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2023	0.388	0.388 - 0.388	10	10	pp m	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Nitrite (measured as Nitrogen)	08/12/21	0.274	0.274- 0.274	1	1	pp m	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

CHLORINE	RESID	JAL										
Disinfectant	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Likely Contam	Source ination		of
Chloramines	2023	3.09	1.1	3.7	4.0	4.0	Mg/L	N		additive u	sed	to

VIOLATIONS: Disinfectant Level Quarterly Operating Report (DLQOR)

Public water systems are required to properly disinfect water before distribution, maintain acceptable disinfection residuals within the distribution system, monitor the disinfectant residual at various locations throughout the distribution system, and report the results to tthe TCEQ on a quarterly basis. Reference TCEQ requirements in Title 30, Texas Administrative Code 30 (30 TAC), Section 290, Subsection F.

Violation Type	Violation Begin	Violation End	Violation Explanation
DLQOR	04/01/23	06/30/23	We failed to test our drinking water for the contaminant and period indicated, and cannot be sure of the water quality for the period.
DLQOR	07/01/23	09/30/23	We failed to test our drinking water for the contaminant and period indicated, and cannot be sure of the water quality for the period.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023

			Со	liform Bact	eria			
Maximum Contaminant Level Goal	Contan	form Maximum ninant Level monthly sample	Highest No. of Positive	fecalColfoffII or E.ColMuwl — — i - —	Pos E. Coll Col	l No. of sitive or Focal iform nDIH	Violation	Ukely Source of Contamination Naturally present in the environment.
NOTE: Reportedmonthly tests			forms are bactena that are na		the enviro	nment and	are used as an	
lootentially harmful bactena ma	av be oresent.		Po wa	ted Contar	ninant	<u> </u>		
u,s,on By-	Couecuon	Highest Level	Range of Levels	teu contai	ııııaııı	<u> </u>		
Products	Date	Detected	Detected	MCLG	MCL	Units	Violation	Ukely Source of Contamination
Total Haloacetic Acids (HAAS)	2023	0 1	1Q	No goal for the total	60	ppb	NC	By.product of drinking water d1s1nfection
Total Trihalomethanes /TTHMI	2023	4	4	No goal for the total	80	ppb	ls,	By-product of drinking water disinfecoon
Bromate	2023	Levels lower than detect level	0-0	5	10	ppb	No	By-product or drinking water ozonation
NOTE: Not au sample results sampling should occur in the r								
Inorganic Contaminants	•=uOn Date	111gneat Level Detected	Range or evela Detected	MCLG	MCL	Units	Violation	Ukely Source of Contamination
Anlimony	2023	Levels lower than detect level	0-0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0-0	0	10	ppb	No	Erosion of natural deposits, runoff from orchards: runoff from glass and electromcs production wastes
Banum	2023	0048	0041-0048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural dennstts
Beryllium	2023	Levels lower than detect level	0-0	4	4	ppb	No	Dtscharge from metal refinenes and coal bum,ng factones; discharge from electrical, aerospace, and defense industries.
Cadmium	2023	Levels lower than detect level	0-0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and oaints.
Chromium	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from s1eel and pulpmills; erosion of natural deposits.
Cyanide	2023	199	28-199	0-0	200	ppb	No	Discharge from steeVmeta1fac1ones: Discharge from plastics and fertilizer ractones.
Fluonde	2023	0.968	0.537 • 0 968	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong leeth; discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0-0	2	2	ppb	No	Erosion of natural deposits, discharge from refinenes and ractories; runoff from landfills; runoff from cropland.
Nitrate (measured as N,troaenl	2023	0.790	0.067 - 0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks: sewage: erosion of natural deposits.
Selenium	2023	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from petroleum and metal refinenes; erosion of natural deposits; discharge from mines
Thallium	2023	Levels lower than detect level	0-0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processmg sites; drug factones.
Nitrate Advisory: Nitrate in dr baby syndrome. Nitrate levels care orovider.								ng water can cause blue nuld ask advice from your health
Radioactive Contaminants	couecuon Date	Higneat Level Detected	Range of Levela Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	47	47-4.7	0	50	pC L	No	Decayof natural and man-made deposits,
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0-0	0	15	pCi/L	No	Erosion of natural deposits.

