
A Genetic Algorithm Approach to

Multiple-Response Optimization

FRANCISCO ORTIZ, JR., JAMES R. SIMPSON, AND JOSEPH J. PIGNATIELLO, JR.

Florida A&M University and Florida State University, Tallahassee, FL 32310

ALEJANDRO HEREDIA-LANGNER

Pacific Northwest National Laboratory, Richland, WA 99352

Many designed experiments require the simultaneous optimization of multiple responses. A common

approach is to use a desirability function combined with an optimization algorithm to find the most desirable

settings of the controllable factors. However, as the problem grows even moderately in either the number

of factors or the number of responses, conventional optimization algorithms can fail to find the global

optimum. An alternative approach is to use a heuristic search procedure such as a genetic algorithm (GA).

This paper proposes and develops a multiple-response solution technique using a GA in conjunction with

an unconstrained desirability function. The GA requires that several parameters be determined in order for

the algorithm to operate effectively. We perform a robust designed experiment in order to tune the genetic

algorithm to perform well regardless of the complexity of the multiple-response optimization problem. The

performance of the proposed GA method is evaluated and compared with the performance of the method

that combines the desirability with the generalized reduced gradient (GRG) optimization. The evaluation

shows that only the proposed GA approach consistently and effectively solves multiple-response problems

of varying complexity.

KEY WORDS: Heuristic Methods; Regression Modeling; Response Surface Desirability Functions.

Introduction and Background

T
HE EVALUATION of products or processes can in-
volve the simultaneous study of several perfor-

mance characteristics or responses. The task then be-
comes simultaneously optimizing each response of in-
terest. This multiple-response optimization problem
can be challenging, resulting in trade-offs associated

Mr. Francisco Ortiz, Jr., is a doctoral student in the De-

partment of Industrial Engineering. He is a member of ASQ.

His email address is fortiz@eng.fsu.edu.

Dr. James R. Simpson is an Associate Professor in the De-

partment of Industrial Engineering. He is a member of ASQ.

His email address is simpson@eng.fsu.edu.

Dr. Joseph J. Pignatiello, Jr., is an Associate Professor in

the Department of Industrial Engineering. He is a member of

ASQ. His email address is pigna@eng.fsu.edu.

Dr. Alejandro Heredia-Langner is a postdoctoral fellow in

the Statistical and Quantitative Sciences Group. His email ad-

dress is Alejandro.Heredia-Langner@pnl.gov.

with setting input parameters to achieve various re-
sponse goals or targets. Ultimately, the goal is to
determine the settings of the design variables such
that the best possible combination of the responses
is obtained.

There have been many creative methods discussed
in the statistics literature for treating multiple-
response problems. The performances of these tech-
niques are dependent on or limited by the size and
complexity of the problem. For problems where only
a few factors and responses are involved, overlaying
the contour plots of each respective response can help
identify the regions where the goals are simultane-
ously met. An explanation of this graphical approach
can be found in Myers and Montgomery (2002). This
method has clear disadvantages, since it does not
provide exact answers and, even for relatively small
dimensional problem, can be quite difficult to ana-
lyze.

A more general approach that can be used is

Journal of Quality Technology 432 Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 433

to formulate a multiple-response problem as a con-
strained optimization problem. This is done by se-
lecting one of the responses as the objective func-
tion and treating the other responses as constraints.
Choosing which one of the responses to be the objec-
tive function may be difficult in some cases, in par-
ticular when the number of responses is large. An ex-
ample of this technique can be found in Del Castillo
and Montgomery (1993).

A third technique used for solving multiple-re-
sponse problems consists of using a method for com-
bining multiple responses into a single value, followed
by a numerical method to optimize the combined re-
sponse function. The techniques available for combin-
ing multiple-response models into a single scalar in-
clude distance functions (Khuri and Conlon (1981)),
squared error loss functions (Pignatiello (1993) and
Vining (1998)), and desirability functions (Harring-
ton (1965), Derringer and Suich (1980), and Del
Castillo et al. (1996)). The desirability methods are
easy to understand and implement, available in soft-
ware, and provide flexibility in weighting individual
responses.

The desirability approach consists of transforming
m individual response functions each into desirabil-
ities based on the particular goal for that response.
Individual desirabilities di(ŷi), i = 1, 2, . . . , m map
response values to unit-less utilities bounded by 0 <
di(ŷi) < 1, where a higher di(ŷi) value indicates that
response value ŷi is more desirable. Combining the
individual desirability values usually involves using
either a multiplicative or additive model and results
in an overall desirability function associated with the
vector of independent variables, x. A common ap-
proach is to define the overall desirability as the ge-
ometric mean of individual desirabilities where

D(x) = (d1(ŷ1)d2(ŷ2) · · · dm(ŷm))
1/m

. (1)

Although several forms have been proposed for
di(ŷi), the most commonly adopted are those of Der-
ringer and Suich (1980). For a target value (two-
sided) goal, the individual desirability is

di(ŷi) =

(
ŷi − Li

Ti − Li

)si

, Li ≤ ŷi ≤ Ti(
ŷi − Hi

Ti − Hi

)ti

, Ti ≤ ŷi ≤ Hi

0, otherwise

(2)

where Li is the lower limit, Hi is the upper limit, and
Ti is the target value for response i. The exponents ti
and si are weights that allow for linear (si = ti = 1)

or nonlinear behavior between a bound (Li or Hi)
and the target (Ti). For the maximization (one-sided)
objective, di(ŷi) becomes

di(ŷi) =

0, ŷi ≤ Li(

ŷi − Li

Hi − Li

)si

, Li ≤ ŷi ≤ Hi

1, ŷi ≤ Hi.

The response surfaces associated with these over-
all measures can be highly nonlinear and multimodal,
requiring some optimization method capable of locat-
ing the global optimum.

If the response surface associated with D(x) is
fairly well behaved, conventional nonlinear optimiza-
tion techniques can be used to find the most desirable
x. Current solution methods include search meth-
ods such as the Nelder–Mead simplex (Nelder and
Mead (1965)) and gradient-based algorithms such
as the generalized reduced gradient (GRG; see, e.g.,
Reklaitis et al. (1983)). However, as the number of
responses that define quality and the number of sig-
nificant factors increase, the corresponding D(x) re-
sponse surface can become highly nonlinear, multi-
modal, and heavily constrained. In these cases, con-
ventional optimization algorithms and direct search
methods may find only a local optimum or even fail
to find a feasible solution (see Reklaitis et al. (1983)).
Figure 1 displays a D(x) that conventional optimiza-
tion algorithms and direct search methods may find
difficult to solve.

For these situations, one alternative is to use a
heuristic search procedure (e.g., genetic algorithm,
simulated annealing, or tabu search). The perfor-

FIGURE 1. Example of a Multimodal Response Surface.

Vol. 36, No. 4, October 2004 www.asq.org

434 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

mances of these search procedures are problem spe-
cific. Some heuristics are easier to engineer to solve a
particular problem. The genetic algorithm has been
used to solve various statistical problems in qual-
ity engineering. Heredia-Langner et al. (2003) and
Borkowski (2003) both used GAs for constructing
designs, and Carlyle et al. (2000) mentions using ge-
netic algorithms to solve complex multiple-response
optimization problems.

A genetic algorithm is a search technique that is
based on the principles of natural selection or sur-
vival of the fittest. Holland (1974) developed the
ideas and concepts behind the GA and many authors
have refined his initial approach. Instead of using gra-
dient information, the GA uses the objective function
directly in the search. The genetic algorithm searches
the solution space by maintaining a population of
potential solutions. Then, using evolving operations
such as recombination, mutation, and selection, the
GA creates successive generations of solutions that
will evolve and take on the positive characteristics of
their parents and thus gradually approach optimal or
near-optimal solutions. By using the objective func-
tion directly in the search, genetic algorithms can
be effectively applied in nonconvex, highly nonlin-
ear, complex problems (Goldberg (1989)). The ge-
netic algorithm is not guaranteed to find the global
optimum, but it is less likely to get trapped at a lo-
cal optimum than traditional gradient-based search
methods when the objective function is not smooth
and generally well behaved. Our findings also indi-
cate that the genetic algorithm examines a larger
portion of the solution space than conventional meth-
ods and is therefore more likely to find feasible so-
lutions in heavily constrained problems. A brief de-
scription of common procedures and parameters used
in the GA can be found in the appendix.

