
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2253 | P a g e

QUADRATIC EQUATION SOLVER
 H S RAJATH1, HEMACHANDRA SAGAR S2, RAKESH H R3, SANDEEP R4

1DEPARTMENT OF ELECTRONICS AND COMMUNICATION
2VIDYAVARDHAKA COLLEGE OF ENGINEERING

 MYSURU. KARNATAKA, INDIA

(E-mail: rajathgowda100@gmail.com, hemachandra.sagar.s@gmail.com, rakeshhassan83@gmail.com,

Sandeep.ece@vvce.ac.in,)

Abstract— In this paper we demonstrate a prototype of

quadratic equation solver using machine learning that allows

user to write the coefficient of a quadratic equation using

mouse on the window screen and displays the solution. It

provides both real and imaginary roots of the equation. The

prototype makes use of Convolution Neural Network (CNN)

for object detection and Support Vector Machine (SVM) for

image classification. Tools used in propose system are Python
IDLE. The collection of datasets is from MNIST and

handwritten digit images are captured and fed. The efficiency

of the proposed prototype is around 90%-95%.

Keywords—Convolution Neural Network (CNN), Support

Vector Machine (SVM), Histogram of Oriented Gradient

(HOG), Modified National Institute of Standard and

Technology (MNIST).

Introduction

The quadratic equation is an equation with second degree

meaning it contains at least one term that is squared. The

standard form of the quadratic equation is ax2+bx+c = 0,

where a, b, and c being constants and x is an unknown

variable. Quadratic equations are a ubiquitous part of student
life. Generally, one has to make use of a pen and paper or

calculator to solve quadratic equations. In pen and paper

approach it is difficult to solve complex equations and to get

imaginary roots. Where as in calculator the equation needs to

be entered in a specific format to get roots of real and

imaginary and it is time consuming. Our goal is to develop a

prototype that bridges the gap between the technology and the

traditional pen and paper approach in an impulsive manner. It

allows user to write the coefficients of the quadratic equation

using mouse on the display of laptop and solution will be

calculated and displayed. In general handwriting recognition is
classified into two types as off-line and on-line character

recognition. Off-line character recognition involves automatic

conversion text into an image into letter codes which are

usable within computer and text processing applications. Off-

line handwriting recognition is more difficult as different

people have different handwriting styles. But, in the on-line

system on-line character recognition takes place once the user

writes the coefficient of equation the digit gets captured as

output image and get recognized. Initially, we limit the scope

of the task to solve equation of degree 2. Mobile applications

for solving such equations do exist. However, these apps are

essentially templates for pre-defined equations where users

enter numbers in static text boxes. While the constrained

interface ensures robust capture of the input, it is cumbersome
for the user, who must click multiple times to input an

equation. A more intuitive approach would be the use of

prototype to snap a picture of the written and text expression

to get the respective roots.

I. LITERATURE SURVEY

A. Camera Based Equation Solver for Android Devices

In the existing method, they demonstrate an Android based

mobile application equation solver that takes a camera image

of an equation and displays the solution. The program is

capable of solving simple arithmetic equations (addition,

subtraction, and multiplication) and systems of linear

equations.

The approach for solving an equation contained in an image is

as follows:

Image Capture: Within the mobile application, the user is

given two options - “Solve Printed” or “Solve Hand Written”

which capture an image and initiate two different Hypertext
Preprocessor (PHP) scripts on the server.

Binarization and Segmentation:

Binarization and segmentation are crucial steps in identifying

the regions of interests. Otsu’s adaptive thresholding was

initially used. However, the processing time was fairly slow

and the binarization was unsatisfactory for poor lighting

conditions. Instead, the image is binarized using Maximally

Stable Extremal Regions (MSER). Regions that are either too

small or too large are excluded from the candidate list.

Regions in the binarized image are labeled, and their centroids
and bounding boxes calculated. Individual lines (a single

equation or expression) are segmented out by plotting the y-

centroids of the regions in a histogram with a bin size of 20

pixels. The average y-centroid of each line is assumed to be

the maximum of the well-separated peaks. The midpoint

mailto:rajathgowda100@gmail.com
mailto:hemachandra.sagar.s@gmail.com
mailto:rakeshhassan83@gmail.com
mailto:Sandeep.ece@vvce.ac.in

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2254 | P a g e

between each line is then calculated and used to segment the

binarized image into images of individual lines.