Erosion of natural deposits.

Levels lower lhan

detect level

Radium

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

			,,,,,			(/	
Synthetic organic contaminant• including pesticides and herbicides	Collection Date	Highest Level	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (S1Ivex)	2022	Levels lower than detect level	0-0	50	50	ppb	No	Res1due of banned hetb1C1de.
2, 4-0	2022	Levels lower than detect level	0-0	70	70	ppb	No	Runoff fromherbicide used onrow crops.
Alachlor	2023	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide used onrow crops
Ald1carb	2022	Levels lower than detect level	0-0	ž	3	ppb	No	Runoff from agricultural pestieide.
Aldicarb Sulfone	2022	Levels lower than detect level	0-0		2	ppb	No	Runoff fromagncultural pesticide.
Ald,carb Suttox,de	2022	Levels lower than detect level	0-0	1	4	ppb	No	Runoff fromagncultural pesticide.
Atrazine	2023	0.2	0.1-0.2	3	3	ppb	No	Runoff from herbicide used on ff1'N crops
Sanzo (a) pyrene	2023	Levels lower than detect level	0-0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lmes.
Carbofuran	2022	Levels lower than detect level	0-0	40	40	ppb	No	leaching of soil fumigant used onrice and alfalfa.
Chlordane	2022	Levels lower than detect level	0-0	0	2	ppb	No	Residue of banned termit1cide.
Dalapon	2022	Levels lower than detect level	0-0	200	200	ppb	No	Runoff from herbicide usedon rights of way
DI (2-ethylhexyl) adipate	2023	Levels lower than detect level	0-0	400	400	ppb	No	Discharge from chemical factories
Di (2-ethylhexyt) phthalate	2023	Levels lower than detect level	0-0	О	6	ppb	No	Discharge from rubber and chemical factories
01bromochloropropane (DBCP)	2022	Levels lower than detect level	0-0	О	200	ppt	No	Runoff / leaching from soil fumigant usedon soybeans, cotton. pineapples, and orchards.
o,noseb	2022	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endnn	2023	Levels lower than detect level	0-0	2	2	ppb	No	Residue of banned insecticide
Ethylene d1brom1de	2022	Levels lower than detect level	0-0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2023	Levels lower than detect level	0-0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epox,de	2023	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2023	Levels lower than detect level	0-0	0		ppb	No	Oiscnarge from metal refinenes and agricultural cnemical factones.
Hexachlorocyciopentad,en	2022	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from chemical factories
Undane	2023	Levels lower than detect level	0-0	200	200	ppt	No	Runoff/ leaching from insecticide used on cattle, lumber. and gardens.
Methoxychlor	2023	Levels lower than detect level	0-0	40	40	ppb	No	Runoff/ leaching from insecticide usedon fruits, vegetables, alfalfa, and livestock.
Oxamyl (Vydate)	2022	Levels lower than detect level	0-0	200	200	ppb	No	Runoff/leachingfrom insecticideused onapples,potatoes,andtomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0-0	О	7	ppb	No	Discharge from wood preserving factories.
P,cloram	2022	Levels lower than detect level	0-0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0 12	006-0.12	4	4	ppb	No	Herbicide runoff.
Toxaphene	2023	Levels lower than detect level	0-0	О	3	ppb	No	Runoff/ leaching from insecticide usedon cotton and cattle.
Volatile Organic Contaminanta	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Tlichloroethane	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge frommetaldegreasing sites and other factories.
1, 1, 2 • Tnchloroethane	2023	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from1ndustnal chemical factories.
1. 1 - Dichloroethylene	2023	Levels lower that detect level	0-0	7	7	ppb	No	Discharge from1ndustna1chem1cat factones
1. 2. 4 - Tnchlorobenzene	2023	Levels lower that detect level	0-0	70	70	ppb	No	Discharge from te,ctile.finishing factones.
1. 2 • D1chloroethane	2023	Levels lower that detect level	0-0	0	5	ppb	No	Discharge from industnal chemical factones.
1, 2 - Dichloropropane	2023	Levels lower that detect level	0-0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower tnan detect level	0-0	0	5	ppb	No	Discharge from factones; leaehing from gas storage tank5 and landfills.
Carbon Tetrachlonde	2023	Levels lower than detect level	0-0	0	5	ppb	No	015 charge from chemical plants and other industrial activities.
					_			

