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Abstract 

The present work considered a class of boundary value problems associated with even order impulsive 

neutral partial functional differential equations with continuous distributed deviating arguments and 

damping term. Necessary and Sufficient conditions are obtained for the oscillation of solutions using 

impulsive differential inequalities and integral averaging scheme with Robin boundary condition. 

Examples are specified to illustrate the important results.  
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Introduction 

The oscillation theory of ordinary 

differential equations marks its establishment in 

an explore article of Sturm [1] in 1836 and for 

partial differential equations through Hartman 

and Wintner [2] in 1955. In 1989, the initial 

work on impulsive delay differential equations 

[3] was in print and their substances were 

included in monograph [4]. In addition the most 

important effort concluded in [5] on impulsive 

partial differential equations in 1991. Numerous 

substantial phenomena are expressed in terms of 

second order equations. The theoretical 

background of the second and higher order 

equations is common and for this reason, we 

study the higher order equations. The spacious 

interest on qualitative studies of ordinary and 

partial functional differential equations is came 

back to their varieties of applications in various 

fields of science and machinery [6-10].  

The oscillation of impulsive and non-

impulsive parabolic and hyperbolic equations 

has been widely studied in the literature, we refer 

the readers to the papers [11-18] and the 

references they are cited. Curiously the minority 

significant consequences on higher order partial 

differential equations with continuous distributed 

deviating arguments have been studied in [19-

23]. But these are not considered with impulse 

effect. Consequently, it is necessary to study 

with impulse effect on the oscillation of higher 

order partial differential equations. To the best of 

authors’ acquaintance, there are no scientific 

articles on the oscillation of higher order 

impulsive neutral partial differential equations 

with continuous distributed deviating arguments 

and damping term. In this fashion, we initiate 

oscillatory results for even order impulsive 

neutral partial differential equations with 

continuous distributed deviating arguments and 

damping. Focal results of this manuscript expand 

and improve numerous findings in the earlier 

publications of non-impulsive type equations. 

We think likely that this primary work achieve 

the absorption of numerous researchers working 

on the even order impulsive partial functional 

differential equations. In the current study will 

the follow even order impulsive neutral partial 

functional differential equation with continuous 

distributed deviating arguments and damping. 
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where  is a bounded domain in  with a 

piecewise smooth boundary  and  is the 

Laplacian in the Euclidean space . 

Equation  is enhancement with the following 

Robin boundary condition 2.  

 

 
where  is the outer surface normal vector to  

and , . 

In the sequel, we assume that the following 

hypotheses  hold:   

 , , 

, ,  

where . 

 , 

, where  

represents the class of functions which are 

piecewise continuous in  with discontinuities of 

first kind only at , and left 

continuous at , 

, 

. 

 , 

,   

,    for   ,   

and  are nondecreasing with respect to  

and  respectively and    

. 

 There exist a function 

 satisfying 

,  and , 

 is nondecreasing and the 

integral is a Stieltjes integral in . 

  are piecewise continuous in  with 

discontinuities of first kind only at , 

, and left continuous at , 

, , 

. 

 

, and there exist positive constants  with 

 such that for 

  

 

The present paper is organized as follows: 

In section 2, we present the definitions and 

notations will be needed. In section 3, we deal 

with the oscillation of the problem  and . 

Section 4, presents examples to illustrate the 

main results. 

Preliminaries 

In the preliminaries section, we begin with 

definitions and known results which are required 

throughout this paper.  

Definition 2.1. A solution  of the problem  is 

a function 

 that satisfies , where  

 

Definition 2.2. The solution  of the problem 

 is said to be oscillatory in the domain  

if for any positive number  there exist a point 

 such that  

holds.  

Definition 2.3. A function  is said to be 

eventually positive (negative) if there exists a 

 such that  holds for all 

.  

Lemma 2.1. [24] Suppose that the smallest 

eigenvalue  of the eigenvalue problem  

   (3) 

and  is the corresponding 

eigenfunction of . Then  as 

 and  

as  .  

Lemma 2.2. [25] Let  be a positive and  

times differentiable function on . If 

 is constant sign and not identically zero 

on any ray  for , then there exists 

a  and integer , with  

even for  or  odd for 

; and for , 

; 

.  
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Lemma 2.3. [26] Suppose that the conditions of 

Lemma 2.2 is satisfied, and  

 
 Then there exist constant  and  

such that for sufficiently large   

 
Lemma 2.4. [27] If  and  are nonnegative, 

then  

 

 

 where the equality holds if and only if .  