Recognize Text: Text recognition is divided into two separate

classes- computer printed expressions and hand written

expressions. Computer printed expressions are processed with

Tesseract [3], a free OCR Handwritten expressions are
processes with a SVM prediction model.

Computer Text Recognition: Recognizing computer

generated text is considerably easier than recognizing

handwritten text. Due to the predictable structure (font style)

of the characters, a template matching algorithm can be used.

The free OCR engine Tesseract was chosen for printed text

recognition. The accuracy of optical text recognition

algorithms improves significantly if perspective distortion is

first corrected. The topline and baseline of the regions in the

segmented expression are found. The segmented line image is

shown in Figure 1. (a). The RANSAC MATLAB Toolbox is

used to compute RANdom SAmple Consensus (RANSAC)
fits to the top-line and baseline as shown in Figure 1. (b). A

bounding box for the distorted text is found, and the four

corner points identified. Using the leading edge of this

bounding box, the desired, corrected bounding box is then

calculated, as shown in Figure 1. (c). A projective affine

transformation that maps the four corner points of the distorted

box to the desired box is then used to correct for the

perspective distortion. The resulting image after correction, as

shown in Figure 1. (d), is then passed to the Tesseract OCR

engine.

Fig 1. (a) Segmented line image showing perspective distortion. (b) RANSAC

fits to the top line and the baseline. (c) Top: The detected, distorted bounding

box. Bottom: The desired, corrected bounding box. (d) Corrected image after

projective affine transformation is applied to the distorted text.

Handwritten Text Recognition: Though Tesseract performed
well for printed text, with a detection rate better than 85% for

fonts within its database. However, its detection rates for

handwritten text is below 50%, likely due to size variations in

the writing and a lack of matching fonts in its database. A

machine learning algorithm based on SVM was applied

instead. SVM is a supervised learning method that analyzes

data and recognizes patterns. It is often used for classification

and regression analysis. The prediction model was created

using libSVM, a set of tools for training and modeling SVM

developed. In order to create a training dataset, character

images must first be converted into vector form. After line
segmentation, region labels are used to determine the

bounding. A small amount of padding is added to the border,

as shown in Figure 2. (a). The segmented character is down

sampled to 32 × 32 pixels (by deleting the alternative rows

and columns) and further divided into 64 4 ×4 regions, with

region 1 at the top left and region 64 at the bottom right. The

count in each region is the determined vector value, as shown

in Figure 2. (b). This conversion thus results in a 64
dimensional vector for each character image. Initially, the

optical recognition of handwritten digit data set was used as

the training set. The 64 dimensional vector conversion of this

data set was obtained. After training libSVM, a test of their

handwritten digits resulted in a low prediction rate of between

20-30%. So, they decided to create a new training data set

based on our own handwriting. A simple application for taking

a camera image of a single character, segmenting and down

sampling the character, calculating the corresponding 64

dimensional vector, and writing it to an output text file, was

created to generate a training dataset. Approximately 20

entries for each character in the dictionary was entered as a
training data set.

Fig 2. a) Segmented character from input image. (b) Character down sampled

to 32×32 pixels. The image is then further divided into 64 4×4 regions, with

region 1 at the top left and region 64 at the bottom right. The count in each

region is the vector value.

User confirmation and solve equation:

Even for a system with a single character recognition rate of

95%, the probability of detecting a set of equations with 12

characters completely correctly is only slightly above 50%. It

is thus critical to provide the user with a means to confirm or

to edit the recognized text. Upon confirmation, the expression

is sent back to the server where it is solved. Once the user

confirms the equation, the equation is converted into a

MATLAB-readable expression by inserting missing operators.
For example, the equation ‘2a + 5b = 6’ is converted to ‘2a +

5b = 6’and the equation ‘a2 + a = 3’ is converted to ‘a2+a =

3’. After parsing, MATLAB functions eval() and solve() are

invoked to solve the given expression. eval() is used for

expressions with no variables such as ‘123_4563+789’

and solve() is used for a system of equations. The resulting

solution is then sent back to the

Android device.

