
IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1588 | P a g e

Effective Job Scheduling in Grid Computing using Deadline

Environment
R. Ananthi Lakshmi, Phd Scholar, Dept Of Cs, Kg College Of Arts And Science, Coimbatore.

Dr. R. Ravichandran, Secretary, Kg College Of Arts And Science, Coimbatore.

Abstract- The challenging issues in grid computing are to

design efficient and reliable task scheduling algorithm for

efficient utilization of grid computing. Grid approach provides
the ability to access, utilize, and manage variety of

heterogeneous resources in virtual organizations. Grid differs

from normal distributed computing by the way of resource

sharing and monitoring.Job scheduling is an important task of

a grid computing system.In this paper we proposing a new

Improved Prioritized Deadline (IPD) based scheduling

algorithm for effective job scheduling with deadline

constraints. Performance comparison of the algorithm has

been done with the other task scheduling algorithms such as

Earliest Deadline First (EDF) and Round Robin Scheduling

algorithm(RRS).The proposed algorithm has more processing
power of the resources while in job scheduling and shows a

good results with respect to the number of job.

Keywords- Job Scheduling, Task, IPD, Deadline

I. INTRODUCTION
Grid is a collection of different nodes where in all of them

contribute any combination of resources. The basic idea of

Grid Computing is to create a large and powerful virtual

computer which is a collection of heterogeneous distributed

environment. Job Scheduling is used to choose the most

suitable resource for a job to be considered.(i) The job

scheduling system is responsible to select best suitable

machines in a grid for user jobs.(ii) The management and

scheduling system generates job schedules for each machine

in the grid by taking static restrictions and dynamic parameters

of jobs and machines.

In recent years, the researchers have proposed several efficient
job scheduling algorithms that are used in grid computing to

allocate grid resources with a special emphasis on job

scheduling [4].Usually Improved Prioritized Deadline

algorithm (IPD) It has considered the task deadline constraint

associated with the task for its execution. Many grid users are

highly interested in the timely execution of the tasks under the

given deadline constraints. Most of the existing scheduling

algorithms have not considered deadline perspective for task

execution. To evaluate the performance of the scheduling

algorithms we have used synthetic workload traces.

There are three main job scheduling[1] in a grid. Phase one is
a resource discovery, which in turn generates a record

involving initial resources. Level two consists of accumulate

the resources as well as selecting most effective set to the

application elements. During the last level the task will be

executed

II. JOB SCHEDULING
Job Scheduling are types of applications responsible for the

management of jobs, such as allocating resources needed for

any specific job, partitioning of jobs to schedule parallel

execution of tasks, data management, event correlation, and

service-level management capabilities. These job

scheduling[1] form a hierarchical structure, with meta-

schedulers that form the root and other lower level schedulers

while providing specific scheduling capabilities that form the

leaves. These schedulers may be constructed with a local

scheduler implementation approach for specific job execution,

or another meta-scheduler or a cluster scheduler for parallel
executions. The jobs submitted to Grid Computing schedulers

are evaluated based on their service-level requirements, and

then allocated to the resources for execution. This will involve

complex workflow management and data movement activities

to occur on a regular basis.

The job scheduling system is responsible to select best suitable

machines in a grid[5] for user jobs. The management and

scheduling system generates job schedules for each machine

in the grid by taking static restrictions and dynamic parameters

of jobs and machines. The various types of Scheduling

Infrastructures in Grid Computing are:

 Centralized

 Hierarchical

 Decentralized

Centralized defines a Single job scheduler on one instance.

Hierarchical defines two job schedulers, global and local

level. Decentralized means no central instance, distributed

schedulers interact and perform scheduling. Centralized

Scheduling is divided into two types.

III. RELATED WORK

A dynamically schedules the tasks without requiring any
prior information on the workload of incoming jobs. This

approach models the grid system in the form of a diagrams

such as state transition, employing a prioritized IPD

algorithm with task replication[2] to optimally schedule tasks,

using prediction information on resource utilization of

individual nodes. Simulations, comparing the proposed

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1589 | P a g e

method with the round-robin and earliest deadline first have

exposed the heuristic to be more effective in scheduling tasks

as compared to the later. Some jobs require a large amount of

data to be processed and it may not always reside on the

machine running the job. The bandwidth available for such

communications can often be a critical resource that can limit
utilization of the grid.