A drawback of the genetic algorithm is the large
number of parameters that must be tuned to obtain
optimal performance. The initial sample size, con-
vergence criterion, and other implementation param-
eters all affect the performance of the genetic algo-
rithm. However, a robust parameter design approach
could be used to determine these parameter settings
in the presence of varied multiple-response scenarios.

This paper focuses on the development of a
method for performing multiple-response optimiza-
tion in the presence of a moderate to large number
of responses. The basic approach consists of an un-
constrained desirability function combined with ge-
netic algorithm optimization. This proposed genetic

algorithm approach is then tuned for application in
multiple-response optimization using robust param-
eter design. The goal of this paper is to develop
a multiple-response optimization method that per-
forms well across a variety of commonly encountered
problem scenarios. We will demonstrate how a robust
parameter design approach can be used to enhance a
method that effectively optimizes multiple responses
in several different problem environments. We will
also discuss the relationships between genetic algo-
rithm parameters and the characteristics that define
a problem’s complexity. The performance of the pro-
posed method will be compared with an optimization
method commonly used when dealing with multiple
responses.

Developing the Multiple-Response
Performance Metric

The initial step for implementing a genetic algo-
rithm for multiple-response optimization is to estab-
lish an encoding structure for potential solutions.
The results of designed experiments are typically ex-
pressed in terms of individual response regression
models that relate factors to the output performance
measures. Dimensionless coded factors, x1, . . . , xk,
are commonly used such that the response surface
is estimated over the region defined by −1 < xi < 1
for i = 1, 2, . . . , k. For this study, a GA chromosome
represents the vector of coded factors, x = [x1, x2,
. . . , xk], where we will refer to each entry in this vec-
tor as a gene. An example of a chromosome for an
8-factor multiple-response process is x = [−0.451,
0.346, 0.518, 0.701, −0.573, −0.634, 0.937, −0.448].
Each chromosome is associated with a vector of

m fitted responses, ŷ = [ŷ1, ŷ2, . . . , ŷm]′, for which
the genetic algorithm fitness is determined by an
overall desirability function D(x). Hence, the met-
ric for evaluating the GA chromosomes, fitness, is
just the combined response overall desirability value
for a given x.

An Unconstrained Desirability Function for a
Genetic Algorithm

The multiplicative overall desirability function re-
sults in D(x) = 0 if any di(ŷi) = 0, that is, if any ŷi is
either infeasible or otherwise undesirable. This strict
penalization does not allow the genetic algorithm to
maintain infeasible x (chromosomes), which may per-
form well in some subset of the di(ŷi), even though
some of the genes may be highly desirable. Thus, the
use of the multiplicative overall desirability function

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 435

can limit the search capabilities of the GA. Addi-
tive overall desirability functions, D(x), such as the
arithmetic mean discussed in Kros and Mastrangelo
(2001), incorporate a weak penalty when a constraint
has been violated. However, this method for com-
bining the di(ŷi) can result in infeasible solutions
that have higher desirability values than feasible so-
lutions. Consequently, the corresponding optimiza-
tion procedure may converge to infeasible solutions.
To take full advantage of the search capabilities of
the genetic algorithm, this paper proposes a new un-
constrained multiplicative desirability function capa-
ble of discriminating among infeasible settings of x,
while not allowing infeasible solutions to have higher
overall desirability values than feasible solutions.

This proposed unconstrained desirability function
satisfies two criteria essential for the genetic al-
gorithm to perform well. First, it allows the ge-
netic algorithm to evaluate infeasible solutions in or-
der to locate regions of feasibility. Second, it prop-
erly differentiates between feasible and infeasible so-
lutions. To enable the genetic algorithm to eval-
uate infeasible D(x), we propose incorporating a
penalty function into the overall desirability func-
tion, a fairly common tool when using genetic al-
gorithms. This method involves incorporating the
constraints directly into the overall desirability (or
fitness) function. The proposed overall desirability
function, D∗(x) = DDS(x) − P (x), incorporates
penalties through P (x), which is proportional to
the square of the constraint violation. Here, DDS(x)
refers to the Derringer and Suich overall desirability,
as in Equation (1), in which individual desirabilities
are combined using the geometric mean.

The overall penalty function P (x) is also a com-
bined function of the individual fitted responses, re-
flecting the overall severity of the infeasibility. The
overall penalty function is

P (x) =
[
(p1(ŷ1)p2(ŷ2) · · · pm(ŷm))

1/m − c
]2

,

where the corresponding individual penalties pi(ŷi)
are

pi(ŷi) =

c+
∣∣∣∣ ŷi − Li

Ti − Li

∣∣∣∣ , −∞ ≤ ŷi ≤ Li

c, Li ≤ ŷi ≤ Hi

c −
∣∣∣∣ ŷi − Hi

Ti − Hi

∣∣∣∣ , Hi ≤ ŷi ≤ +∞

and c is a relatively small constant used to force
pi(ŷi) > 0. Requiring a nonzero pi(ŷi) ensures that

some nonzero overall penalty P (x) is assessed for
each infeasible solution. For this study, c = 0.0001
is used. Smaller or larger values of c can be used
without loss of generality. Incorporating this over-
all penalty function into a combined fitted response
metric, the proposed overall desirability function be-
comes

D∗(x) = [di(x) · · · dm(x)]1/m

−
{
[pi(x) · · · pm(x)]1/m − c

}2

. (3)

The purpose accomplished by the overall penalty
function is to ensure design space locations x are ap-
propriately ranked relative to each other based on
their degree of infeasibility. The genetic algorithm
will be guided by this information so that feasible
solutions can be quickly identified. Once feasible so-
lutions are found, their associated penalty function
becomes P (x) = 0, removing any penalty function
influence from D∗(x).

Comparison of Desirability Functions within
the Genetic Algorithm

To demonstrate the need to generate an overall
desirability function capable of evaluating infeasible
solutions, consider the following illustration. Figure
2 shows a comparison of the Derringer and Suich
overall desirability function with the unconstrained
overall desirability function in Equation (3) using ge-
netic algorithm optimization on a multiple response
problem.

Genetic algorithms iteratively generate subsets of
candidate design space points for evaluation by the
overall desirability function. Each subset of evaluated
design space points is called a generation. In this ex-
ample, the D∗(x) function led to identifying a fea-

FIGURE 2. Comparison of GA Optimization Between the

Derringer and Suich Desirability Function (DDS) and the

Unconstrained Desirability Function (D∗).

Vol. 36, No. 4, October 2004 www.asq.org

436 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

TABLE 1. Comparison Between DDS(x) and D∗(x) for Two Infeasible Design Points

Design Space Point (a)

DDS(x) D∗(x)

Responses Value Low Target High di di pi

ŷ1 60 50 60 70 1 1 0.000001
ŷ2 75 50 75 100 1 1 0.000001
ŷ3 50 47 50 53 1 1 0.000001
ŷ4 30 40 45 50 0 0 2.000001

Overall Desirability 0 −1.34E-09

Design Space Point (b)

DDS(x) D∗(x)

Responses Value Low Target High di di pi (penalty)

ŷ1 60 50 60 70 1 1 0.000001
ŷ2 45 50 75 100 0 0 0.200001
ŷ3 60 47 50 53 0 0 2.333334
ŷ4 30 40 45 50 0 0 2.000001

Overall Desirability 0 −9.66E-04

sible region in only 14 generations and final conver-
gence after 35 generations. In contrast, using DDS(x)
as the measure of overall desirability in the GA, the
algorithm was unable to find a feasible solution af-
ter 50 generations. In both cases, the GA initiated
its search with a population of infeasible x vectors.
Because the DDS(x) approach fails to distinguish the
degree of infeasibility, no useful information is passed
on to the GA so that it can find a feasible x.