Experimental Results:

Tesseract OCR by limiting the number of alphabets to `a’, `b’,

and ‘x’, the spell-check function of Tesseract is essentially
circumvented. Segmenting and detecting an entire line of text

was actually more accurate than segmenting and detecting

individual characters. Tesseract performs well for fonts that

exist in its database, with an accuracy in the range of 80-85%.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2255 | P a g e

The notable exceptions were the characters ‘0’, ‘�’, ‘=’, and

‘a’. The character ‘0’ was at times mistakenly identified as

‘()’. The character ‘a’ was at times mistakenly identified as

‘3’or ‘8’. The characters ‘�’ and ‘=’ were at times completely

absent from the detection.

SVM handwriting recognition with SVM has a detection rate

of 80-85% for our handwriting. It is expected that the

accuracy will be considerably lower for individuals not in

training dataset. A few outliers are noted here, the characters

‘0’, ‘3’, and ‘1’ are at times mistakenly identified as ‘a’ or ‘6’,

‘5’, and ‘7’ respectively. Problems detecting the mathematical

symbols ‘-’ and ‘+’ appear to arise from the fact that their size

is quite different from other characters within the dictionary

II. EQUATIONS

In elementary algebra, the quadratic formula is the solution of
the quadratic equation. There are other ways to solve the

quadratic equation instead of using the quadratic formula, such

as factoring, completing the square, or graphing. Using the

quadratic formula is often the most convenient way.

The general quadratic equation is

Here x represents an unknown, while a, b, and c are constants

with a not equal to 0. One can verify that the quadratic

formula satisfies the quadratic equation by inserting the

former into the latter. With the above parameterization, the

quadratic formula is:

Each of the solutions given by the quadratic formula is called

a root of the quadratic equation.

III. PROPOSED METHOD

In order to overcome the above drawback, present in existing
method. The quadratic equation solver prototype is developed.

The process involved are:

A. Capture an image

The webcam present in laptop /local desktop is used to capture

the sample image of any digit of selecting appropriate

resolution of their choice.

B. Conversion of color image to gray scale image

There are two methods for converting color image to greyscale

image: Weighted method or luminosity method. We have seen

the problem that occur in the average method. Weighted
method has a solution to that problem. Since red color has

more wavelength of all the three colors, and green is the color

that has not only less wavelength then red color but also green

is the color that gives more soothing effect to the eyes. It

means that we have to decrease the contribution of red color,

and increase the contribution of the green color, and put blue

color contribution in between these two. So the new equation

that form is:

 grayscale image = ((0.3×R) + (0.59×G) + (0.11×B)).

According to this equation, Red has contribute 30%, Green

has contributed 59% which is greater in all three colors

and Blue has contributed 11%. Applying this equation to the

image, we get the image as shown in Fig 4.

C. Gaussian Blur

During this conversion from color image to graysacale image,

the image loses the characteristics like sharpness, edges and

shadow and also presence of Gaussian noise. Therefore we use

Gaussian filter to eliminate the Gaussian noise and smoothens

the edges. There are many ways to perform the edge detection.

Fig 3. Original image

Fig 4. Grayscale image

However, it may be grouped into two categories, that are

gradient and Laplacian. The gradient method detects the edges

by looking for the maximum and minimum in the first

derivative of the image. The Laplacian method searches for

the zero crossings in the second derivative of the image to find

edges. However, in calculating 2nd derivative is very sensitive

to noise. This noise should be filtered out before edge
detection. To achieve this, “Laplacian of Gaussian” is used.

This method combines Gaussian filtering with the Laplacian

for edge detection. In Laplacian of Gaussian edge detection

uses three steps in its process. The First one is filter which is

the image object. Secondly, it enhances the image object and

finally detects. Here, Gaussian filter is used for smoothing and

the second derivative is used for the enhancement step. In this

detection criteria, the presence of a zero crossing, In the

second derivative with the corresponding large peak in the

first derivative. In this approach, at first the noise is reduced

by convoluting the image with a Gaussian filter. The isolated
noise points and small structures are filtered out. However,

the edges are spread with smoothing. Those pixels are locally

maximum gradient which are considered as edges by the edge

detector in which the zero crossings of the second derivative

are used. The zero crossings are only insignificant edges to

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2256 | P a g e

avoid the detection that corresponds as the first derivative is

above some thresholds, which are selected as edge points. In

this the LoG mainly uses two methods which are

mathematically similar. At first, let us convolve the image

object with Gaussian smoothing filter and then compute with

the Laplacian result. Secondly, we shall convolve the image
object with the linear filter which is the Laplacian of the

Gaussian filter. This is also the case in the LoG. Smoothing

(filtering) is performed with a Gaussian filter. The

enhancement is done through transforming edges into zero

crossings and the detection is done by detecting the zero

crossings for the various samples.