It has been proved that the scheduling problem is an NP

complete problem. The mapping criteria are mainly classified

into two modes which are online mode and batch mode. In the

online mode a task is mapped to the resource as soon as it

arrives at the scheduler on the other hand in the batch mode

mapping, a set of tasks is made called the meta-task. Mapping

of meta-task is performed at prescheduled times called

mapping event [5]. Many algorithms have been proposed by

various researchers to schedule the tasks in grid environment.

The selection of the algorithm for scheduling the tasks in grid

environment is the most critical due to performance major of
the grid.

The selection also depends on the type of the tasks, number of

resources and other constraints like the deadline[4] of the task,

processing speed of the processing element, bandwidth of the

communication network. Based on these constraints suitable

algorithm is used for scheduling the tasks. The various

Performance metrics are used to evaluate the results of one

algorithm with other existing algorithms like, makespan,

tardiness, resource utilization, response time and many more

depending upon the scenarios for which the algorithm have

been designed.
Input: A set of R task and N number of

processor with computational capacity Pj

Output: A Schedule of R tasks

1. Construct a set of queues

2. q_size < R/N

3. While tasks present in queue do,

4. Assign demand rate of the task Xi

5. k=P/R

6. If Di < v

7. Assign Di to ith task as fair rate
8. Else

9. Assign v to ith task as fair rate

10. Calculate fair completion time t(D)

11. End while

12. End loop

13. Arrange the task in increasing order based on their t(D) and

submitted to processor

14. Calculate mean waiting time each scheduled task

15. If ZXY >0

16. Every processor having small amount capacity is selected

for relocation.
17. End If

18. End While.

The scheduling algorithms do not adequately address

congestion, and they do not take fairness considerations into

account. Fairness is needed for proper scheduling of jobs. In

Job Scheduling, the jobs are allocated to multiple processors

so that the tasks with unsatisfied demand get equal shares
of time. The completion time of the jobs is used to determine

scheduling queue of the jobs. The evaluation of completion

time of the job is done by task rate using a max min fair

sharing algorithm.

The job is allotted to processor in accordance with growing

degree of completion time. In scheduling algorithm[3], higher

order tasks are completed first which means that tasks are

taken a higher priority than the others which leads to

starvation that increases the completion time of tasks and load

balance is not guaranteed. To overcome this we put forward

Improved Prioritized Deadline algorithm (IPD) algorithm to

provide the resources so that all jobs are uniformly assigned to
processor depending on balanced fair rates. The main aim of

this algorithm is to reduce the overall time required to

complete the processing.

IV. PROPOSED JOB SCHEDULING

Improved Prioritized Deadline (IPD) based scheduling

algorithm is proposed in this paper. The proposed algorithm

is an improved version of the Prioritized Deadline based

Scheduling Algorithm (PDSA). In the system design the

resources are ranked according to their total processing power,

i.e., the product of the number of the processing elements and

the processing power of each element. The processing speed
of each processing element in one resource is same. The

allocation of the resources to the tasks[2] is based on the time

delay which is the difference between the deadline of the task

and the expected computation time of the task. Further, the list

of resources is maintained for the allocation of the queued

task[2] based on their requirements. After making the list of

the resources which are suitable for the task. The selection of

the resource is done on the basis of the processing speed of the

resource. The highest priority is assigned to the resource with

the highest processing speed for the faster execution of task.

Let us assume Ti is the ith task, n is the number of tasks, ai is

the arrival time of task I, di is deadline of task I, ETi is the
expected execution time of task i, TDi is the time delay of task

i, TRi is the tardiness of task I, Avg_TR is the average tardiness

of the schedule and fi is the finish time of the task i;Time

Delay is referred as the difference between the deadline of the

task and the expected execution time of the task as defined in

Eq-1.

TDi d i
ETi……………………………… (1)

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1590 | P a g e

Tardiness refers to the time delay between the finishing time

of task and the deadline of the task as defined in Eq-2.

TRi d i

FTi…………………………….. (2)

Total Tardiness is the sum of the tardiness of the each task

which did not get executed under the provided deadline. The

average Tardiness is defined in Eq-3.

 TRi

Avg _ TR i 1 n

 ………………….(3)

The number of non delayed tasks is the total number of tasks

whose finishing time was less than the deadline of the task,

i.e., which finished inside the deadline given to them. The

expected completion time is calculated as the mean of the

completion time for the task at every resource.

 Ti, arrival time ai, expected execution time ETi, computational

length CLi, deadline di and number of processors NPi required.

Then we compute the value of the time delay TDi for each
task by using Eq. (1).