To demonstrate how D∗(x) can provide more in-
formation than DDS(x) in terms of GA optimization,
the overall desirability function formulations are ap-
plied to two design space points. Table 1 illustrates
a situation where two different x vectors both pro-
duce infeasible solutions and DDS(x) = 0. However,
the x in (a) has three of the four fitted responses at
their target value, whereas the x in (b) has three of
the four fitted responses infeasible. The design space
point in (a) is more likely to be closer to the feasible
region and therefore is a better candidate for the GA
in future generations. The proposed overall desirabil-

ity function is able to differentiate between the two
infeasible x vectors, awarding a higher D∗(x) to the
preferred x in (a).

Designing Genetic Algorithms for
Multiple-Response Optimization

The GA is sensitive to the many choices of pa-
rameters. In this paper, a designed experiment is
performed to determine the best GA parameters set-
tings (control variables) under various response sur-
face conditions (noise variables). The following sec-
tions detail the considerations associated with tun-
ing the GA in the presence of a variety of multiple-
response scenarios.

Evaluation of Evolutionary Operators:
Tuning the Genetic Algorithm

The genetic algorithm uses an approach that com-
monly involves starting with a random selection of
design space points. The genes of these initial indi-

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 437

viduals are combined in meaningful ways to produce
new solutions, and these are evaluated and ranked
by objective function value. At this point, solutions
determined to have better fitness are selected to re-
main in the population and, among these, some ex-
perience alterations (recombination and mutations)
that allow the algorithm to explore new regions of
the problem space. Each phase in a GA run involves
the use and the selection of numerous components.
Although the GA is usually robust to the values cho-
sen for these components, the task of finding those
that will perform well in a variety of circumstances
is not easy and can become a difficult optimization
problem in itself. We will now discuss parameter set-
ting alternatives that will be part of an experimental
design to find the GA that performs best for various
multiple-response optimization problems.

Parent Population

The initial set of design space locations evaluated
at the start of each generation is called the parent
population in GA literature. In principle, the size of
the population affects both the quality of the solu-
tion obtained and the efficiency of the GA. If the
population size is too small, not enough information
about the entire search space will be obtained. There-
fore, the GA may fail to find the neighborhood of the
global optimum and thus may converge to a mediocre
solution. A large population size allows the GA to
perform a more thorough search. However, because
a large population requires more objective function
evaluations, the rate of convergence will be slower.

Real-valued encoding is a relatively new method-
ology within GAs. Most of the methods used to iden-
tify a potential range for population size deal with
binary encoding (Reed et al. (2000)). For real-valued
encoding, population sizes between 20 and 50 design
space points are common (Heredia-Langner (2001)).
Mayer et al. (2001) recommends a population size
greater than the dimensionality, the number of fac-
tors, of the studied problem and prefers using a pop-
ulation size equal to twice the dimensionality. They
also warn of potential dangers in choosing too small
of a population.

Parent/Offspring Ratio

The parent/offspring ratio determines the number
of offspring design space points to create from the
previous parent populations to produce the new par-
ent population. For example, a parent-to-offspring
ratio of 1:7 from a parent population of 50 implies
that 350 offspring will be produced. The overall de-

sirability for each of these 350 offspring will be calcu-
lated. These offspring individuals will then undergo
some sort of selection procedure to determine which
will become members of the next parent population.

Bäck (1996) stated that, for every problem, there
is an optimal parent-to-offspring ratio that yields the
most reasonable compromise between computational
effort and progress-rate gained. Thus, we will set this
parameter with ratios of 1:1 and 1:7 for the designed
experiment.

Selection Type

The offspring created in each GA generation are
evaluated and ranked so that better performing de-
sign space points are selected for use in future gener-
ations. Several selection procedures are available to
consider, including ranking selection, proportionate
reproduction, and tournament selection. Tournament
selection chooses a previously determined number of
offspring individuals, or competitors, (at random and
with replacement), evaluates them, and then selects
a few of the best ones to become members of the new
parent population. This process is repeated until all
the spaces available for the parent population have
been filled. Reed et al. (2000) indicates that tourna-
ment selection is robust across problem types. Tour-
nament selection allows poorer performing offspring
some chance to survive. The performance of tourna-
ment selection depends on the number of competitors
specified. As the number of competitors decreases, se-
lection pressure and convergence rates decrease too.
To compensate, we set the number of competitors
equal to twice the selected parent-to-offspring ratio.
For example, with a parent-to-offspring ratio = 1:7
and parent population = 50, the tournament selec-
tion pool consists of 2 × 7 = 14 of the total 350
offspring created.

Crossover Rate

The crossover rate refers to the percent of the
parent population that will undergo a crossover op-
eration. A wide range of crossover rate values has
been examined (Mayer et al. (2001)). A single-
point crossover technique is employed throughout
our experimentation because the chromosome string
length is short. While a high crossover rate typ-
ically causes good points to be discarded, a low
crossover rate places too much emphasis on parents
and may stagnate the search. For this experiment,
the crossover rate settings are based on values sug-
gested by Wehrens et al. (1999), with low and high
values of 0.5 and 0.85, respectively.

Vol. 36, No. 4, October 2004 www.asq.org

438 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

Mutation Type and Rate

Mutation refers to the altering of one or more xi

(genes) in x (a chromosome). Mutation types are
characterized by how many xi are altered and by the
degree to which xi is changed. Two types appropri-
ate for real-valued coding are uniform and Gaussian
mutation. Uniform mutation changes only one xi ac-
cording to a uniform distribution. The Gaussian type
changes all the xi by a small amount according to a
normally distributed disturbance.

A chromosome altered by Gaussian mutation re-
sults in a point located in the neighborhood of its
parent. Gaussian mutation alters the vector x by
adding a randomly generated vector m = (m1, m2,
. . . , mk) consisting of mild, normally distributed
perturbations. The new design space point becomes
x∗ = x +m. Both uniform and Gaussian mutation
types are considered in this experiment.

For real-value coding, Bäck (1996) suggests using
mutation rates as high as 0.6. In this experiment,
mutation rates of 0.1 and 0.4 are considered.

Genetic Algorithm Performance Study:
Noise Factors and Problem Complexity

In this section, factors related to problem com-
plexity will be discussed. There are several attributes
that can be used to quantify or characterize the com-
plexity of a problem. For example, one measure of
problem complexity is the number of input variables
in individual response surface models. Altering the
complexity of various problem attributes can result
in a test bed of case studies for evaluation. The fol-
lowing section describes four problem attributes in-
vestigated in an experiment. Varying the problem at-
tributes will generate problem case studies for eval-
uation.

Number of Factors

The number of factors determines the dimension
of the search or design space as well as the length of
x. The value set for a particular scenario represents
the total number of factors that will serve as candi-
dates for random selection in each modeled response.
In an example later, we will see that each modeled
response will randomly select a subset from the fac-
tors set. Selection for the low- and high-level settings
of this attribute is based on the number of significant
factors typically discovered in industrial designed ex-
periments. A low-level setting of four factors was cho-
sen. This setting will produce cases of moderate size

such that traditional optimization techniques should
perform well. The high-level setting of eight variables
is selected to reflect a value that occurs in practice
yet is large enough to challenge the common opti-
mization methods.

