International Construction Consulting, LLC HDD Design, Calculations, and Cost Estimate Bow Tie to Industrial Park; Soyo, Angola

INTERNATIONAL CONS	TRUCTION C	ONSULTING, LL	-C
JOB No: NA	PREPRD.BY:	G Lamberson	DATE: 16-Jan-18
CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Indust	CHECKD.BY:	aclo	
SUBJECT: HDD General Calculations; Length & An	· · · ·	•	stimate
	t Parameters		Stinute
Diameter (in.) =	24.000		
Wall Thickness (in.) =	0.500		
SMYS (psi) =	65,000		
Type of Service =	Gas		
Design Pressure =	1,440		
Safety Factor =	0.72		
Installation Temperature (degrees F) =	90.00		
Ground Temperature (degrees F) =	60.00		
Operating Temperature (degrees F) =	80.00		
Cover on Bottom (Ft) = Groundwater table head (feet) =	10.00 10.00		
Groundwater Table Elevation =	15.38		
Concrete Coated Pipe =	No		
Concrete Coating Thickness (inches) =	0.00		
Concrete Compressive Strength (PSI) =	0		
Depth of Pipe relative to entry/exit at Lowest Point =	35.00		
Horizontal Length of Drill (Ft) =	1,918.00		
Key Ca	Iculated Values		
D/t ratio =	48.00		
$r_{o}(in.) =$	12		
r _i (in.) =	11.5		
E (psi) =	3.05E+07	Young's modulus for stee	el (see calculation sheet)
$I(in^4) =$	2549.351198	Moment of interia, = PI/4*	$(r_{o}^{4} - r_{i}^{4})$
R (in.) =	16,631	Radius of curvature in inc	ches
Deflection Angle =	0.0009	Radians/15 Feet	
Deflection Angle =	0.0517	Degress/15 Feet	
Deflection Angle =	0.0902	%/15 Feet	
M = (in-lb) =	4,670,570	M = EI/R	
$A = (in^2) =$		Cross sect. area = PI*(D	,
$W = (in^3) =$		(elastic) section modulus	
Calculated R.O.C. =	1,386	Feet (average of calculati	ion methods)
Results of this preliminary Technical Evaluation =	This preliminary	design has been ev subject to a full	valuated and is deemed acceptable design review.
Length, Angles, & I	Misc Input and C	alculations	
Top Bank at Entry of X-ing (Elev in Ft) =	0.000	Ft	
Top Bank at Exit of X-ing (Elev in Ft) =	0.000	Ft	
Bottom of X-ing (Elev in Ft) =	-25.000	Ft	
Entry Angle, Deg	12.000	Deg	
Entry Elevation, ft	16.00		
Minimum Depth Elevation, ft	35.00		
Horizontal Dist. @ Depth, ft	1,639.70		
Exit Angle, Deg.	10.000	-	
Exit Elevation, ft	0.00		
Minimum Radius, ft Entry Point to PC	1,385.93 -231.87		
PC to PT	-231.87 288.15		
PT to PC	1,639.70		
PC to PT	240.66		
PT to Exit Point	-317.91		
Length of Bore - Total Entry to Exit	1,923		
Maximum Pullback Force	224,841		
Maximum Pullback Force	1,000		
General Longitu	dinal Stresses (Sigma _x)	
for positive compressive forces, N = 0, i.e., no push or pull			
Sigma _x (psi) = Sigma _x ^N + Sigma _x ^M where Sigma _x ^N =		Sigma _x ^N = N/A	
	U	Jullia, = N/A	
and $\operatorname{Sigma}_{x}^{M} =$		Sigma _x ^M = M/W	