Fig 5. The two dimension Laplacian of Gaussian (LoG)

D. Applying Contour

A contour is a closed curve of points or line segments,

representing the boundaries of an object in an image. The

input to the contour finding process is a binary image, which

we will produce by first applying thresholding and / or edge
detection. active contours (also known as snakes or

deformable contours) and active surfaces (also known as

deformable surfaces). The active models deform on the image

domain and capture a desired feature by minimizing an energy

functional subject to certain constraints. The energy functional

usually contains two terms: an internal energy, which

constrains the smoothness and tautness of the model, and an

external energy, which attracts the elastic model to the

features of interest (FOI). The contoured image is then

segmented by threshold algorithm.

Fig 6. Example of applying contour

E. Image segmentation

Image segmentation is an important processing step in many

image, video and computer vision applications.

Extensive research has been done in creating many different

approaches and algorithms for image segmentation, but it is

still difficult to assess whether one algorithm produces more

accurate segmentations than another, whether it be for a

particular image or set of images, or more generally, for a

whole class of images. To date, the most common method for

evaluating the effectiveness of a segmentation method is

subjective evaluation, in which a human visually compares the

image. segmentation results for separate segmentation
algorithms, which is a tedious process and inherently limits

the depth of evaluation to a relatively small number of

segmentation comparisons over a predetermined set of

images.

Fig 8. The segmentation process

Another common evaluation alternative is supervised

evaluation, in which a segmented image is compared against a

manually segmented or pre-processed reference image.

Evaluation methods that require user assistance, such as

subjective evaluation and supervised evaluation, are infeasible

in many vision applications, so unsupervised methods are

necessary. Unsupervised evaluation enables the objective
comparison of both different segmentation methods and

different parameterizations of a single method, without

requiring human visual comparisons or comparison with a

manually-segmented or pre-processed reference image.

Unsupervised methods are crucial to real-time segmentation

evaluation, and can furthermore enable self-tuning of

algorithm parameters based on evaluation results.

F. Convolution Neural Network

Fig 9. The layers of convolution neural network

In deep learning, a convolutional neural network (CNN, or

ConvNet) is a class of deep neural networks, most commonly

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2257 | P a g e

applied to analyzing visual imagery. CNNs are regularized

versions of multilayer perceptrons. Multilayer perceptrons

usually refer to fully connected networks, that is, each neuron

in one layer is connected to all neurons in the next layer. The

“fully-connectedness” of these networks make them prone to

overfitting data. Typical ways of regularization include adding
some form of magnitude measurement of weights to the loss

function. However, CNNs take a different approach towards

regularization, they take advantage of the hierarchical pattern

in data and assemble more complex patterns using smaller and

simpler patterns. Therefore, on the scale of connectedness and

complexity, CNNs are on the lower extreme. They are also

known as shift invariant or space invariant artificial neural

networks (SIANN), based on their shared-weights architecture

and translation invariance characteristics.

G. Support Vector Machine
.

Support vector machines are based on the Structural Risk

Minimization principle from computational learning theory.

The idea of structural risk minimization is to find a hypothesis

h for which we can guarantee the lowest true error. The true

error of h is the probability that h will make an error on an

unseen and randomly selected test example. An upper bound

can be used to connect the true error of a hypothesis h with the
error of h on the training set and the complexity of H

(measured by VC-Dimension), the hypothesis space

containing h. Support vector machines find the hypothesis h

which (approximately) minimizes this bound on the true error

by effectively and efficiently controlling the VC-Dimension of

H. SVMs are very universal learners.

Fig 10. SVM Classifier.

H. TRAINING AND TESTING MODELS

The image obtained after classification get stored in respective

datasets and this dataset present in the database get trained for

about 8-10 epochs. Here training model consists of 60% of

original dataset. It is categorized into two parts:

1. To build up our prediction algorithm and adjust

weight on neural network.

2. Our algorithm tries to tune itself to the features of the

training dataset.
Finally, the trained datasets are compared with testing dataset.

The testing model consists of 20% of original dataset. This is

done to determine how well the algorithm is trained and to test

the final output in order to confirm the actual predictive power

of the network.