For each positive solution  of the problem 

 we combine the functions given below  

where  

Results and discussion 

Establish necessary and sufficient 

conditions for the oscillation of all solutions of 

the problem , .  

Theorem 3.1. The boundary value problem 

 is oscillatory in  iff all solutions of the 

impulsive differential equation  

                                   ………(4) 

 are oscillatory, when  for  and 

 is the smallest eigenvalue of (3).  

Proof. (i) Sufficient part: Assume that there exist 

a nonoscillatory solution  of the boundary 

value problem  and . By the 

hypothesis , that there exist a  

such that ,  

for , we get that  

 

 

 
 Multiplying both sides of equation  by 

 and integrating with respect to  over 

the domain , we attain  

                                ……(5) 

 From Green’s formula and boundary condition 

, we see that  

 

Where  is surface component on . When 

, then by  we get 

, , , we 

have  

If , where 

 and  is piecewise smooth, 

without loss of generality, we can assume that 

, . Then by  and (3), we get 

that  

 

Then by Lemma 2.1, we have  

 …….(6) 

and  

     …..(7) 

It is easy to see that  

 

 

….(8) 

Combining (5) - (8), we get that  

…(9) 

Multiplying both sides of the equation  by 

, integrating with respect to  over the 

domain , and from , we obtain  



Sadhasivam et al., 2017.                                    Oscillation of Even order Impulsive Neutral Partial Differential Equations 

©International Journal of Modern Science and Technology. All rights reserved. 161 

 

According to , we 

have  

 

Therefore  is an eventually positive solution 

of (4), which contradicts the fact that all 

solutions of equation (4) are oscillatory. 

(ii) Necessary part: Suppose that equation (4) 

has a nonoscillatory solution . Without 

loss of generality we assume  for 

, where  is some large number. 

From (4), we have  

                                             …..(10) 

Multiplying both sides of (10) by  we 

obtain  

..(11) 

Let , . 

By Lemma 2.1, we have , 

. Then (11) gives  

                                                       …..(12) 

 Multiplying both sides of equation (10) by 

, we have  

                                                      …..(13) 

Since 

,   

 

. 

Which shows that 

 , 

satisfies . From Lemma 2.1, we get that  

 

which implies that  

 

                                                   …….(14) 

Hence  is a 

nonoscillatory solution of the problem  

which is a contradiction.  

Remark 3.1.  Theorem 3.1 shows that the 

oscillation of problem  is equivalent to 

the oscillation of the impulsive differential 

equation (4).  

Theorem 3.2. If  for  and the 

impulsive differential inequality  

 …….(15) 

has no eventually positive solutions, then every 

solution of the problem  is oscillatory in 

.  

Proof. Suppose to the contrary that there exists a 

nonoscillatory solution  in 

 of the problem  for some 

. Without loss of generality, we assume 

that , , . 

By assumption that there exists a  such 

that ,  for 

, then  

 

Proceeding as in the proof of Theorem 3.1, by 

Lemma 2.1 and from (9), to get that  

            …………(16) 



Sadhasivam et al., 2017.                                    Oscillation of Even order Impulsive Neutral Partial Differential Equations 

©International Journal of Modern Science and Technology. All rights reserved. 162 

 Set . Equation (16), 

can be written as  

                                                    …..(17) 

We have , for  and 

 for . Hence 

 is a decreasing in the interval 

. We can claim that  

for . In fact,  for , 

then there exists a  such that 

. Which implies that  

 ……….(18) 

 From , we have  

 

and  for . Multiply by 

 on both sides of the equation (18), we have  

 
………(19) 

 From (19), we have  

 

 Thus  

 

 

 

 
Since , we see that the right side tends to 

negative infinity. Thus , 

which implies  is eventually negative. This 

contradicts the face that . At the same 

time, we can prove . 

Furthermore, from Lemma 2.2, there exits a 

 and a odd number , , and 

for , we have  

 

 

By choosing , we have , since 

, , we have 

, and thus  

 
 From equation (17), we get  

 
                                       …….(20) 

 From  and , we obtain  

 
Thus  for   

Then (20) can be written as  

 
                                                   …..(21) 

 For  and from (4) we 

have  

 

Therefore  is an eventually positive solution 

of (15). This contradicts the hypothesis and 

completes the proof.   

