

Chapter 1

Introduction to Photovoltaic Systems

Solar Technologies • History and Development • Markets and Applications • Industry Sectors

- Classifying solar energy technologies and types of PV systems.
- Recognizing the benefits and limitations of PV systems compared to other generation sources.
- Identifying common applications for both stand-alone and utility interactive PV systems.
- Characterizing various segments of the PV industry and their roles.
- Understanding market trends and opportunities for PV systems.

Solar Energy Technologies

Solar-Thermal Systems

 Heat fluids for domestic hot water, pools, space conditioning or concentrating designs for power generation.

Solar-Electric, or Photovoltaic (PV) Systems

• Generate electricity to supply dedicated loads or interface with other electrical systems.

Types of PV Systems

Stand-Alone Systems

- Operate off-grid
- Sizing based on electrical loads

Interactive Systems

- Operate in parallel with the electric utility grid
- Supplement utility power to site loads

Solar Photovoltaic (PV) Systems

PV systems convert solar energy into electrical energy using various components.

© 2012 Jim Dunlop Solar

Value of PV Systems

Advantages of PV systems include:

- Energy independence; sunlight is free.
- Environmentally-friendly technology; no noise or pollution.
- High-reliability, minimal maintenance and long lifetime.
- Modular and expandable designs.
- Dispersed energy production.
- Reduced vulnerability to power outages with energy storage.
- Can power dedicated loads or supplement grid power.

Disadvantages include:

- High initial costs compared with competing power options.
- Low power densities require large array surface areas.
- Energy production is dependent on location, time of day/year, array orientation and other factors.

History of Photovoltaics

Silicon solar cells were developed at Bell Labs in 1954 by Gerald Pearson, Daryl Chapin, and Calvin Fuller (L-R).

<complex-block>

Something New Under the Sun. It's the Bell Solar Battery, made of thin discs of specially treated silicon, an ingredient of common sand. It converts the sun's rays directly into usable amounts of electricity. Simple and trouble-free. (The storage batteries beside the solar battery store up its electricity for night use.)

Bell System Solar Battery Converts Sun's Rays into Electricity!

Alcatel-Lucent / AT&T Bell Labs

Alcatel-Lucent / AT&T Bell Labs

© 2012 Jim Dunlop Solar

PV System Applications

Spacecraft

Consumer electronics

Calculators, radios and watches

Rural development

 Health care facilities, schools and community centers

Off-grid power

 Lighting and appliances for remote homes and facilities

Agricultural uses

- Water pumping and irrigation
- Fence charging

Lighting

- Signs, security and parking areas
- Transportation, navigation and aviation aids

Specialty applications

- Remote monitoring, railway signals, security systems and water treatment
- Telecommunications facilities

Grid-connected systems

 Residential, commercial and utilityscale

Space Applications

International Space Station

NASA

Hubble Space Telescope

NASA/Smithsonian Institution/Lockheed Corp.