INTERNA	TIONAL CONS	STRUCTION C	ONSULTING, L	LC
JOB No: NA CLIENT: Sonangol Gas Natur PROJECT: 24" Gas Pipeline fro SUBJECT: HDD General Calcula	n Bow Tie to Indus	CHECKD.BY: strial Park-Soyo, A	•	DATE: 16-Jan-18
		dinal Stresses (S		Lotinidio
when N acts alone, i.e., $M = 0$ and $p = 0$ N ~ axial	Sigma _{xcr} ^N (psi) =	63,180.0000	$Sigma_x^{N} = Sigma^{F*}[16]$ for 20 < D/t < 100	001*(D/t)-20)]
when M acts alone, i.e., N = 0 and p = 0 M ~ bending	Sigma _{xcr} ^M (psi) =	73,710.0000	Sigma _x ^M = Sigma ^F *(1.3	35-0.0045*D/t)
	General H	oop Stress (Sign	ma _v)	
Given by:	Sigma _y = (p _e - p _i) x D		<i>r</i> .	
where	p _e (psi) =		p_e = external pressure =	
	W_m (lbs) =		W _m = weight of mud, lbs	-
	H (ft.) =		H = feet of head (depth)	
	p _i (psi) =	-	$p_i = internal pressure (as)$	ssumed)
	Sigma _y (psi) =	436.80		$2 \operatorname{conv}(\operatorname{orto} \#/\operatorname{col}(\operatorname{to} - \operatorname{ci}))$
	Critical Ho	op Stress, (Sigm	conversion factor, 0.052	2 converts #/gai to psi/tt.
when p acts alone, i.e., $N = 0$ and $M = 0$	Sigma _{vcr} (psi) =		Sigma _{ycr} = Sigma _{yE} = I	$E^{*}(t / (D-t))^{2}$
			for Sigma _{yE} < 2/3 Sigm	
	2 /3 Sigma _F (psi) =	43,333.33	OK	
ALPHA DETERMINATION:	Alpha =	1 20	Alpha = 1 + 300/(D/t)*Si	iama./Sigma
F	ermissible Usag			
Nu_{xp} is the permissible value of Sigma _x /Sigma _{xcr} , when Sigm		· · · · ·	76-	
Nu_{yp} is the permissible value of $Sigma_{y}/Sigma_{ycr},$ when $Sigm$	a _x = 0			
BEST CASE			Zone 1, loading	
	Nu _{xp} =	1.00		
	Nu _{yp} =	0.98		
WORST CASE			Installation, loading	
	Nu _{xp} =	0.72		
	Nu _{yp} =	0.62		
Pei	missible Combir	nation Of Sigma,	, and Sigma _y	
(Sigma _x /Nu _{xp} *Sigma _{xcr)} ^{alş}	^{₀ha} + (Sigma _v /Nu _{vo} *Sigi	ma _{vcr}) < 1		
BEST CASE		0.261341478	ОК	
WORST CASE		0.390539865		
Worker onde	Inctallati			
		on Stress Analys		
Longitudinal Stress	rom Bending = % SMYS =	21,985 33.8%	psi	
	Hoop Stress =	34,456	Dal	Hoop stress limited by design factor from 49
	% SMYS =	53.0%		CFR Part 192.111. (72% for Class 1, 60% for Class 2)
Longitudinal Compressive Stress from	-	10,337	psi	
	% SMYS =	15.9%		
Longitudinal Stress from Therm	al Expansion = % SMYS =	1,981 3.0%	psi	
Net Longitudinal Compre	essive Stress = % SMYS =	(9,667) 14.9%	psi	
Maximum	Shear Stress = % SMYS =	22,062 33.9%	201	Shear stress limited to 45% of SMYS by 402.3.1 of ASME/ANSI B31.4
Installation D	esign Results =			

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: Minimum Free Stress Radius of Curvature for Steel Pipe

PREPRD.BY: G Lamberson CHECKD.BY:

DATE: 16-Jan-18 SHEET:

Pipe Parameters							Ν	/inimum Radiu	s of Curvature	(Ft) for Steel F	Pipe											
											Ноор											
											Stress	Case 1	Case 2	Case 3	Case 4		Case 5					
Pipe Grade	OD	WT	ID	MAOP or	SMYS	F	Е	т	Pressure Rating	Temperature		Method of JD	Pipeline Rules of	Quantum	McDermott	Texas (Gas Transmissi	on Method				
				MOP		195 &	195 &	192	at 72.%	of Pipe	psi	Hair	Thumb								Stress on Cond	rete Coating (psi)
	Inches	Inches	Inches	psig	psi	192	192	only	SMYS psig	°F		- Tuli	Method	Equation	Equation	Pipe	Best Case	Worst Case				
					•							Note 1	Note 1	Note 1	Note 2	Notes 2 & 3	Note 4	Note 5				
API 5L X-65	24.000	0.500	23.000	1,440	65,000	0.72	1.00	1.00	1,950	60	34,560	2,400 ft	977 ft	1,538 ft	1,032 ft	982 ft	0 psi	0 psi				