.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

VolaUle Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Diehloromemane	2023	Levels lower than detect level	0-0	О	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0-0	0	700	ppb	No	Discharge from petroleum refineries
Styrene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Os.charge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0-0	1	1	ppm	No	Discnarge from petroleum factones.
Tnehloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from metal degreasing sites and other factones.
Vinyl Chlonde	2023	Levels lower than detect level	0-0	0	2	ppb	No	Leaching from F'VC p1p1ng; dtscharge from plastics factones.
Xylenes	2023	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factones.
CIS -1, 2- Diehloroelhylene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge fromindustrial chemical factones
o - D1chlorobenzene	2023	Levels lower than detect level	0-0	600	600	ppb	No	Discharge from industnal chemical factones.
p - Oichlorobenzene	2023	Levels lower than detect level	0-0	75	75	ppb	No	Discharge from1ndus1nal chemical factones.
trans -1, 2 - D1choloroe1hylene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from industrial chemical factories

Turbidi

	Limit (Treatment Technique)	Level Detected	Violalion	Ukely Source of Contamination
Hlahest single measurement	1 NTU	0.73	No	Soil runoff.
Lowest monthly oercentaae 1%1 meetlna limit	0.3 NTU	98.0%	No	Soil runoff.

NOTE: Turbid1tv 1s a measurement of the cioud1ness of the water caused by suscended oart, cies. We monitor it because1t 1s a Rood indicator of water Qua\1tv and the effectiveness of our filtration.

Maximum Residual Disinfectant Leve

Diainfectent Type	Year	Average Level of Quarter1y Data	Lowest Result of Single Sample	Higheat Result of Single Sample	IIIIRDL	IIIIRDLG	Units	Source of Chemical
Chlonne Residual (Chloraminesl	2023	ų.		•	4.00	<4.0	ppm	Disinfectant usedto control microbes.
Chlonne Dioxide	2023	0.01	0	0.59	080	0.80	ppm	Disinfectant.
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	o,smtectani.

NOTE: Water providers are reQu1red to maintain a minimum chlorine d1s1nfection residual level of O 5 parts per million (pom) for systems disinfectinc with chlorammes and an annual averaae chlonne d1smfection residual level of between 0.5 oom and 4 oom

Total Or anic Carbon

C ptos oridium and Giardia									
Contamln.1nta	Collection Date	Highe∎t Level Detected	Range of Levels Detected	Units	Likely Source of Contamination				
Cryptosporid1um	2023	0	0-0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.				
Giardia	2023	0.18	0.09 • 0.18	(Oo) Cysts/L	Human and animal fecal waste. Naturalty present 1n the environment.				

NTMWO Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

	Lead and Co er										
LHd and Copper	Date Sampled	"""on Level (AL)	90th Pen:entlle	# Sites Over AL	Units	Violation	Likely Soun:e of Contamination				
Lead	6/13/2022	15)0		ppb		ColTosion of household plumbing systems, erosion of natural deposits.				
Copper	6/13/2022	1.30			ppm		Erosionof natural deposits leaching fromwood preservatives, corrosion of household plumbing systems				

LEAD ANDCOPPER RULE: The Lead and Copper Rule protects pubhc health bym1n1mizing lead andcopper levels in dnnking water,pnmanly by reducing water corros1v1ty.

Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD. If present, ele'lated levels of lead can cause senous health proble ms, especially for pregnant women and youngchildren. Lead 1ndnnk1ng water is pnmanly from materials and components associated with servicelines and home plumbing. U, ** 1 responsible for providing high quality dnnking water, but cannot control the vanety of materials used in plumbing components. When yourwaterhas been sitting for several hours, you can minimize the potential for lead exposure by flustung your tap for 30 seconds to 2 minutes before usmg waterfor drinking or cooking If you are concerned about leadm your water, you may wish to have your water lested Informat, on on lead, n dnnk, ng wa1er, testing methods, and steps you can take to m1nim1ze exposure 1s available from the Safe Dnnk1ng Waler Hotline or at http://lwww.eoa.aov/safewater/lead.

	Unre ulated Contaminants						
	Collection	Highest Level	Range of Levels				
Conliminanta	D1te	Oetected	Oetected	Units	Likely Source of Cont1mln1tlon		
Chloroform	2023	4	■ 1	ppb	Sy-product of dnnk.ma water d1smfection.		
Bromoform	2023		04 1	ppb	Sy-product of drinkinQ water disinf&etion.		
Bromod1chloromethane	2023			ppb	By-product or drinking water disinfection.		
D1bromochloromethane	2023	1,	2	ppb	Bv-oroduct of drinkina water disinfection		

NOTE Bromoform, chloroform, bromod1chlorometh&ne, and dibromoehloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals all the entry 001nt to distribullon. These contaminants are included 1n the Disinfection By-Products TTHM comoliance data.

		Seconda and Oth	ner Constituents	Not Re ulated	
Contaminanta	Collection Date	Highest Level Oetected	Ringo of Levels Oetected	Units	Likely Soun:e of Contamination
Aluminum	2023	Levels lower than detect level	0-0	ppm	Erosion of natur&l deposits.
Calcium	2023	69.8	26.5 -69.8	ppm	Abundant naturally occumng element
Chloride	2023	107	30-107	ppm	Abundant naturally occurring element, used in water punfication; by-product of oil fieldactivity.
Iron	2023	0.516	0 061 -0.516	ppm	Erosion of natural depoS1ts; ironor steel water dehvery equipment or facilities.
Magnesium	2023	977	490-9.77	ppm	Abundant naturally occumng element.
Manganese	2023	0.158	0.0068 - 0.158	ppm	Abundant naturally occurring element.
Nickel	2023	0.0048	0 0047 - 0.0048	ppm	Erosion of natural deposits.
рН	2023	917	639-917	units	Measure of corros1vity of water,
Silver	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Sodium	2023	95 4	265-954	ppm	Erosion of natural deposits: by-product of o,l field activity.
Su ate	2023	171	76.8 -171	ppm	Naturally occurring; common industrial by-product; by- product of oil field activity.
Total Alkahrnty as CaCO3	2023	139	51 -139	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Sohds	2023	492	263 - 492	ppm	Totaldissolved mineral constituents 1n water.
Total Hardness as CaCO3	2023	312	82 -312	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0-0	ppm	Moderatety abundant naturally occumng element used1n the metal industry.
		V	iolations Table		

	violation			
VIol1Uon Type	Begin	Viol1tion End	Viol1tion Expl1n1tion	

NITRATE MONITORING, ROUTINE MAJOR	Jan-23	Mar-23	The North Texas MWO Wylie VVTP water system PWS ID TX0430044 has violated the monitoring and reporting requirements set by Texas Comm1ss10n on Environmental Quahty (TCEQ) m Chapter 30, Section 290< Subchapter F. Public water systems arer&Qu1red to collect and submit chemical samples to the TCEQ on a regular basis. We failed to monitor and/or report the following constituents: Nitrate This/These v1olation(s) occurred in the monitoring period(s): First Quarter 01/01/2023 - 3/31/2023 Results orregular mon1toring are an 1nd1cator of whether ornot your dnnk1ng water 1s safe from chem1ca1contamination Wed1d not complete all monitoring and/or reporting for chemical constituents, and therefore TCEO cannot be sureof the safety of your dnnk1ng water dunng that time. We are taking the following actions to address the issue. The sample was taken dunng the requ,red samphng period and results are within compliance cnteria. The violation was due to a delay in rece1v1ng lab results from a third-party lab. Once the results
			Please share this infom,ation with allpeopte who drink this water, especially those who may not have received this notice directly (1e, people in apartments, nursing homes, schools, and busmesses). You can do this by posting this notice 1n a pubhic place of d1stnbut1ng copies by hand or mail. If you have quest1ons concerning this matter you may contact NTMWD Water System Manger - Treatment Mr. Gabnel Bowden at (972) 608-7009 Posted/Delivered on 3-28-2024