© 2012 Jim Dunlop Solar

Consumer Electronics

Utility Lights

Radios

Security Cameras

Watches

Cell Phones

Calculators

Transportation Safety

Introduction to PV Systems: 1 - 11

Navigation and Aviation Aids

Sandia National Laboratories

Northern Power Systems
Introduction to PV Systems: 1 - 12

Portable Applications

Refrigerated Transport

Sandia National Laboratories

Mobile Power

Virgin Islands Energy Office

Electric Vehicles

NREL / DOE, Byron Stafford Introduction to PV Systems: 1 - 13

Recreational Vehicles

SolarWorld

SolarWorld

SolarWorld

© 2012 Jim Dunlop Solar

Rural Development

Rural Health Clinic

NREL/Steve McCarney

Water Pumping

Vaccine Refrigeration

Rural Home Lighting

United Solar Systems

© 2012 Jim Dunlop Solar

Nature Centers

Disney Wilderness Preserve, Kissimmee, FL

FSEC/Jim Dunlop

Jacksonville (FL) Zoo

JEA/Larry Wagner

National Parks

Dangling Rope Marina, Lake Powell, UT

NREL/Warren Gretz

Dry Tortugas National Park, FL

National Park Service

© 2012 Jim Dunlop Solar

Covered Parking

Naval Air Station, San Diego, CA

Sandia National Laboratories

NREL / DOE, SunPower

Telecommunications

Carol Spring Mountain, AZ

Sandia National Laboratories

Upper Horse Flats, UT

Sandia National Laboratories

© 2012 Jim Dunlop Solar

Sandia National Laboratories

Commercial Rooftops

National Electric, Albuquerque, NM

National Electric

Environmental Protection Agency, Raleigh, NC

NREL/EPA

© 2012 Jim Dunlop Solar

Commercial Rooftops

Georgia Tech Aquatic Center, Atlanta, GA

Convention Center, Orlando, FL

Architectural Features

Georgia Tech Aquatic Center

Highway Sign Lighting

© 2012 Jim Dunlop Solar

Billboards and Signs

© 2012 Jim Dunlop Solar

Introduction to PV Systems: <u>1 - 24</u>

Specialty Applications

SWH Circulation Pump

Commission on Economic Opportunity

Irrigation Control

NREL/John Thorton

U/V Water Disinfection

NREL/Byron Stafford

© 2012 Jim Dunlop Solar

Agricultural Uses

Fence Charging

NREL/DOE, Warren Gretz

Livestock Watering

NWRPPD, Jerry Anderson

© 2012 Jim Dunlop Solar

Virgin Island Energy Office

Remote Residential

Private Home, U.S. Virgin Islands

© 2012 Jim Dunlop Solar

Portable Classroom, Lakeland, FL

Electrical Training Center, Gainesville, FL

Mandarin H.S., Jacksonville, FL

© 2012 Jim Dunlop Solar

Railroads and Utilities

Aircraft Warning Beacon

Railway Signals

© 2012 Jim Dunlop Solar

Area Lighting

FSEC/Lakeland Electric

Jim Dunlop

Introduction to PV Systems: 1 - 30

FSEC

FSEC/National Park Service

Residential Grid-Connected

FSEC/Lakeland Electric

New Smyrna Beach Utilities Commission

Residential Grid-Connected

FSEC/Lakeland Electric

Sharp Solar

Utility-Scale PV Systems

Kennedy Space Center, FL – 10 MW

Florida Power and Light

Carissa Plains, CA (c. 1985) – 6 MW

Alamosa, CO – 8.2 MW

SolarWorld/ARCO

NREL/Steve Wilcox

© 2012 Jim Dunlop Solar

Flat-Plate PV Arrays

Flat-plate collectors utilize non-concentrated solar radiation.

Most PV modules and arrays are flat-plate collectors.

Fixed-Tilt Rack-Mount

Single-Axis Tracking Pole Mount

© 2012 Jim Dunlop Solar

Concentrating PV Arrays

Concentrating collectors focus the sun's power onto smaller areas, and must track the sun.

Line-Focus Two-Axis Tracking

Point-Focus Two-Axis Tracking

Concentrating Solar Thermal

Dish Stirling

NREL/DOE, Bill Timmerman

Parabolic Trough

NREL/DOE, Warren Gretz

Power Tower

© 2012 Jim Dunlop Solar

Sandia National Laboratories

The PV Industry: Yesterday and Today

	c. 1990	c. 2010	
Installed Capacity	< 50 MW/yr worldwide	> 10 GW/yr worldwide > 500 MW/yr in U.S.	
Product Listing and Certification	Infancy	All modules, inverters, controls and combiners listed to UL standards	
Code Compliance	PV first introduced in 1984 NEC Few systems permitted and inspected	All systems permitted and inspected by building officials	
System Voltage	Residential ≤ 48 VDC	Residential up to 600 VDC Commercial up to 1000 VDC	
Predominant Markets	Stand-alone, off-grid	Grid-connected residential, commercial and utility-scale	
Number of PV Companies	Hundreds	Tens of thousands	
Maximum System Size	10 to 100 kW	1 to 20+ MW	
Utility Interconnection	Few utilities permitted PV interconnections	All states and utilities permit interconnections from 2 to 20 MW	
Licensing and Personal Certification	Nonexistent	State licensing and national certification programs emerging	
Contractors and Installers	Small specialized companies, diversified in solar thermal and PV	Larger companies, electrical contractors and project developers	
Global PV Industry Revenue	Tens of millions	Tens of billions	

PV Industry Sectors

© 2012 Jim Dunlop Solar

PV Industry Career Opportunities

Component Manufacturing

- engineers, designers, fabricators, assemblers
- Sales and Marketing
 - business and marketing professionals

Systems Engineering and Design

 professional engineers, architects and contractors

Procurement and Operations

business and accounting professionals

Financing and Insurance

 lending institutions, legal professionals and underwriters

- System Installation, Operations and Maintenance
 - contractors, electricians and related trades

Inspection and Code Compliance

- regulators, utilities, electrical and building inspectors
- Training and Education
 - teachers and instructors
- Product Research, Testing and Certification
 - engineers, scientists, technicians

Market Drivers

- Increasing costs and dependence on imported energy
- Environmental impacts from fossil fuel use
- Electric utility restructuring
- Net metering and interconnection rules
- Legislative mandates for renewable generation
- Financial incentives
- Increasing public awareness and interest

Global PV Markets

2005-2008 Annual PV Installations

Country	2005	2006	2007	2008
US	153	178	270	412
Japan	833	926	923	1,224
Europe	473	673	1,069	1,906
ROW	323	681	1,451	3,398
Total	1,782	2,459	3,714	6,941
% Thin Film	5	7	11	14

Bradford/Maycock

Global PV Markets

2000-2009 Cumulative PV Installations

European Photovoltaic Industry Association

© 2012 Jim Dunlop Solar

Global PV Markets

Cumulative Global PV Capacity

European Photovoltaic Industry Association

2009 Global PV Installations

© 2012 Jim Dunlop Solar

U.S. PV Markets

- U.S. PV shipments and installed capacity are growing over 50% per year, reaching approximately 500 MW per year in 2010.
- The majority of PV capacity is installed in the commercial and utility sectors, while the residential sector has more total installations.