Compressive Strength

Modulus of Elasticity (*)

Tensile Strength (*)

Case 1: per JD Hair; Radius = f(OD)

Case 2: per PipeLine Rules of Thumb Handbook Method, 2nd Ed; Radius = f (OD,SMYS,F,ID,Es)

Case 3: per Quantum Equation; Radius = f (OD,SMYS)

Case 4: per McDermott Equation; Radius = f (OD, SMYS, F, MAOP, WT, Es)

Case 5: per TGT Method; Radius = f (OD,SMYS,F,ID,MAOP,WT,Es,Temp.)

Concrete: Per TGT Method:

(Best) T & C = f (Ec,(OD/2+WTc),Radius) (Worst) T = f(SMYS,F,Ec,(OD/2+WT),Es,OD)

Note 1: This case does not allow for stress due to internal pressure.

Note 2: This case allows for stress due to internal pressure.

Note 3: If MAOP/MOP = 0 then pipe is assumed to be casing.

Note 4: The calculated quantity is the tension and compression (in psi). Best case assumes free relative motion between concrete inner surface and pipe outer surface.

Note 5: The calculated quantity is the tension (in psi). Worst case assumes no relative motion between concrete inner surface and pipe outer surface. This case does not take radius of curvature into account as the interaction between the pipe and concrete is the worst case.

Construction T	emperature	90 °F	
Minimum Ground	Temperature	60 °F	
	Concrete	Parameters	
Thickness	0.00	inches	

psi

psi

psi

Ccs

 $= 7 \text{ x} (\text{Ccs}^{1/2})$

= 57000 x (Ccs^1/2)

0

0

0.00E+00

PROJECT: 24		
GENER	RAL DATA	PIPE WEIGHT DATA
Pipe Diameter: Wall Thickness: SMYS:	24.000 Inches 0.500 Inches 65,000 Psi	Pipe Weight in Air: 125.49 Lb/ft Pipe Interior Vol.: 2.88524742 cu.ft/ft Pipe Exterior Vol.: 3.14159265 cu.ft/ft
Young's Modulus: Total Pipe Length: Moment of Inertia:	30.469E+06 Psi 2,326 ft 2548.199797 Inches^4	Air Line Weight:0Lb/ftAir Line Diameter:0InchesAir Line Ext. Vol.:0.000cu.ft/ft
Pipe Face Surface Area: Diameter/wall thickness ratio: Poisson's ratio for Steel:	36.91371368 Inches^2 48 0.3	Weight of Water: 0 Lb/ft Displaced Mud Weight: 279.601746 Lb/ft Water density
Coefficient of Soil Friction.: Fluid Drag Coefficient.:	89.00 Lb/cu.ft 0.30 0.05 Psi	Enter 0 for no buoyancy control: 0.00 Lb/cu.ft Effective Wt. of pipe: -154.111746 Lb/ft Note: positive value indicates downward force
	ANALYSIS OF LOADS	FOR STRAIGHT SECTION PULLED DOWNSLOPE
Measured Length: Angle of Inclination:	121.28 ft 12 degrees 0.20943951 radians	Axial Tension limited by RP2A-WSD Comparison: 402 Psi < 58,500
Drag Forces from Mud:	5.487 Lb	Longitudinal Bending limited by RP2A-WSD Comparison: 0 Psi < 42,940
Effective Weight of Pipe:	5,485 Lb (3,886) Lb	External Hoop Stress limited by RP2A-WSD Comparison: 374 Psi < 7,758
PULL LOAD AT POINT B Tension on section:	14.857 Lb	Combined Stresses, Tensile & Bending, limited by RP2A-WSD Comparison: 0.00688017 < 1
Cumulative Force exerted:	14,857 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD Comparison: 0.00246128 < 1
	ANALYSIS OF LOADS F	OR CURVILINEAR SECTION PULLED DOWNSLOPE
Measured Length: Change in Inclination Angle: =	241.8897082 ft 10 degrees 0.174532925 radians	Axial Tension limited by RP2A-WSD Comparison: 1,308 Psi < 58,500
Radius of Curvature: Center Displacement:	1386 ft 5.273866619 ft	Longitudinal Bending limited by RP2A-WSD Comparison: 21,985 Psi < 42,940
Assumed Average Tension:	4,191 Lb 32,076 Lb	External Hoop Stress limited by RP2A-WSD Comparison: 687 Psi < 7,758
Drag Forces from Mud: Friction from Soil: Effective Weight of Pipe:	10,943 Lb 19,246 Lb (3,249) Lb	Combined Stresses, Tensile & Bending, limited by RP2A-WSD Comparison: 0.53435705 < 1
PULL LOAD AT POINT C Tension on section:	33,438 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD Comparison: 0.22605637 < 1
Average Tension: Cumulative Force exerted:	31,576 Lb 48,295 Lb	
	ANALYSIS OF LO	ADS FOR HORIZONTAL STRAIGHT SECTION