Number of Responses

The number of responses represents the number
of performance measures simultaneously monitored.
This factor does not add to the dimension of the
problem, but its value will affect the complexity of
the feasible region and shape of the overall desirabil-
ity function. A low-level setting of four responses will
produce cases of moderate size that traditional opti-
mization techniques should still be capable of solv-
ing. In response surface settings, it is not unusual to
find applications with 20 or more response variables
(Montgomery (1999)). Therefore, we chose a high-
level setting of 16 responses, indicative of moderate-
to large-sized problems.

Constraints Range

The constraint range for each response indicates
half the width as a percentage of the response mag-
nitude of the interval between the lower and upper
bound of di(ŷi). This parameter can drastically affect
the size of the feasible region. Industrial experience
and a desire to challenge solution methods’ perfor-
mance influenced the low- and high-level settings of
5% and 15%. An example 5% constraint range for a
target response value of 100 would yield lower and
upper desirability limits of 95 and 105, respectively.

Percent of Second-Order Response Models

The choices for the order of a particular response
model in this evaluation are either linear plus in-
teraction or complete second order, which includes
pure quadratic terms. This problem attribute rep-
resents the ratio of complete second-order response
models to the total number of response models in
a particular multiple-response problem. The percent
of second-order models attribute will most likely con-
tribute to the shape of the overall desirability func-
tion. The low- and high-level settings were chosen to
be 25% and 75%.

Other Problem-Complexity Decisions

Decisions are necessary for other problem at-
tributes associated with building multiple-response
surface models. Certain rules were used to ensure
that the problems generated mimic problems typi-
cally found in industry (Table 2).

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 439

TABLE 2. Individual Response Model Generation Decisions

Factors are selected randomly for each response.
For linear plus interaction models, 1/2 of the terms are linear (main effects), 1/2 of the terms are
two-factor interactions.

For second-order models, 1/2 of the terms are linear (main effects), 1/4 of the terms are interactions,
1/4 of the terms are pure quadratic.

The regression coefficient magnitudes and sign are randomly selected from a uniform distribution
U(5, 20) and the model intercept equals 50.

Model hierarchy is always maintained. Therefore, any variable present in an interaction or pure
quadratic term is also included as a main effect.

A value of 1 is used to weight variables si and ti in Equation (2).

To illustrate the above procedures, consider a
situation with four factors and four responses, the
percent of second-order models is 75%, and a 15%
constraint range yields lower- and upper-constraint
bounds of 42.5 and 57.5, respectively. Following the
rules presented, the following four regression models
represent a possible outcome of the simulation:

ŷ1 = 50 + 16x1 − 6x2 + 12x1x2 + 7x2
1

ŷ2 = 50− 19x2 + 8x3 + 13x2x3

ŷ3 = 50 + 19x1 + 18x2 − 8x1x2 + 11x2
3

ŷ4 = 50− 7x3 − 19x4 + 10x3x4 − 14x2
4.

Each response will have a target value of 50, the
same as the intercept. Thus, the coded factors vec-
tor x that produces the optimum solution D(x) =
D∗(x) = 1.0 is x = [0, 0, 0, 0]. This relationship is
established to ensure that the optimum solution for
any problem is known and control is maintained over
the complexity of the problem.

The D(x) examined in the simulation can be more
complex than the response surface shown in Figure 1.
Each response is a two-dimensional or greater prob-
lem. The number of responses ranges from 4 to 16
and the number of factors among these responses
ranges from 4 to 8. Imagine D(x) as a series of high-
dimensional contour plots overlapping each other re-
sulting in a highly nonlinear region. Only small re-
gions will contain feasible solutions. This type of
problem will cause some conventional deterministic
optimization algorithms trouble because a starting
solution close to (or within) a feasible region would
be required.

Genetic Algorithm Performance Measures

The performance of the genetic algorithm is mea-
sured in terms of the speed of finding a feasible so-

lution and the rate at which a high-quality solution
is obtained. Finding feasible solutions is often a sig-
nificant challenge for multiple-response optimization
techniques. One indicator of success for the GA is
the number of evaluations performed until a feasi-
ble solution is found. An evaluation refers to a x
examined for its corresponding overall desirability
value. Hence, this performance measure calculates
every search point examined until a feasible solution
is found. The second GA performance measure is the
effort required to obtain a high-quality solution. This
response counts the number of evaluations until the
best solution is within 10% of the known optimal.
Knowing the target D(x) = 1.0, the criteria counts
the number of x examined until D(x) ≥ 0.9. These
two performance measures will serve as the responses
in a designed experiment and analysis of the GA pa-
rameter settings.

Robust Genetic Algorithm Performance
Investigation

A robust design approach is used to evaluate the
performance of the GA with different parameter set-
tings against a wide range of multiple-response prob-
lem scenarios that vary in complexity. This study
will evaluate six GA parameters and four problem-
complexity attributes (Table 3). The GA parameters
represent the control variables in a robust parameter
design while the problem-complexity attributes rep-
resent noise variables. We use a combined array strat-
egy that assimilates control and noise factors into a
single fractional factorial design

A 210−4
IV fractional factorial design is selected con-

sisting of 64 runs. This resolution IV design is nearly
resolution V, as the majority of the two-factor in-
teractions are aliased with three- and four-factor in-
teractions. Some two-factor interactions are aliased

Vol. 36, No. 4, October 2004 www.asq.org

440 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

TABLE 3. Levels of the Genetic Algorithm Control and Noise Parameter Setting

Factor Parameters Low High Variable Type

A Parent population 20 50 Control
B Parent/offspring ratio 1:1 1:7 Control
C Selection type Rank Tournament Control
D Crossover rate 0.5 0.85 Control
E Mutation type Uniform Gaussian Control
F Mutation rate 0.1 0.4 Control
G Number of factors 4 8 Noise
H Number of responses 4 16 Noise
J Percent of second-order response models 25 75 Noise
K Constraint width (% of target) 5 15 Noise

with other two-factor interactions, so further exper-
imentation may be necessary to identify which term
is significant. Four center points are also added to
provide a pure error estimate and a test for curva-
ture. Because two control variables are categorical,
pseudo-center points are used such that centers of
the numeric factors are run for every combination
of the categorical factors. Two categorical factors at
two levels each produce 22 = 4 pseudo-center point
combinations. Four replicates of each pseudo-center
point combination require 16 runs to be added to the
original 64, equaling 80 total experiments.

The focus of the experiment analysis is on build-
ing empirical models for GA performance contain-
ing control variables (genetic algorithm parameters)
and noise variables (problem-complexity attributes).
Model building involves selecting terms according to
a robust design response surface model of the form

ŷ(x, z) = b0 +
6∑

i=1

bixi +
6∑

i=1

6∑
j=1,j �=i

bijxixj

+
4∑

i=1

cizi +
6∑

i=1

4∑
j=1

dijxizj ,

where the xi represent the GA tuning-parameter
control variables and the zi refer to the problem-
complexity noise variables. Interpretation clearly in-
volves a careful study of the control main effects,
control × control interactions, and control × noise
interactions.

The data for both performance measures require
variance-stabilizing transformations to satisfy model
assumptions. For both performance measures, a nat-
ural log transformation proved most effective. The

response surface models for both GA performance
measures included only significant noise main effects,
control × control interactions, and control × noise
interactions. The significant noise main effects (G,
H, and K in both models) essentially indicate that
the problem-complexity attribute levels selected for
this experiment do impact GA performance, a de-
sired outcome in this study. The control × control
and control × noise interactions provide the answers
for how to best tune the GA. In fact, interaction plots
clearly reveal the appropriate genetic algorithm pa-
rameter settings needed to optimize each GA per-
formance measure across the spectrum of problem
complexities. A summary of the findings is provided
in Table 4.