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023

			Water Quality	/ Data f	or Ye	ar 20	23	
			Col	iform Bact	eria			
Maximum Contaminant Level Goal	Contan	form Maximum ninant Level	Highest No. of Positive	Focal Coltformor E. Coli Maximum Contaminant Level	Pos E. Coli Col	No. of sitive or Fecal iform nples	Violation	Likely source of Contamination
NOTE · Reported monthly les		monthly samele	nliforms are hacteria that are	0 naturally prese	nt 4- the er	vironment	NO and are used as	Naturally oresent in the environment.
Iootent1ally harmful baclena n		r comorribaciena Ci	omorns are bacteria triat are	naturally preser	it iii tiie ei	whomment	and are used a	s an indicator triat other,
(t;:0::1'.:'s ;•			Relula	tod Contai	minant	S		
IJtllInfection Dy• Products	1.,011ectlor Date	n Hignest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAAS)	2023	OO : 19	,1	No goal for the total	60	ppb	N<	By-product of drinking water disinfection.
Total Tnhalomethanes (TTHM)	2023	4	0 15 "4.,.8	No goal for the total	80	ppb	NO	By-product of dnnking water disinfection
Bromate	2023	Levels lower than detect level	0-0	5	10	ppb	No	By-product of dnnk1ng water ozonation.
NOTE Not all sample results	may have been	used for calculating t	the Highest Level Detected be	ecause some re	sults may	be part or a	n evaluation to	detem11ne Where comphance
samphna should occur 1n the	Collection	Highest Level	Range of Levels	eslino. <i>For</i> Bron	nate, com	11ance1s	basedon the run	nmna annual averaae
Inorganic Contaminants	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely SOurce of contamination
Antimony	2023	Levels lower than detect level	0-0	6	6	ppb	No	Discharge from petroleum refinenes; fire retardants, ceramics: electronics: solder; and test add1t1on
Arsenic	2023	Levels lower than detect level	0-0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards: runoff fromglass and electronics production wastes.
Banum	2023	0.063	0.063 • 0.063	2	2	ppm	No	Discharge of dnlling wastes; discharge from metal refineries- erosion of natural deoosits.
Beryllium	2023	Levels lower than detect level	0-0	4	4	ppb	No	Discharge from metal refineries and coal-bum1ng factones; discharge from electrical, aerospace, and defense industries.
Cadmium	2023	Levels lower than detect level	0-0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits discharge from metal refinenes: n.inoff from waste batteries and "-aints
Chromium	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from steeVmetal factories; Discharge from plastics and fertilizer factones.
Fluoride	2023	0664	0.664 • 0.664	4	4	ppm	No	Erosion of natural deposits; water additive which promote strong teeth. discharge from fertilizer and aluminum factories.
Mercury	2023	Levels lower than detect level	0-0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factones: runoff fromlandfills; runoff from cropland.
Nitrate (measured as NItrocen)	2023	0379	0 379 -0 379	10	10	ppm	No	Runoff fromfert1hzer use; leaching from sepIlCtanks, sewage; erosion of naturaldeposits.
Selenium	2023	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion o natural deposits; discharge from mines.
Thalhum	2023	Levels lower than detect level	0-0	05	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.
Nitrate Advisory. Nitrate in d baby syndrome Nrtrate level care orov1der								nking water can cause blue should ask advice fromyour health
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	likety source of Contamination
Beta/photon emitters	2021	48	48-4.8	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2021	Levels lower that detect level	0-0	0	15	pCi/L	No	Erosion of natural deposits.