Measured Length: Angle of Inclination: =	1,558.43 ft 0 degrees 0 radians	Axial Tension limited by RP2A-WSD Comparison: 5,170 Psi	<	58,500
		Longitudinal Bending limited by RP2A-WSD		
		Comparison: 0 Psi	<	42,940
Drag Forces from Mud: Friction from Soil:	70,502 Lb 72,052 Lb	External Hoop Stress limited by RP2A-WSD		
Effective Weight of Pipe:	0 Lb	Comparison: 730 Psi	<	7,758
PULL LOAD AT POINT D		Combined Stresses, Tensile & Bending, limited by RP2A-WSD Comparison: 0.08837802	<	1
Tension on section: Cumulative Force exerted:	142,553 Lb 190.848 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD		
Cumulative i orce exerted.	130,040 20	Comparison: 0.02261897	<	1

PREPRD.BY: G Lamberson CHECKD.BY:

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: HDD General Calculations; Length & Angle & General Design Analysis; Cost Estimate

Measured Length: Change in Incl. Angle: =	241.8897082 ft 10 degrees 0.174532925 radians	Axial Tension limited by RP2A-WSD Comparison: 5,810 Psi < 58,500
Radius of Curvature:	1,386 ft	Longitudinal Bending limited by RP2A-WSD
Center Displacement:	5.273866619 ft	Comparison: 21,985 Psi < 42,940
Assumed Average Tension:	8,713 Lb	External Hoop Stress limited by RP2A-WSD
		Comparison: 418 Psi < 7,758
Normal Force:	26,534 Lb	
Drag Forces from Mud:	10,943 Lb	Combined Stresses, Tensile & Bending, limited by RP2A-WSD
Friction from Soil:	15,921 Lb	Comparison: 0.61130595 < 1
Effective Weight of Pipe:	(3,249) Lb	
		Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD
PULL LOAD AT POINT E		Comparison: 0.30145671 < 1
Tension on section:	23,614 Lb	
Average Tension:	202,655 Lb	
Cumulative Force exerted:	214,462 Lb	

Length of Section:	162.14 ft	Axial Tension limited by RP2A-WSD		
Angle of Inclination:	10 degrees 0.174532925 radians	Comparison: 6,091 Psi	<	58,500
		Longitudinal Bending limited by RP2A-WSD		
		Comparison: 0 Psi	<	42,940
Drag Forces from Mud:	7,335 Lb			
Friction from Soil:	7,382 Lb	External Hoop Stress limited by RP2A-WSD		
Effective Weight of Pipe:	(4,339) Lb	Comparison: 0 Psi	<	7,758
		Combined Stresses, Tensile & Bending, limited by RP2A-WSD		
ULL LOAD AT POINT F		Comparison: 0.10411927	<	1
Tension on section:	10,378 Lb			
Cumulative Force exerted:	224,841 Lb	Combined Stresses, Tensile, Bending & Hoop limited by RP2A-WSD		
		Comparison: 0.01372042	<	1

RES	GULTS
Total Pulling Force:224,841LbStress Violations:0	The pulling force analysis performed indicate the design is adequate.