The tasks in the ready queue are arranged in the ascending

order based on the computed time delay (task with minimum

time delay will be given priority) of the tasks. If the two tasks

have a same computing delay, then the Improved Prioritized

Deadline (IPD) based scheduling algorithm task will ordered

on the basis of the first come first serve method in the ready

queue. The tasks[2] are executed according to the suitable

processors for the task.

Then from that list we select the resource having the best

processing speed. The task is then executed on that resource
for the time depending on its computational length and the

processing speed of the resource. The finishing time fi of the

task is calculated and the tardiness TRi is calculated using Eq.

(2). If there is no tardiness for that task then the number of

non-delayed tasks is incremented. When all the tasks in the

ready queue are finished then we calculate the average

tardiness Avg_TR using Eq. (3). The flowchart of the proposed

algorithm.

The proposed scheduling algorithm is compared with

Prioritized Deadline Based Scheduling Algorithm (PDSA) and

Earliest Deadline First (EDF). The PDSA algorithm is used in

[12] is for the task that requires a single processing element
for execution. Here we are further extending it and using it for

the tasks requiring more than one processing element in

heterogeneous environments. In addition to this, the proposed

algorithm considers the processing speed of the

V. RESULT AND DISCUSSION

(a).Average Waiting Time

Improved Prioritized Deadline (IPD) based scheduling

algorithm executes the job with the closest deadline time
delay in the cyclic manner using a dynamic time quantum.

Based on our algorithm perform the allocation for a single

processor based on the deadline[2] criteria dependent on the

minimum time delay of job execution, turnaround time,

waiting time and maximum tardiness.

The performance metrics for the scheduling algorithms is

based on the average tardiness and the percentage of non-

delayed tasks. In the deadline based system, our main

emphasis is to make as much as tasks to be completed inside

their deadline. So these two performance metrics give us the

clear idea of the performance algorithms for these types of

systems where the deadline of the task is the main constraint.
The comparison of the proposed algorithm with other

algorithms is described below using the performance metrics.

Table 1: Average Tardiness for Scheduling Algorithms

(in Seconds)

NO. OF TASKS EDF PDSA IPD

1000 783.22 783.22 106.59

2000 612.34 496.32 83.23

3000 751.35 458.37 110.52

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1591 | P a g e

VI. CONCLUSION

In this paper, a scheduling algorithm for executing jobs on

grid systems is proposed. Just like real-life scenarios, we have

considered the dynamic arrival of jobs as well as the deadline

requirement of each job to be processed. The experiment has

been performed by varying workload by increasing jobs from
100 to 1000 in a scalable manner. The result has shown

maintained performance under dynamic environment. Based

on the comparative performance analysis IPD has shown the

best performance as compared to RRS, FCFS scheduling

algorithm under variable and scalable workload.We have

developed a new simulator using Java language to facilitate

this research.Various possible input patterns were

experimented with all the CPU scheduling algorithms. We can

say that IPD is a scheduling policy from the system point of

view, it satisfies the system requirements (i.e. short Average

Waiting Time and short Turnaround Time) and also supports

scalability under heavy workload. In the future, we will
evaluate and propose a computational scheduling algorithm on

the grid based on multiple processors and perform detailed

comparative performance analysis with other scheduling

approaches.

VII. REFERENCES
[1]. Menglan Hu and Bharadwaj Veeravalli, “Requirement-Aware

Scheduling of Bag-of-Tasks Applications onGrids with
Dynamic Resilience”, IEEE Transactions onComputer, vol. 62,
no. 10, pp. 451-459, 2013.

[2]. Jing Wang, Gongqing Wu, Bin Zhang, Xuegang Hu, “A
heuristic algorithm for scheduling on grid computing
environment”, Seventh ChinaGrid Annual Conference 2012, pp.

36-42.
[3]. Yun-Han Lee, Seiven Leu, Ruay-Shiung Chang, “Improving

task scheduling algorithms in a grid environment”, Future
Generation Computer Systems , vol. 27, pp. 991-998, 2011.

[4]. Menglan Hu and Bharadwaj Veeravalli, “Requirement-Aware
Scheduling of Bag-of-Tasks Applications onGrids with
Dynamic Resilience”, IEEE Transactions onComputer, vol. 62,
no. 10, pp. 451-459, 2013.

[5]. Manoj Kumar Mishra, Raksha Sharma, Vishnu KantSoni,

Bivasa Ranjan Parida, Ranjan Kumar Das, “AMemory-
Aware Dynamic Task Scheduling Model in Grid Computing”,
International Conference OnComputer Design And
Applications, vol. 1, 2010, pp. 545-549.

