Class x

Mathematics

Chapter- 2

Polynomials

1. Define polynomials.
2. Write the different types of polynomials. Give one example of each.
3. Define zeros of a polynomials.
4. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients.
A) $x^{2}-2 x-8$
B) $4 x^{2}-4 x-3$.
C) $5 x^{2}-4-8 x$.
5. Find the quadratic polynomials, the sum of whose zeros is 0 and their products is -1 . Hence, find the zeros of the polynomials.
6. Find the quadratic polynomials whose zeros are 2 and -6 . Verify the relationship between the coefficient and the zeros of the polynomials.
7. Find the quadratic polynomials whose zeros are $2 / 3$ and $-1 / 4$. Verify the relation between the coefficient and zeros of the polynomial.
8. If $(x+a)$ is a factor of $\left(2 x^{2}+2 a x+5 x+10\right)$ then find the value of a.
9. If $2 / 3$ and -3 are the zeros of the quadratic polynomial $\left(a x^{2}+7 x+b\right)$ then find the value of a and b .
10. Apply division algorithm to check if $g(x)=x^{2}-3 x+2$ is a factor of the polynomial $f(x)=x^{4}-2 x^{3}-x+$ 2.
11. Obtain all zeros of the polynomial ($2 x^{3}-4 x-x^{2}+2$), if two of it's zeros are $\sqrt{ } 2$ and $-\sqrt{ } 2$.
12. Verify that $3,-2,1$ are the zeros of the cubic polynomial $p(x)=x^{3}-2 x^{2}-5 x+6$ and verify the relationship between it's zeros and coefficients.
13. Find a cubic polynomial whose zeros are $2,-3$, and 4 .
14. If the polynomial $\left(x^{4}+2 x^{3}+8 x^{2}+12 x+18\right)$ is divided by another polynomial $\left(3 x^{2}+5\right)$, the remainder comes out to $b e(p x+q)$. Find the value of p and q.
15. If 1 and -2 are two zeros of the polynomial ($x^{3}-4 x^{2}-7 x+10$), find it's third zero.
16. If 2 and -2 are two zeros of the polynomial $2 x^{4}-5 x^{3}-11 x^{2}+20 x+12$, find all the zeros of the given polynomial.
17. Obtain all the zeros of the polynomial $x^{4}+x^{3}-14 x^{2}-2 x+24$. If two of it's zeros are $\sqrt{ } 2$ and $-\sqrt{ } 2$.
18. Find all the zeros of $2 x^{4}-13 x^{3}+19 x^{2}+7 x-3$. If two of it's zeros are $(2+\sqrt{ } 3)$ and $(2-\sqrt{ } 3)$.

19 find the quotient and remainder when :
A) $f(x)=x^{3}-3 x^{2}+5 x-3$ is divided by $g(x)=x^{2}-2$.
B) $f(x)=x^{4}-5 x+6$ is divided $g(x)=2-x^{2}$