JOB No: CLIENT: PROJECT: SUBJECT:	NA Sonangol Gas Natural 24" Gas Pipeline from Bow Tie to Industrial Par HDD Installation Stress Analysis	CHECK		DATE: 16-Jan-18 SHEET:
	GENERA	L DATA		
	Pipe Diameter (inches):	24.00		
	Wall Thickness (inches):	0.500		
	SMYS (psi):	65,000		
	Maximum Allowable Operating Pressure (psi):	1,440		
	Poisson's ratio:	0.30		
	Young's Modulus:	3.0E+07		
	Radius of Curvature (feet):	1,386		
Coeffic	cient of Thermal Expansion (inches/inch/degree F):	6.5E-06		
	Installation Temperature (degrees F) =	90		
	Ground Temperature (degrees F) =	60		
	Operating Temperature (degrees F) =	80		
	Cover on Bottom (Ft) =	10		
	Groundwater table head (feet) =	10		
	HDD INSTALLATION	STRESS AN	NALYSIS	
	Longitudinal Stress from Bending =	21,985 p	si	
	% SMYS =	33.8%		
	Hoop Stress =	34,456 p	si Hoop stress limited	by design
	% SMYS =	53.0%	factor from 49 CFR (72% for Class 1, 60%	
Lo	ngitudinal Compressive Stress from Hoop Stress =	10,337 p		,
	% SMYS =	15.9%		
	Longitudinal Stress from Thermal Expansion =	1,981 p	izi	
	% SMYS =	3.0%		
		0.070		
	Net Longitudinal Compressive Stress =	(9,667) p	si	
	% SMYS =	(3,007) p 14.9%		
	/6 GWT0 -	1 1.0 /0		
	Maximum Shear Stress =	22,062 p	si Shear stress limited	to 45% of
	% SMYS =	33.9%	SMYS by 402.3.1 of	
	Installation Design Results =			

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola

SUBJECT: HDD Operational Stress Analysis

PREPRD.BY: G Lamberson CHECKD.BY:

16-Jan-18

GENERAL DATA			
Pipe Diameter:	24.000 Inches	7	
Wall Thickness:	0.500 Inches		
SMYS:	65,000 psi		
Maximum Allowable Operating Pressure	1,440 psi		
Poisson's ratio:	0.3		
Young's Modulus:	3.047E+07 Psi		
Radius of Curvature:	1,386 feet		
Coefficient of Thermal Expansion:	6.5E-06 inches/inch/°F		
Installation Temperature:	90.00 °F		
Operating Temperature:	80.00 °F		
Groundwater Table Depth Relative to Entry Point:	-10.00 feet		
Groundwater Table Elevation:	15.38 feet		
Depth of Pipe relative to entry/exit at Lowest Point:	-35 feet		
Groundwater Table Head:	25 feet		
	DATA ANALYS	S PER METHOD OF JD HAIR	
Longitudinal Stress from Bending =	21,985	Allowable Stress per B31.4 = SMYS x F x E x T = Sa =	25,200 psi
% SMYS =	33.8%	% SMYS =	38.8%
Hoop Stress =	34,300	Hoop Stress limited by design factor from 49 CFR Part 192 or 195.	
% SMYS =	52.8%		
/0 SIVITS =	52.070		
	1,981		
Longitudinal Stress from Thermal Expansion = % SMYS =			
Longitudinal Stress from Thermal Expansion = % SMYS =	1,981 3.0%	Additive Longitudinal Stress Limit – 0.75 x Sa –	18 000 pci
Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress =	1,981 3.0% -9,714	Additive Longitudinal Stress Limit = 0.75 x Sa =	18,900 psi
Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress = % SMYS =	1,981 3.0% -9,714 14.9%	% SMYS =	18,900 psi 29.1%
Longitudinal Stress from Thermal Expansion = % SMYS = Net Longitudinal Compressive Stress =	1,981 3.0% -9,714	3	•