0

0-0

5

pCi/L

No

Erosion of natural deposits.

Levels lower that detect level

2021

Radium

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

	Г		iter quanty be	1			,	
Synthetic organic contaminants Including								
pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
2. 4, 5 - TP (S1lvex)	2021	Levels lower than detect level	0-0	50	50	ppb	No	Residue of banned herbicide.
2. 4-D	2021	Levels lower than detect level	0-0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2021	Levels lower than detect level	0-0	0	2	ppb	No	Runoff from herbicide used on row crops.
Ald1carb	2021	Levels lower than detect level	0-0	1	3	ppb	No	Runoff from agricuttural pesticide
Ald1carb Sulfone	2021	Levels lower than detect level	0-0	1	2	ppb	No	Runoff from agncultural pesticide.
Aldicarb Sulfoxide	2021	Levels lower than detect level	0-0	1	4	ppb	No	Runoff from agncultural pestlode.
Atrazme	2021	01	0.1 -0.1	3	3	ppb	No	Runoff from herbicide used on row crops
Benzo (a) pyrene	2021	Levels lower than detect level	0-0	0	200	ppt	No	Leaching from linings of water storage tanks and d1stnbution lines.
Carbofuran	2021	Levels lower than detect level	0-0	40	40	ppb	No	Leaching of soil fumigant used on nee and alfalfa
Chlordane	2021	Levels lower than detect level	0-0	0	2	ppb	No	Residue of banned term111ode
Dalapon	2021	Levels lower than detect level	0-0	200	200	ppb	No	Runoff from herbicide used on righ1s of way
Di (2-ethylhexyl) ad,pate	2021	Levels lower than detect level	0-0	400	400	ppb	No	Discharge from chemical factories.
o, (2-ethylhexyl) phthalate	2021	Levels lower than detect level	0-0	0	6	ppb	No	Discharge from rubber and chemical factories.
01bromochloropropane (DBCP)	2021	Levels lower than detect level	0-0	0	200	pp!	No	Runoff/ leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Oinoseb	2021	Levels lower than detect level	0-0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endnn	2021	Levels lower than detect level	0-0	2	2	ppb	No	Residue of banned insecticide
Ethylene dibromide	2021	Levels lower than detect level	0-0	0	50	ppt	No	Discharge from petrole1um refinenes.
Heptachlor	2021	Levels lower than detect level	0-0	0	400	ppt	No	Residue of banned term1tiode.
Heptachlor epox1de	2021	Levels lower than detect level	0-0	0	200	ppt	No	Breakdown of heptachlor
Hexachlorobenzene	2021	Levels lower than detect level	0-0	0	1	ppb	No	Oiscnarge from metal refinenes and agniculturat chemical factones.
Hexach!orocyclopentadier e	2021	Levels lower than detect level	0-0	50	50	ppb	No	Discharge from chemical factones
Undane	2021	Levels lower than detect level	0-0	200	200	ppt	No	Runoff/ leaching from insect1ade used on cattle, lumber, and gardens.
Methoxychlor	2021	Levels lower than detect level	0-0	40	40	ppb	No	Runoff / leaching from 1 nsectic1 de used on fru11s. vegetables, alfalfa, and livestoek
Oxamyl (Vydate]	2021	Levels lower than detect level	0-0	200	200	ppb	No	Runoff/ leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2021	Levels lower than detect level	0-0	0	1	ppb	No	Discharge from wood preserving factories.
P,cloram	2021	Levels lower than detect level	0-0	500	500	ppb	No	Herbicide runoff
S1mazme	2021	Levels lower than detect level	0-0	4	4	ppb	No	Herbicide runoff
Toxaphene	2021	Levels lower than detect level	0-0	0	3	ppb	No	Runoff / teaching from insecticide used on cotton and cattle.
Volatile Organic Contaminant•	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Unita	Violation	Likely source of Contamin.ation
1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other fac, ories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0-0	3	5	ppb	No	Discharge from 1ndustnal chemical factones
1, 1 - D1chloroethylene	2023	Levels lower than detect level	0-0	7	7	ppb	No	Otscharge from industnal chemical factones.
1, 2, 4 - Trichlorobenzen	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from textite.fimshing factories.
1, 2 - D1chloroethane	2023	Levels lower that detect level	0-0	0	5	ppb	No	Discharge from industnal chemical factones.
1, 2 • Oichloropropane	2023	Levels lower than detect level	0-0	0	5	ppb	No	Dscharge rrom industnal chemical factories.
Benzene	2023	Levels lower that detect level	0-0	0	5	ppb	No	Discharge from factones; leaching from gas storage tanks and land fills.
Carbon Tetrachlonde	2023	Levels lower that detect level	0-0	0	5	ppb	No	Discharge from chem.cal plants and other industrial activities