Based on the findings in Table 4, the control vari-
ables are then set to maximize performance, which
equates to minimizing the number of evaluations to
achieve each objective (Table 5). Nearly all guidance
is clear and in agreement. Only factor B, the parent
population to offspring ratio, is in apparent disagree-
ment. Closer inspection shows that the 1:1 ratio is
only recommended to achieve quicker feasibility for
relatively easy problems. Thus, the 1:7 ratio, which
enables faster achievement of D(x) > 0.9 in chal-
lenging scenarios, is selected. The table also provides
guidance for all control variables except factor D, the
crossover rate. Higher crossover rates assist in diver-
sifying the offspring pool, so that parameter is set to
0.85.

The Robust Genetic Algorithm as
an Alternative to the GRG

The robust genetic algorithm should ultimately
be compared with a multiple-response desirability

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 441

TABLE 4. Results of the GA Performance Investigation Robust Parameter Designed Experiment

GA performance measure: Achieve feasibility

Significant
term Term type Finding

BH Control × noise A 1:1 parent/offspring ratio performs better with only four responses
but the offspring ratio does not matter with a moderate or large
number of responses.

BK Control × noise A 1:1 parent/offspring ratio reaches feasibility more quickly for wider
(15%) constraints and this ratio does not influence feasibility
performance with moderate to tight (5%) constraints.

GA performance measure: Achieve D(x) ≥ 0.90

Significant
term Term type Finding

AC Control × control For parent population = 20, selection type does not matter, whereas
if the parent population = 50, choose tournament selection.

AE Control × control Better performance is achieved with parent population = 20 and
Gaussian mutation.

AF control × control Performance is enhanced using the parent population = 20 and a
mutation rate = 0.4.

BK Control × noise An offspring ratio of 1:7 is best with tight constraints (5%), but as
the constraints widen, the offspring ratio is unimportant.

EG Control × noise Gaussian mutation works better with only 4 factors and both
mutation methods perform equally with 8 factors.

EK Control × noise Gaussian performs better with tight constraints (5%), but as the
constraints widen, the mutation type is insignificant.

AEK Control × noise For mutation rates of 0.1, use a parent population = 20 and Gaussian
mutation. For all other mutation rates, factor AE is not significant.

CFK Control × noise For tournament selection, use mutation rate = 0.4 regardless of
constraint setting. For ranking selection, the FK interaction is not
significant.

TABLE 5. Final Settings for the Proposed Robust Genetic Algorithm

Factor Parameters Setting Rationale

A Parent population 20 Designed experiment result
B Parent/offspring ratio 1:7 Designed experiment result
C Selection type Tournament Designed experiment result
D Crossover rate 0.85 Diversify offspring pool
E Mutation type Gaussian Designed experiment result
F Mutation rate 0.4 Designed experiment result

Vol. 36, No. 4, October 2004 www.asq.org

442 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

method that is widely available and widely used in
practical applications. The method by Del Castillo,
Montgomery, and McCarville (1996) using a modified
desirability function and generalized reduced gradi-
ent (GRG) optimization is selected because the GRG
is perhaps one of the most popular and robust non-
linear programming methods available (Del Castillo
and Montgomery (1993)). The GRG is also preferred
for optimizing multiple-response problems using a
loss function objective (Vining (1998)).

The GRG belongs to a class of optimization tech-
niques known as gradient-based methods. Like direct
search methods, the GRG starts off at a trial point
and tries to find a direction of movement that will
improve the objective function. Unlike direct search
methods, the GRG does require the calculation of
derivatives to solve a problem. Due to this, the GRG
is more efficient than direct search methods. How-
ever, the GRG does experience difficulties solving
problems if the starting point is far from optimum
and if the constraints are highly nonlinear (Gill et
al. (1981)).

GRG Optimization Algorithm Performance
Investigation

The GRG performance will be evaluated against
the problem-complexity scenarios generated for the
robust design. Of the four problem-complexity attri-
butes introduced in the previous section, only three
affected the performance of the genetic algorithm.
The percent of second-order response models was not
significant, leaving the three attributes in Table 6.

A 23 factorial designed experiment with one cen-
ter run results in nine problem scenarios forming the
case studies for evaluation (Table 7). The same ap-
proach described in the last section to generate spe-
cific response models for each scenario was used in
this evaluation. The percent of second-order models
was set to the more challenging level (75%) from the
robust design.

The Del Castillo, Montgomery, and McCarville
approach is coded in Excel to take advantage of Ex-

TABLE 6. Levels of Problem Parameters Settings

Factor Problem Parameters Low High

A Number of factors 4 8
B Number of responses 4 16
C Constraints (% of target) 5% 15%

TABLE 7. Design Matrix and the Collected Data

Factor A Factor B Factor C
no. of no. of constraint

Case no. factors responses range

1 4 4 5
2 8 4 5
3 4 16 5
4 8 16 5
5 4 4 15
6 8 4 15
7 4 16 15
8 8 16 15
9 6 10 10

cel’s Solver, which performs GRG optimization. The
performance of gradient-based methods such as the
GRG is enhanced by multiple starting points. Thus,
the GRG method is applied to each of the nine cases
using 30 randomly selected starting locations. Re-
sults are recorded for each starting point.

GRG performance is measured by calculating the
percentage of times that the GRG found the optimal
solution (D(x) > 0.9) out of the 30 randomly cho-
sen starting points. Table 8 reports the experiment
results. The high levels of the case scenario settings
are bolded to enable easier identification of the more
challenging scenarios.

The table clearly shows that the performance of
the GRG deteriorates with increasing scenario com-
plexity. For the relatively easy scenarios (Cases 1, 5,
6, and 7), the GRG performed reasonably well, find-
ing the optimal solution between 27 and 83% of the
time. For moderately challenging scenarios (Cases 2,
3, and 9), the optimal solution is found in only 2 of
the 30 initial starting points. For the more challeng-
ing scenarios (Cases 4 and 8), no feasible solution is
found.

Comparison Between GA and GRG
Optimization

To evaluate and compare the performance of the
GA desirability function versus the GRG algorithm,
the GA desirability function is applied to the same
nine cases used for the GRG analysis (Table 9). The
results show the performance of GA to be robust re-
gardless of problem complexity. Here “robust” refers

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 443

TABLE 8. Performance Study of the GRG Method Indicating the Percentage of Times the Optimal Solution is Obtained

No. of No. of Constraint Pct of GRG
Case factors responses range solutions optimal

1 4 4 5 0.30
2 8 4 5 0.07
3 4 16 5 0.07
4 8 16 5 0.00
5 4 4 15 0.83
6 8 4 15 0.27
7 4 16 15 0.57
8 8 16 15 0.00
9 6 10 10 0.07

TABLE 9. Performance of Proposed Genetic Algorithm Against the Multiple-Response Cases

(95.0%)
Confidence intervals

No. of No. of D∗(x)
Case variables responses Constraints mean St. dev. High Low

1 4 4 5 0.989 0.004 0.994 0.985
2 8 4 5 0.969 0.011 0.979 0.958
3 4 16 5 0.997 0.002 0.998 0.995
4 8 16 5 0.987 0.005 0.991 0.982
5 4 4 15 0.998 0.001 0.998 0.997
6 8 4 15 0.994 0.003 0.997 0.992
7 4 16 15 0.987 0.004 0.991 0.983
8 8 16 15 0.958 0.027 0.984 0.931
9 6 10 10 0.979 0.016 0.995 0.962

to the GA being able to solve all cases with a high
level of quality and consistency. The final solutions
obtained have mean values ranging from 0.958 to
0.998 (out of a possible 1.0), indicating the GA fi-
nal solutions are very close to the optimal solution.
Optimization was performed four times for each de-
sign point. The modest sample size and correspond-
ing tight confidence interval widths indicate that the
GA is also reproducible.

Example: Optimization of a Multiple
Response Lexmark Toner Optimization
Problem

To illustrate the approach, we present an example
of a Lexmark toner study. Toner is a composite of
materials created by melt mixing bulk ingredients
in an extruder and milling the results into to a small

particle medium, which is the consistency of talc. The
properties of the resulting composite enable it to be
moved in a controlled manner and then affixed to
a print medium to create an image. The purpose of
this particular experiment is to determine the effect
of changing three toner additives on various toner
performance metrics, which measure the quality of
the printed image and the efficiency of toner usage.