JOB No: NA CLIENT: Sonangol Gas Natural PROJECT: 24" Gas Pipeline from Bow Tie to Industrial Park-Soyo, Angola SUBJECT: HDD - Modulus of Elasticity Calaculations PREPRD.BY: G Lamberson CHECKD.BY:

Reference Temperature = 60.00 °F Modulus of Elasticity = 30.469 ksi = 30.469E+06 psi

The data below is calculated based on Perry's Chemical Engineer's Handbook, 6th Edition

			Modu	lus of E	lasticity	' (ksi) at	Temper	ature (°	F)					I,000 °F 1,100 °F 1 18.8 15.0							
Material:	-325 °F	-200 °F	-100 °F	70 °F	200 °F	300 °F	400 °F	500 °F	600 °F	700 °F	800 °F	900 °F	1,000 °F	1,100 °F	1,200 °F						
above 0.30 percent (0.3%)	31	30.6	30.4	29.9	29.5	29.0	28.3	27.4	26.7	25.4	23.8	21.5	18.8	15.0	11.2						

HDD Full Pipe & Installation Stress Analysis Rev 2.xlsm

	INTE	RNATIO		ISTRUC ⁻	τιο	N CONSULTI	NG,	LLC					
JOB No:	NA					DATE: 16-Jan-18							
CLIENT:	Son	angol Gas	Natural		PREPRD.BY: G Lamberson								
PROJECT:				ow Tie to I	ndu	strial Park-Soyo	, Ang	ola					
SUBJECT:	HDD	O Cost Esti	mate										
			HDD	Cost E	stiı	nate							
Pipe Diameter		24.000											
Pipe Wall Thickness		0.500											
Pipe Grade		65,000											
Hours per Shift		12											
Length of Drill		1,923	Feet										
Mobe/Demobe Costs	\$	150,000	Each										
Type of Soil		Gravel											
Pilot Hole Production Rate		55	Feet/Hr										
Drilling Mud Flow Rate		5	BPM										
Pilot Hole Duration		2.91	Shifts										
Circulation Loss		50%											
Pilot Hole Mud Qty		315	Sacks										
Pre-Ream Passes		3	Ea										
Pre-Ream Travel Speed		2.5	Feet/Min										
Pre-Ream Mud Flow Rate		10	BPM										
Pre-Ream Duration Circulation loss		1.07 50%	Shifts										
Pre-Reaming Mud Qty		50% 692	Sacks										
Fie-Reaming Mud Qty		092	Jacks										
Pull Back Travel Speed		8	Feet/Min										
Pull Back Mud Flow Rate		10	BPM										
Pull Back Duration		0.33	Shifts										
Circulation Loss		50%											
Pull Back Mud Quantity		72											
Mud Cost	\$	125.00											
Mobilization Time		30	Days										
Time Required to Drill		12	Days										
Total Time from Contract		42	Days										
Activities		Time	La	bor		Equipment		Misc		Totals			
Mobilization							\$	150,000	\$	150,000			
Rig Up		4	\$	60,000	\$	100,000			\$	161,019			
Pilot Hole Ream		2.91 1.07	\$ ¢	43,707	\$ ¢	72,845			\$ ¢	117,570			
Ream Pull Back		1.07 0.33	\$ \$	16,026 5,008	\$ \$	26,710 8,347			\$ \$	43,752 14,370			
Rig Down		4	\$ \$	60,000	φ \$	100,000			э \$	161,019			
Demobilization			Ŧ	00,000	Ψ		\$	150,000	\$	150,000			
Drilling Mud							\$	144,725	\$	144,725			
Sub Total Cost							Ŧ	,. =0	\$	942,456			
Risk Premium		30%							\$	282,737			
Profit		20%							\$	245,038			
Total Cost		,							\$	1,470,231			
Cost/Ft									\$	127.42			
									Ψ	121.42			