Total Domestic Shipments

DOE/Energy Information Agency

Grid-Connected Installations

Interstate Renewable Energy Council /Larry Sherwood

© 2012 Jim Dunlop Solar

Financial Incentives

Rebates

- Tax credits and exemptions
- Production incentives
- Grants and loans

Database of State Incentives for Renewable Energy (DSIRE)

- National resource for PV project developers and consumers:
 - www.dsireusa.org
- Contains information on rules, regulations and policies for renewable energy and energy efficiency programs in all states, including:
 - Financial incentives
 - Net metering and interconnection rules
 - Licensing, permitting and building codes
 - Legislative actions

Interstate Renewable Energy Council / North Carolina Solar Center

Quality Measures for PV Systems

© 2012 Jim Dunlop Solar

Quality PV System Installations

PV designers and installers require knowledge, skills and experience in working with electrical systems and equipment.

Elements of a quality PV installation include:

- System design is appropriate for the site and application, and sized to meet performance expectations.
- System uses listed, quality components with proper ratings.
- Installation is completed in a workmanlike manner and complies with all applicable building and electrical codes.
- System is commissioned, inspected and approved by utility and building code officials.
- Owners/operators are trained on safety and operations.

Practitioner Certification

- North American Board of Certified Energy Practitioners (NABCEP)
- Underwriters Laboratory UL University
- Electronics Technicians Association ETA International
- Manufacturer and distributor programs

North American Board of Certified Energy Practitioners

NABCEP PV Entry-Level Program

 Associated with entry-level educational programs and continuing education providers; students may take entry-level examination from registered providers.

NABCEP PV Installer Certification

- Voluntary credential for PV professionals; not a contractor's license.
- The job task analysis for PV installers is the basis for the certification program and examination content.

See: www.nabcep.org

© 2012 Jim Dunlop Solar

UL University PV Installer Certification Program

PV System Installer Certification Program

• A credential focused on the critical knowledge and skills of the occupation; open only to licensed electrical professionals. Examination is based on key job duties for the PV installer.

Photovoltaic (PV) System Installation Training

 A five-day, instructor-led and hands-on course intended for licensed electricians who will be tasked with the end-to-end installation of residential and/or commercial photovoltaic systems.

See: www.uluniversity.us

PV System Documentation

- A complete documentation package for PV system installations should include:
 - System design and equipment specifications
 - Owner/operator manuals for the system and major components
 - Electrical and mechanical drawings
 - Site layout and equipment locations
 - Installation and commissioning procedures
 - Operating and maintenance procedures

PV Project Development

PV installation projects involve the following steps:

- Marketing, sales and customer development
- Site survey and preplanning
- Pursue financing and incentives
- System design and engineering
- Equipment specification and procurement
- Plan review and permitting
- Interconnection application and approval
- Contracting and installation
- Commissioning, inspection and approval
- Operations, maintenance and performance monitoring

Utility-Scale

Desoto Next Generation Energy Center, Arcadia, FL – 20 MW

Florida Power and Light

© 2012 Jim Dunlop Solar

Military Bases

Nellis AFB, Las Vegas, NV – 14 MW

SunPower/Bombard Electric

© 2012 Jim Dunlop Solar

High-Tech Centers

Google, Mountain View, CA – 1.6 MW

Commercial Roofs

Habilitation Center, Portland, OR

© 2012 Jim Dunlop Solar

© 2012 Jim Dunlop Solar

- Know what incentives are available and the process to apply:
 - www.dsireusa.org
- Participate in industry associations, attend trade shows, develop industry partnerships:
 - www.seia.org
 - www.sepa.org
 - www.ases.org

Subscribe to trade journals:

- www.solarprofessional.com
- www.photon-magazine.com
- www.homepower.com
- www.magazine.iaei.org

Suggested References

- Photovoltaic Systems, Jim Dunlop. ISBN 978-0-8269-1287-9, National Joint Apprenticeship and Training Committee and American Technical Publishers: <u>www.jimdunlopsolar.com</u>
- National Electrical Code, National Fire Protection Association. <u>www.nfpa.com</u>
- OSHA Safety Standards for the Construction Industry, <u>www.osha.gov</u>
- Photovoltaic Systems Engineering, 3rd Edition, by Roger Messenger and Jerry Ventre. ISBN 0-8493-1793-2, CRC Press LLC: <u>www.crcpress.com</u>
- Solar America Board for Codes and Standards: <u>www.solarabcs.org</u>
- National Renewable Energy Laboratory Website: <u>www.nrel.gov</u>
- Sandia National Laboratories Photovoltaics Website: <u>www.photovoltaics.sandia.gov/</u>
- Southwest Technology Development Institute, PV Codes and Standards Website by John Wiles: <u>www.nmsu.edu/~tdi/Photovoltaics/Codes-Stds/Codes-Stds.html</u>

- The value of PV systems includes high-reliability, long-life and a free and abundant fuel source – sunlight.
- PV applications include stand-alone and interactive systems for a variety of end-uses.
- Markets for PV systems are increasing at extraordinary rates.
- Achieving quality PV systems involves using good equipment, designs and installation practices.

Questions and Discussion

© 2012 Jim Dunlop Solar