For proprietary reasons, the names of the addi-
tives are not given, but the response variable names
are provided. The factor levels used are shown in Ta-
ble 10. The factor levels indicate the percent of total.
For example, the additive 1 low level (−1) = 0.20%.
Because these additives represent only a small por-
tion of the overall mixture, a standard factorial ap-
proach is reasonable.

A central composite design was used with a total
of 20 experimental runs. Response surface model fit-

Vol. 36, No. 4, October 2004 www.asq.org

444 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

TABLE 10. Factor and Levels

Low level High level
Factor Name Units (−1) (1)

A Additive 1 % 0.2 0.5
B Additive 2 % 0.5 1
C Additive 3 % 0.2 0.5

ting was applied to the data to obtain appropriate
regression models for each of the 14 responses. The
results are summarized in Table 11.

A company chemical engineer set objectives for
each response. A summary of the goals for each re-
sponse as well as the minimum and maximum values
for the responses and their associated desirability val-
ues are provide in Table 12.

The engineer chose to restrict or constrain the de-

TABLE 11. Summary of Design Experiment Results

Minimum Maximum
value value Model

Response Name Units obtained obtained chosen

Y1 Streak uniformity rank Rank 1 20 2FI
Y2 Streak uniformity rating Rating 1 6 2FI
Y3 Speckles Rating 0 3 Quadratic
Y4 Starve Rating 0 3 Quadratic
Y5 Mottle Rating 1 19 Linear
Y6 Powder flow % 13.2 25.5 Linear
Y7 Developer roll mass/area delta mg/cm2 −0.45 1.43 Quadratic
Y8 Developer roll charge/mass delta µC/g −9.3 11.6 Quadratic
Y9 Photoconductor charge/mass delta µC/g −11.7 18.7 Quadratic
Y10 Photoconductor mass/area delta mg/cm2 0.54 1.24 Quadratic
Y11 Toner to cleaner average mg/page 3.3 11 Quadratic
Y12 Toner to cleaner at 10K pages mg/page 2.6 9.8 Quadratic
Y13 Solid fill optical density density 1.28 1.86 Quadratic
Y14 Film onset pages 10 25 Quadratic

TABLE 12. Goals and Constraints for Each Response

Response Goal Ymin Ymax di(Ymin) di(Ymax)

Y1 Minimize 1 20 1 0
Y2 Minimize 1 6 1 0
Y3 Minimize 0 3 1 0
Y4 Minimize 0 3 1 0
Y5 Minimize 1 19 1 0
Y6 Mmaximize 13.2 25.5 0 1
Y7 Minimize −0.45 0.2 1 0
Y8 Minimize −9.3 11.6 1 0
Y9 Minimize −11.7 18.7 1 0
Y10 Minimize 0.54 1.24 1 0
Y11 Minimize 3.3 5 1 0
Y12 Minimize 2.6 5 1 0
Y13 Is in range 1.3 1.6 1 1
Y14 Maximize 10 25 0 1

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 445

TABLE 13. Response Value Associated with the Best Solution

Results of
Response optimal settings Goal Ymin Ymax

Y1 10.54 Minimize 1 20
Y2 3.70 Minimize 1 6
Y3 0.19 Minimize 0 3
Y4 2.24 Minimize 0 3
Y5 7.67 Minimize 1 19
Y6 17.45 Maximize 13.2 25.5
Y7 0.18 Minimize −0.45 0.2
Y8 −2.12 Minimize −9.3 11.6
Y9 −2.61 Minimize −11.7 18.7
Y10 0.70 Minimize 0.54 1.24
Y11 7.19 Minimize 3.3 5
Y12 3.58 Minimize 2.6 5
Y13 1.46 Is in range 1.3 1.6
Y14 24.28 Maximize 10 30

sirability for four responses: Y7, Y11, Y12, and Y13.
For the Developer Roll Mass/Area Delta response
(Y7), the engineer prefers a delta less than 0.2. For
both the Toner to Cleaner Average (Y11) and Toner
to Cleaner at 10K Pages response, (Y12), the engi-
neer is concerned about values less than 5 mg/page.
The Solid Fill Optical Density (Y13) response should
be in the range of about 1.3 to 1.6.

Optimization evaluations (using both the GA and
the GRG) revealed that no x setting exists that will
satisfy all response constraints simultaneously. As
such, the engineer wanted to know which response(s)
is (are) not feasible and how close the best solutions
are to feasibility. Because the proposed multiple-
response method uses an unconstrained desirability
function, it is capable of finding the solutions most
nearly satisfying all constraints. The robust GA pa-
rameter settings are used to set up the GA for this
example. Fifty generations were performed. The best
solution found is x = (−0.155, 0.023, 0.857). The cor-
responding response values for this setting of addi-
tives are shown in Table 13.

Using the GA in conjunction with the uncon-
strained desirability function reveals that only the
constraint for Y11 is violated. The engineer can use
this information to examine response Y11. If the re-
gression model used for Y11 is accurate and signifi-
cant, the practitioner should reexamine the goal and
the constraints for this response. If it is found that
the goal and the constraints for this response are

vital, the engineer must conduct further studies to
determine what can be done to bring Y11 to an ac-
ceptable level. If the goal and the constraints for this
response are not vital, the engineer can choose to
change the goal for this response or remove it en-
tirely from the study. Afterwards, another attempt
at optimizing the problem can then be attempted.

This example demonstrates one of the key
strengths of using the proposed optimization tech-
nique. The proposed technique is able to rank order
design space locations x based on their degree of in-
feasibility. The GA can then use this information to
guide its exploration for feasible points. Clearly, the
example could grow more challenging quickly by in-
creasing the number of responses with bounded de-
sirabilities. The advantage of the proposed method in
assessing the design space fairly exhaustively would
probably be even more evident with problems of in-
creased complexity, where conventional optimization
methods may examine only points in the immediate
vicinity of starting locations and fail to converge to
high-quality solutions.

Conclusion and Recommendations

This paper proposes a technique for solving
multiple-response problems in response surface appli-
cations. The approach consists of an unconstrained
desirability function combined with a genetic algo-
rithm. The commonly used Derringer and Suich over-
all desirability function possesses characteristics that

Vol. 36, No. 4, October 2004 www.asq.org

446 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

hinder optimization performance in a genetic algo-
rithm framework. The geometric mean of the indi-
vidual desirabilities prevents the genetic algorithm
from comparing overall desirability values of infeasi-
ble x. The proposed unconstrained desirability func-
tion is suited for the GA by enabling the algorithm
to differentiate between far-from-feasible and nearly
feasible solutions. Delineation is accomplished by in-
corporating a penalty function proportional to the
magnitude of the constraint violation into the over-
all desirability value of each design space point.

A drawback of the genetic algorithm is the tun-
ing required to properly select parameters, including
the parent population size, the ratio of initial parent
population to offspring size, the selection technique,
the crossover rate, the mutation type, and the muta-
tion rate. The performance of the GA is dependent
on the parameters chosen. A robust parameter de-
signed experiment was performed to determine the
parameter settings that performed the best across
a variety of multiple-response problems. The result-
ing method was then compared with a widely used
desirability function alternative, the GRG. The per-
formance study shows that, while the GRG struggles
with more complex multiple-response problems, the
proposed GA technique consistently solves problems
regardless of their complexity.

Using the GA for less complicated multiple-re-
sponse problems can also be beneficial because the
genetic algorithm explores a larger portion of the de-
sign space searching for potential optimum solutions.
A practitioner may find that the optimal solution lies
in too small an operating region and wish to find
a larger operating region that will produce close-to-
optimal performance. The points investigated by the
GA in generations prior to convergence can assist
in mapping the entire solution space and identifying
these promising regions that produce favorable re-
sults and allow flexibility among the factor settings.
This information is not easily accessible with conven-
tional direct or gradient-based search methods.