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

	1							
Volatile Orvanic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from chemical and agricultural Chemical factones.
Dichloromethane	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from phannaceutical and chemical factories
Ethylbenzene	2023	Levels lower than detect level	0-0	0	700	ppb	No	Oiaeharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0-0	1	1	ppm	No	Discharge from petroleum factories.
Tnchloroethylene	2023	Levels lower than detect level	0-0	0	5	ppb	No	Dtscharge from metal degreasing sites and other factor
Vinyl Chlonde	2023	Levels lower than detect level	0-0	0	2	ppb	No	Leaching from PVC piping: discharge from plastics factones
Xylenes	2023	Levels lower than detect level	0-0	10	10	ppm	No	Discharge from petroleum factories; d1scharge from chemical factones.
CIS • 1, 2 - D1chloroethylene	2023	Levels lower than detect level	0-0	70	70	ppb	No	Discharge from industrial chemical factones.
o - D1chlorobenzene	2023	Levels lower than detect level	0-0	600	600	ppb	No	Discharge from indu,trial chemical factones.
p - Dichlorobenzene	2023	Levels lower than detect level	0-0	75	75	ppb	No	Discharge from industnal chemical factories.
trans-1,2- Dicholoroethylene	2023	Levels lower than detect level	0-0	100	100	ppb	No	Discharge from industna1chemical factories.
				Turbtdi				
			Limit					111.10
Highest single measuren	nont		(Treatment Tech	nique)		Detected 0.26	Violation No	Likely Source of Contamination Sotl runoff.
owest monthly percenta		na limit	0.3 NTU			00%	No	Soil runoff.
	.gc (70) meeti							
IOTE: Turbid1tv1sa measu	rement of the c	loudiness of the water c	aused by suspended particle	es. We monitor 1t	because i	t is a QOO	d indicator of w	ater Quality and the effectiveness
IOTE: Turbid1tv1sa measu	urement of the c	loudiness of the water c	aused by suspended particle Maximum Re				d indicator of w	ater Quality and the effectiveness
NOTE: Turbid1tv1sa measu of our filtratton.			Maximum Re	esidual Disi Maximum	nfecta	nt Leve		
OTE: Turbid1tv1sa measu f our filtratton. Disinfectant Type	rement of the c	Average Level		esidual Disi			d indicator of w	ater Quality and the effectiveness source of Chemical
IOTE: Turbid1tv1sa measu f our filtratton.			Maximum Re	esidual Disi Maximum	nfecta	nt Leve		
IOTE: Turbid1tv1sa measu f our filtratton. Disinfectant Type Chlorine Residual	Year		Maximum Re	esidual Disi Maximum Level	nfecta MRDL	nt Leve MRDLG	Units	source of Chemical

conection Highest level Range of levels

Ote Detected Detected Units IIk_y Source of Contamination

The rcenta e of Total Or anic Carbon TOC removal was measured eachmonth and the sistem met all TOC removal religious set.