Theorem 3.3. If  for , there 

exists a function  for 

 which is nondecreasing with respect to , 

such that  

                                                              …..(22) 

then every solution of the boundary value 

problem  is oscillatory in .  

Proof. To prove the solutions of  are 

oscillatory in , from Theorem 3.2, it is enough 

to prove that the impulsive differential inequality 

(15) has no eventually positive solution. Suppose 

that  is a solution of the inequality (15). 

Define  

    …..(23) 

 then  for , and  
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 From , according to Lemma 2.3, we 

obtain  

      …..(24) 

Thus  

 

 

 Define  

 

 In fact,  is continuous on each interval 

, and in consideration of 

. It follows that for 

,  

 and for all ,  

which implies that  is continuous on 

.  

 
  

 
 

 
  

That is  

 ……(25) 

 Taking  

 
from Lemma 2.4, we have  

Thus  

 …….(26) 

Integrating both sides from  to , we have  

Taking , from (22), we have 

, which leads to a contradiction 

with .  

Theorem 3.4. Assume that  for , 

suppose that there exist functions  and 

 in which  is 

nondecreasing. If there exist two functions 

, in which 

 , such that   

     

,  

,  

 

.  

 If  

 ……..(27) 



Sadhasivam et al., 2017.                                    Oscillation of Even order Impulsive Neutral Partial Differential Equations 

©International Journal of Modern Science and Technology. All rights reserved. 164 

then every solution of the boundary value 

problem  is oscillatory in .  

Proof. Assume that the boundary value problem 

 has a nonoscillatory solution . 

Without loss of generality, assume that 

. The case for 

 can be considered in the same 

method. Proceeding as the proof of Theorem 3.3, 

we have 

 for 

, and  

 
multiplying the above inequality by  

for , and integrating from  to , we 

have  

 

  

 ……(28) 

 Thus, we have  

 

 

 

 

                       ……..(29) 

 Put  

 

 from Lemma 2.4, we attain for  that  

 

                  …….(30) 

 In addition, from (28) and (30), we have  

                       ……(31) 

 Thus  

=

 

Letting , we have  

 

which leads to a contradiction with (27).  

Remark 3.2. In Theorem 3.4, by choosing 

, we have the following 

corollary.  

Corollary 3.1. Assume that the conditions of 

Theorem 3.4 hold, and  

 

 then every solution of the boundary value 

problem  is oscillatory in .  

Remark 3.3. From Theorem 3.4 and Corollary 

3.1, we can attain variety of oscillatory criteria 



Sadhasivam et al., 2017.                                    Oscillation of Even order Impulsive Neutral Partial Differential Equations 

©International Journal of Modern Science and Technology. All rights reserved. 165 

by different choices of the weighted function 

. 

For example, choosing 

, in which 

 is an integer, then 

, . 

From Corollary 3.1, we have  

Corollary 3.2. If there exists an integer  

such that  

          ………(32) 

then every solution of the boundary value 

problem  is oscillatory in .  

Examples 

We present couple of examples to point up our 

results established in Section 3.  

Example 4.1. Consider the following equation of 

the form  

                  ……..(33) 

 for , with the boundary 

condition  

 

             …….(34) 

Here ,   

, 

, , , , 

, , 

, , 

, , , 

, , . Since , 

 , , . Then 

hypotheses  hold, moreover  

 

 

  

Now, the condition  reads,  

Therefore all the conditions of the Corollary 3.2 

are satisfied. Therefore, every solution of 

equation (33) - (34) is oscillatory in . In fact 

 is such a solution.  

Example 4.2. Consider the following equation of 

the form  

 …(35) 

for , with the boundary 

condition  

 
                                                    …..(36) 

 Here ,   

, , 

, , , , 

, , 

, , 

, , , , 

. Since ,  , 

, . Then the condition 

 reads,  



Sadhasivam et al., 2017.                                    Oscillation of Even order Impulsive Neutral Partial Differential Equations 

©International Journal of Modern Science and Technology. All rights reserved. 166 

Therefore all the conditions of the Corollary 3.2 

are satisfied. Therefore, every solution of 

equation (35) - (36) is oscillatory in . In fact 

 is such a solution.  

Conclusions 

Since several equations of higher order 

represent almost accurately physical phenomena, 

it is desirable to study these equations 

systematically. The obtained oscillation results 

for equations (1), (2), extends and generalizes 

some known results in obtained in the area of 

higher order partial differential equations 

without impulsive effect and distributed delay. In 

particular the results are the extensions of the 

results reported in literature.  
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