Finally, the proposed approach to multiple-re-
sponse optimization can be easily modified to incor-
porate loss or distance functions that can include
the important aspect of correlations among the re-
sponses. These distance or loss functions would just
replace the desirability function as the fitness in the
genetic algorithm. The approach detailed in this pa-
per for modifying the objective function and tuning
the GA could be appropriately applied.

Appendix:
An Overview of Genetic Algorithms

Genetic algorithm (GA) is a term used for a search
technique that incorporates the concepts of natural
selection in its iterative steps. GAs use historical
information from previously examined solutions in
selecting new search points where improved perfor-
mances are expected. GAs differs from conventional
optimization algorithms in that they examine a pop-
ulation of points at each iteration rather than one
point and they use the objective function (fitness
function in GA terminology) rather than the deriva-
tive or gradient directly in the search.

Throughout its run, the GA maintains a popula-
tion pool of potential solutions, called a generation,
where each potential solution is referred to as chro-
mosomes. The GA starts off by randomly generat-
ing a population of chromosomes that represents the
initial mating pool. Generally, a larger initial popu-
lation increases the potential to explore the solution
space thoroughly; however, it also increases compu-
tation time and slows down convergence. The GA
then evaluates the quality of each individual chro-
mosome using a fitness function. Once the fitness
of each chromosome is evaluated, a selection process
takes place to determine which chromosomes will be
used as the parents of the next generation. The GA
uses various evolving operations to create a new gen-
eration of chromosomes (called offspring) that hope-
fully will take on the positive characteristics of their
parents and thus produce near-optimum solutions.
Evolving operations are categorized in two different
classes: recombination, and mutation. Future gener-
ations are created performing selection, recombina-
tion, and mutation iteratively until a stopping cri-
terion has been met. Some commonly used stopping
criteria are to terminate after a predetermined num-
ber of iterations, when there has been no change in
the fitness value of the best solution after a prede-
termined number of iterations, or when a large per-
centage of the chromosomes in the population pool
are the same.

The flow chart in Figure A.1 illustrates one way
the steps of the GA can be implemented.

The following sections will provide a brief expla-
nation of the steps and procedures often used in the
genetic algorithm. A more complete description can
be found in Goldberg (1989) and Herendia-Langner
et al. (2003).

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 447

FIGURE A.1. Genetic Algorithm Flow Chart.

Coding

The initial step in the implementation of the ge-
netic algorithm is the encoding of potential solutions.
The most widely used method for encoding solutions
is to represent every solution as a binary (0, 1) string.
For example, consider a response surface empirical
model that serves as an objective function for the
GA,

ŷ = 10x2
1 + 5x1x2 − 25x2

2.

A potential solution can be represented as a binary
string, where the first half of the string represents the
value for x1 and the other the value for x2. Each (0, 1)
value in the chromosome is referred to as a gene. For
example, the chromosome

is partitioned into two halves

these strings are then converted from base 2 to base
10 to yield

x1 = 40 and x2 = 384.

The length of a chromosome increases as the num-
ber and magnitude of decision variables increases.
Due to this structure, the computing resources need-
ed to run the GA using binary encoding can make
this procedure inefficient. An alternative to binary
coding is to use real-value entries for the genes. The
following example uses real-value coding. Consider a
response surface empirical model,

ŷ = 174.93 + 23.38x1 + 3.62x3 − 19.00x2x3.

A chromosome in this problem could be a three-
dimensional vector where each entry represents the
value (in coded units) for each decision variable.

The coding is very simple to understand in this
case. While the procedure for recombination and mu-
tation differ slightly, the basic concepts and difficulty
remain the same.

Recombination

Recombination refers to the exchange of genes be-
tween parent chromosomes to make new offspring
that hopefully will take on the positive character-
istics of their parents. The most common recombina-
tion operation is called the crossover. The crossover
operation randomly takes a pair of chromosomes
(parents), splits the chromosomes at the same po-
sitions (the crossing sites), and creates an offspring
chromosome by combining the alternate portions of
the parent individuals. The following is an example
of a one-point crossover.

Multiple crossover points are implemented in the
same way:

Vol. 36, No. 4, October 2004 www.asq.org

448 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

There are many other recombination techniques
that can be used, such as using more than two
parents in the crossover procedure. Another opera-
tion, called generalized intermediate recombination,
makes each entry of the offspring chromosome a com-
bination of both parents rather than a copy of just
one. For example, in the previous illustration, the
first entry from parents 1 and 2 are 2500 and 1850,
respectively; the offspring entry could simply be the
average of the two, 2175.
The GA cannot rely on recombination alone to

search the entire solution space efficiently. Doing so
will cause the genetic algorithm never to venture out-
side the search space created by the initial population
and potentially cause the algorithm to get trapped in
a local optimum (Heredia-Langner (2001)). To pre-
vent premature convergence, the GA generally uses
an evolving operation known as mutation.

Parent/Offspring Ratio

The purpose of the recombination procedure is
to help explore the entire search space thoroughly.
Thorough exploration can successfully be done if you
allow each parent to interact with other chromosomes
as many times as is computationally possible (see
Figure A.2).

Using single-point crossover, two parent chromo-
somes with string lengths of four can be recombined
to produce a total of six different offspring chromo-
somes. If the mating process is set up to only allow a
parent chromosome to interact once during the mat-
ing process, the large potential knowledge that would
have been gained from allowing that parent to inter-
act with potentially better parents is lost. It would
be ideal to let each parent interact with every other
chromosome in every possible combination. Unfor-
tunately, due to the length of chromosome strings
and the large number of parents in a population, al-
lowing parents to interact this extensively is com-
putationally expensive and sometimes impossible. A

FIGURE A.2. All Possible Combinations from One Point

Crossover.

technique originally introduced by Schwefel (1997) is
to generate an offspring pool size that is a multiple
of the parent pool size. Schwefel has recommended
ratios of 1:5 or 1:6 to be used. There is an optimal
parent/offspring ratio that yields the most reason-
able compromise between computational effort to be
invested and progress rate gained for every problem
(Bäck, 1996).

Mutation

Mutation applies small random changes to one or
several of the genes in a chromosome in order to pro-
mote variation and diversity in the population. Mu-
tation helps widen the search space and explore more
of the response surface. Several mutation procedures
have been proposed in the literature, and three com-
mon mutation operations are discussed in this paper:
uniform, multiple uniform mutation, and Gaussian
mutation.

The uniform mutation operation randomly selects
a gene from the parent chromosome and replaces it
with a random number within the range of the so-
lution space. The following example illustrates this
process:

The multiple uniform mutation operation follows
the same methodology as the uniform mutation oper-
ation except that it is applied to several of the genes
in a chromosome. The number of genes selected for
mutation is chosen randomly.

Journal of Quality Technology Vol. 36, No. 4, October 2004

A GENETIC ALGORITHM APPROACH TO MULTIPLE-RESPONSE OPTIMIZATION 449

FIGURE A.3. Gaussian Mutation on a Hypothetical Ob-

jective function.

The Gaussian mutation operation slightly changes
all genes of the chromosome such that the resulting
chromosome lies somewhere near the neighborhood
of its parent. The Gaussian mutation operation helps
the GA converge faster to a solution but also in-
creases the chance of stopping at a local optimum.
A general description will be provided here. A full
description can be found in Bäck (1996).