		C tos	oridlum and Giar	d,a	
Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	likely Source of Contamination
Cryptospond,um	2023	Levels lower than detect level	0-0	(Oo) Cysls/L	Human and animal fecal waste. Naturalty present in the environment.
G,ardia	2023	Levels lower than detect level	0-0	(Oo) Cysts/L	Human and animal fecal waste Naturally present 1n the environment.
NOTE: Only source water wa	as evaluated for	r cryptospondium and giardia. Levels shown are no	ot fordnnk1nr;iwater		

NTMWD Tawakoni Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

	Lead and Coor							
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Soutce of Contamination	
Lead	6113/2022	15	8		ppb	NO	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.	
Copper	6/13/2022	1.3	1		ppm	NO	Corrosion of household plumbing systems; erosion of natural deposits.	

LEAD AND COPPER RULE The Lead and Copper Rule protects pubhc health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper

ADDITIONAL HEALTH INFORMATION FOR LEAD. If present, elevated levels of lead can cause and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and youngchildren. Lead "drinking water is primarily from materialSand components (IMOClated withMMCe Na anhdome plumbing ... respond)le for p.OViding highquality drink.ngwater, but cannot control the vanety of materials used in plumbing components. When your water has been s1tt1ng for several hours, yoo can minimize the potenhal for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for dnnking or cooking. If you are concerned about lead 1n your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure 1s available fromthe Safe Onnk1ng Water Hotline or at http://wwwepa.gov/safewater/lead.

Unre ulated Contaminants

Contaminants	Collection Data	Highest Level Detected	Range of Levels Detected	Units	Likely Sourct of Con!AlmInatIon
Chloroform	2023	?	1 41	ppb	Bv-nroduct of drinkinn water disinfection
Bromoform	2023	1 8-	-4	000	Sv-nroduct of dnnkinn waler disinfection.
Bromodichloromethane	2023	18	8.	ppb	Bv-nroduct of dnnk1M water d1s1nfection.
Dibromochloromethane	2023	81,	4 1	ppb	Bv-nroduct of drinkino water disinfection.

NOTE: Bromoform, chloroform, bromochchloromethane, and dibromochloromethane are disinfection by-products. There 1s no maximum contaminant level for these chemicals at the entNOOtnt to disInbut1on. These contaminants are included 1n the Disinfect1on Bv-Products TTHM comicliance data.

Seconda and Other Constituents Not Regulated

		Seconda and Oth	er Constituents M	not Re ulated	
Contaminants	Collection Date	Highest Level Detected	Range of Lavala Detected	Units	Uk•ly Sourc•of Contamination
Aluminum	2023	0.025	0.025 - 0.025	ppm	Erosion of natural deposits.
Calcium	2023	45.2	33.8-45.2	ppm	Abundant naturally occurring element.
Chloride	2023	21.9	14.7 -21.9	ppm	Abundant naturalty occurring element; used in water punfieat1on, by product of oil field activity.
Iron	2023	Levels lower Ihan detect level	0-0	ppm	Erosion of natural deposits; iron or steel water dehvery equipment or facilities.
Magnesium	2023	289	289-289	ppm	Abundant naturally oecumng element.
Manganese	2023	0.0041	0.0041 -0.0041	ppm	Abundant naturally occurring element.
Nickel	2023	0.0031	0.0031 - 0.0031	ppm	Erosion or natural deposits.
рН	2023	8.3	7 4 - 8.3	units	Measure of corrosiv1ty of waler
Silver	2023	Levels lower than detect level	0-0	ppm	Erosion of natural deposits.
Sodium	2023	20.6	16.2 -20.6	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2023	750	475-750	ppm	NaturaUy occumng, common industrial by-product; by-prOduct of 011 field activ11y
Total AlkahMy as CaC03	2023	79	40-79	ppm	Naturally occumng soluble mineral salts.
Total o,ssolved Solids	2023	212	136-212	ppm	Total dissolved mineral constituents in water
Total Hardness as CaC03	2023	128	79-128	ppm	Naturally occurring calcium.
z,nc	2023	Levels lower than detect level	0-0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Violataons Table

Violation Type	Violation End	Violation Explanation	