I. Graphical User Interface

Graphical User Interface is a form of user interface that allows

users to interact with electronic devices through graphical

icons and visual indicators such as secondary notation, instead

of text based user interface, typed command labels or text

navigation, which require commands to be typed on a
computer keyboard. Here GUI is developed to enter the

coefficients of the quadratic equation. Since the quadratic

image is captured initially and digits or coefficients will be

recognized and be placed in the respective slot.

Figure 11. The hierarchy of segmentation evaluation methods. Our emphasis

in this project is on the unsupervised objective evaluation.

IV. RESULTS AND DISCUSSION

The detection rate of individual characters in the dictionary

dictates the overall probability of correctly identifying an

equation. For testing, two sets of equations were used, one

printed from the computer and the other handwritten, resulting

in approximately 1000 instances of each character within the

dictionary.
The real and imaginary roots obtained from solving equation

is displayed on output window is shown
in following Figure.

Figure 11. Initial output screen.

Figure 12. Image of real roots obtained.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2258 | P a g e

Figure 13. Image of imaginary roots obtained.

.

V. APPLICATIONS

Quadratic functions are more than algebraic curiosities they

are widely used in science, business, and engineering. The U

shape of a parabola can describe the trajectories of water jets

in a fountain and a bouncing ball, or be incorporated into

structures like the parabolic reflectors that form the base of

satellite dishes and car headlights. Quadratic functions help

forecast business profit and loss, the course of moving objects,
and assist in determining minimum and maximum values.

Most of the objects we use every day, from cars to clocks,

would not exist if someone, somewhere hadn’t applied

quadratic functions to their design. We commonly use

quadratic equations in situations where two things are

multiplied together and they both depend of the same variable.

For example, when working with area, if both dimensions are

written in terms of the same variable, we use a quadratic

equation. Because the quantity of a product sold often depends

on the price, we sometimes use a quadratic equation to

represent revenue as a product of the price and the quantity
sold. Quadratic equations are also used when gravity is

involved, such as the path of a ball or the shape of cables in a

suspension bridge.

VI. CONCLUSION AND FUTURESCOPE

In this project, we describe a prototype for solving an image

containing quadratic equation using machine learning. The
system captures the image containing quadratic equation both

in computer font and handwritten form. Then system performs

the image processing, text recognition, and equation solving

algorithms. Once the image is captured, the color image is

converted into grayscale image using luminosity method.

Feature extraction takes place using HOG, noise and

interference are removed by using Gaussian filter, contour is

applied to the filtered image and image segmentation is

performed using unsupervised segmentation algorithm, then

the segmented image is converted into binary image by

applying threshold. The recognized image is classified using

SVM model and the recognized coefficient numbers are

interfaced to output GUI window to obtain the roots of the

equation.
The prediction rate of the SVM model is highly dependent on

the training dataset. Currently, thetraining dataset only

contains our handwriting. Ideally, a larger training dataset

from multiple individuals should be collected, to

accommodate for wide ranging styles in writing. An extension

would be for the system to train itself. Each time the user

sends the confirmation for an equation, the corresponding 64

dimensional vectors for the detected characters can be added

to the existing training dataset. This would allow the training

dataset to grow quickly and efficiently without the need for

separate training. The second improvement would be to make

the application a stand-alone device by porting the existing
server code to OpenCV on the mobile device. The idea can

also be extended to text recognition on a tablet device with a

stylus, which would would provide a seamless work flow for

the user.

 REFERENCES

[1] A. Sikka and B. Wu, “Camera based equation solver for android

devices,” EE368, Jun 2012.J.

[2] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” in European conference
on machine learning. Springer, Dec 1998, pp. 137–142.

[3] A. R. Ahmad, M. Khalia, C. Viard-Gaudin, and E. Poisson,
“Online handwriting recognition using support vector machine,”
in 2004 IEEE Region 10 Conference TENCON 2004. IEEE,

Aug 2004, pp. 311–314.
[4] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J.

Schmidhuber, “Flexible, high performance convolutional neural
networks for image classification,” in Twenty-Second
International Joint Conference on Artificial Intelligence, Oct

2011.
[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for

human detection,” in international Conference on computer
vision & Pattern Recognition (CVPR’05), vol. 1. IEEE

Computer Society, Apr 2005, pp. 886–893.

HEMACHANDRA SAGAR S RAKESH H R H S RAJATH