The changes performed to the genes are normally
distributed with mean zero and standard deviation
σi, where i is the ith gene in a chromosome of length
l. The setting for the standard deviation, σi, is deter-
mined by the user and allows the user to define the
appropriate magnitude of the change for every gene
involved. Gaussian mutation places the offspring in
the hyperellipsoids of constant probability defined by
the multivariate normal distribution specified. Figure
A.3 is from Heredia-Langner et al. (2003) and illus-
trates the effect Gaussian mutation has on the af-
fected chromosomes. The thick ellipses represent con-
tours of equal objective value. The dots at the center
of the small ellipses are the original chromosomes
before mutation. The offspring chromosomes will be
located somewhere in the normally distributed neigh-
borhood, indicated here by the small ellipsoids.

Selection

Once new offspring chromosomes are created by
the evolving operations described in the previous sec-
tions, a procedure must then be implemented to de-
termine which chromosome will be used as the par-
ents of the following generation. As with recombi-
nation and mutation, there are several procedures to
consider. The following is a brief explanation of some
of those procedures.

Proportionate reproduction is a term used to de-

scribe several different schemes that choose individ-
uals for reproduction due to their fitness value. The
general procedure starts by ordering the population
according to their fitness and then by using some
biased probabilistic method. The chromosome with
better fitness values stands a better chance of being
selected for reproduction than those with poor fit-
ness values. This method gives every chromosome in
the population a chance to reproduce even if it has a
poor fitness value. The argument is that even a poor
chromosome can have good genes.

Ranking selection is a deterministic process as op-
posed to the probabilistic process of proportionate
reproduction. In this scheme, a population is sorted
from best to worst until the desired number of par-
ents is reached. Only the top chromosomes get to re-
produce despite the fact that some poor performing
chromosome may possess good genes.

The tournament selection procedure is a combi-
nation of the previous two described methods. In
this procedure, the population is shuffled into groups
of chromosomes randomly. Then the best individ-
uals are chosen from each group. This procedure
is repeated until the required number of parents is
reached.

Replacement Strategy

There are two widely used methodologies for re-
placing the parent pool with newly created offspring,
generation gap and steady state. Generation gap re-
placement requires all parent chromosomes to be
replaced by the next generation of offspring. Most
early uses of the genetic algorithm used this strat-
egy. Typically, an elitist strategy (where the best par-
ent is kept) is implemented in conjunction with the
generation gap methodology. More recently, steady-
state replacement has become more popular (Mayer
(2001)). Under the steady-state replacement strat-
egy, offspring chromosomes are compared with the
parent pool right after creation and the poorest per-
forming chromosomes are driven to extinction imme-
diately. Hence, only the best chromosomes survive
and good performing offspring chromosomes are im-
mediately available for reproduction.

Concluding Remarks on Genetic Algorithms

Determining the appropriate operators and pa-
rameter settings to use is key to the GA optimiza-
tion performance. The proper choices for operators
and parameter settings are problem specific. A prob-
lem that is highly nonlinear and heavily constrained

Vol. 36, No. 4, October 2004 www.asq.org

450 F. ORTIZ, JR., J. R. SIMPSON, J. J. PIGNATIELLO, JR., AND A. HEREDIA-LANGNER

can benefit from GA parameter settings that pro-
mote more exploration and less convergence, thus
improving the likelihood of finding a feasible solu-
tion and minimizing the chances of converging to a
suboptimal solution. A problem that is not as com-
plex should use GA parameter settings that promote
convergence and allow the GA to settle quickly to
the best solution. Using a robust parameter design
approach can be useful in determining the proper
parameter settings that perform the best across a
variety of problems.

Acknowledgements

The authors would like to thank the editor and the
two anonymous referees for their helpful suggestions
on an earlier draft of this paper.

References

Bäck, Thomas. (1996). Evolutionary Algorithms in Theory

and Practice. Oxford University Press, Oxford, New York.

Borkowski, J. J. (2003). “Using A Genetic Algorithm to Gen-

erate Small Exact Response Surface Designs”. Journal of

Probability and Statistical Science 1(1), pp. 65–88.

Carlyle W. M.; Montgomery, D. C.; and Runger, G. C.

(2000). “Optimization Problems and Methods in Quality

Control and Improvement”. Journal of Quality Technology

32, pp. 1–17.

Del Castillo, E. and Montgomery, D. C. (1993). “A Non-

linear Programming Solution to the Dual Response Prob-

lem”. Journal of Quality Technology 25, pp. 199–204.

Del Castillo, E.; Montgomery, D. C.; and McCarville,

D. R. (1996). “Modified Desirability Functions for Multiple

Response Optimization”. Journal of Quality Technology 28,

pp. 337–345.

Derringer, G. and Suich, R. (1980). “Simultaneous Opti-

mization of Several Response Variables”. Journal of Quality

Technology, 12, pp. 214–219.

Gill, P. E.; Murray, W.; and Wright, M. A. (1981). Prac-

tical Optimization. Academic Press, London, England.

Goldberg, D. E. (1989). Genetic Algorithm in Search, Opti-

mization and Machine Learning. Addison-Wesley, Reading,

MA.

Harrington, E. C., Jr. (1965). “The Desirability Function”.

Industrial Quality Control 21, pp. 494–498.

Heredia-Langner, A. (2001). “Genetic Algorithms in Qual-

ity Control”. Ph.D. dissertation, Arizona State University.

Heredia-Langner, A.; Carlyle W. M.; and Montgomery,

D. C. (2003). “Genetic Algorithms for the Construction of

D-Optimal Designs”. Journal of Quality Technology 35(1),

pp. 28–46.

Holland, J. (1974). Adaptation in Natural and Artificial Sys-

tems. The University of Michigan Press, Ann Arbor, MI.

Khuri, A. I. and Conlon, M. (1981). “Simultaneous Opti-

mization of Multiple Responses Represented by Polynomial

Regression Functions”. Technometrics 23, pp. 363–375.

Kros J. F. and Mastrangelo, C. M. (2001). “Comparing

Methods for Multi-Response Design Problem”. Quality and

Reliability Engineering International 17, pp. 323–331.

Mayer, D. G.; Belward, J. A.; and Burrage, K. (2001).

“Robust Parameter Settings of Evolutionary Algorithms for

the Optimization of Agricultural Systems Models”. Agricul-

tural Systems 69, pp. 199–213.

Montgomery, D. C. (1999). “Discussion of ’Response Sur-

face Methodology-Current Status and Future Directions’ by

Myers, R. H.”. Journal of Quality Technology 31, pp. 45–46.

Myers, R. H. andMontgomery, D. C. (2002). Response Sur-

face Methodology: Process and Product Optimization Using

Designed Experiments, 2nd ed. John Wiley & Sons, Inc.,

New York, NY.

Nelder, J. A. and Mead, R. (1965). “A Simplex Method for

Function Minimization”. Computing Journal 7, pp. 308–313.

Pignatiello, J. J., Jr. (1993). “Strategies for Robust Multi-

response Quality Engineering”. IIE Tansactions 25, pp. 5–

15.

Reed, P.; Minsher, B.; and Goldberg, D. E. (2000). “De-

signing a Competent Simple Genetic Algorithm for Search

and Optimization”. Water Resources Research 36(12) pp.

3757–3761.

Reklaitis, G. V.; Ravindran, A.; and Ragsdell, K. M.

(1983). Engineering Optimization, Methods and Applica-

tions. John Wiley & Sons, New York, NY.

Schwefel, H. P. (1997). “Collective Phenomena in Evolu-

tionary Systems”. Preprints of the 31st Annual Meeting of

the International Society for General System Research, Bu-

dapest, vol. 2, pp. 1025–1033.

Vining, G. G. (1998). “A Compromise Approach To Multiple

Optimization”. Journal of Quality Technology 30, pp. 309–

313.

Wehrens, R.; Pretsch, E.; and Buydens, L. M. C. (1999).

“The Quality of Optimization by Genetic Algorithms”. An-

alytica Chimica Acta pp. 265–271.

∼

Journal of Quality Technology Vol. 36, No. 4, October 2004

