
Potential-Aware Imperfect-Recall Abstraction with Earth Mover’s Distance in
Imperfect-Information Games

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

Abstract

There is often a large disparity between the size of a game
we wish to solve and the size of the largest instances solv-
able by the best algorithms; for example, a popular variant
of poker has about 10165 nodes in its game tree, while the
currently best approximate equilibrium-finding algorithms
scale to games with around 1012 nodes. In order to approx-
imate equilibrium strategies in these games, the leading ap-
proach is to create a sufficiently small strategic approxima-
tion of the full game, called an abstraction, and to solve that
smaller game instead. The leading abstraction algorithm for
imperfect-information games generates abstractions that have
imperfect recall and are distribution aware, using k-means
with the earth mover’s distance metric to cluster similar states
together. A distribution-aware abstraction groups states to-
gether at a given round if their full distributions over future
strength are similar (as opposed to, for example, just the ex-
pectation of their strength). The leading algorithm consid-
ers distributions over future strength at the final round of the
game. However, one might benefit by considering the trajec-
tory of distributions over strength in all future rounds, not
just the final round. An abstraction algorithm that takes all fu-
ture rounds into account is called potential aware. We present
the first algorithm for computing potential-aware imperfect-
recall abstractions using earth mover’s distance. Experiments
on no-limit Texas Hold’em show that our algorithm improves
performance over the previously best approach.

1 Introduction and Background
There is often a large disparity between the size of a game
we wish to solve and the size of the largest instances solv-
able by the best algorithms. For example, two-player no-
limit Texas Hold’em poker with common stack sizes (used
in the Annual Computer Poker Competition) has about 10165
nodes in its game tree (Johanson 2013), while the currently
best approximate equilibrium-finding algorithms scale to
games with around 1012 nodes (Zinkevich et al. 2007;
Hoda et al. 2010). In order to approximate equilibrium
strategies in these games, the leading approach is to create a
sufficiently small strategic approximation of the full game,
called an abstraction, and to solve that smaller game instead.
Abstraction in games is quite different than in single-agent

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

settings. For example, it is not monotonic: if we refine an ab-
straction, we may get strategies that have higher exploitabil-
ity in the original game (Waugh et al. 2009a). Abstraction
has been successfully applied to two-player Texas Hold’em
poker, first with a manually generated abstractions (Shi
and Littman 2002; Billings et al. 2003), and now with ab-
straction algorithms (Gilpin and Sandholm 2006; 2007a;
Gilpin, Sandholm, and Sørensen 2008; Waugh et al. 2009b;
Johanson et al. 2013). Many abstraction algorithms work by
coarsening the moves of chance, merging several informa-
tion sets of the original game into single information sets of
the abstracted game. Additional related work on game ab-
straction is discussed in Section 5.

One approach for determining which information sets
should be grouped together is to come up with a measure
of ‘strength’ for each state, then run a clustering algorithm,
such as k-means, using the difference in ‘strength’ as the
distance metric. For example, in poker, a natural measure of
a hand’s strength is the equity (probability of winning plus
one-half the probability of tying) against a uniform random
draw of private cards for the opponent, assuming a uniform
random rollout of the remaining public (i.e., shared) cards.
This is also known as the expected hand strength (EHS) met-
ric. For example, if a player is dealt two aces as his two
private cards in Texas Hold’em, he will win 84.93% of the
time and will tie 0.55% of the time against a random hand
assuming a random rollout of the public cards, giving his
hand an equity of 0.852. Similarly, the equity of two kings
is 0.824. Since these two values are similar, it is likely that
they would be grouped together by a clustering algorithm.
Early approaches for abstraction in poker used EHS (or EHS
exponentiated to some power) to cluster hands (Billings et
al. 2003; Gilpin and Sandholm 2006; Waugh et al. 2009b;
Zinkevich et al. 2007).

While EHS is a reasonable first-order-approximation for
the strength of a hand, it fails to account for the entire prob-
ability distribution of hand strength. For example, the hands
KcQc (king and queen of clubs) and 6c6d (six of clubs and
six of diamonds) have expected hand strengths of 0.634 and
0.633 respectively, which suggests that they have very sim-
ilar strength. However, looking at the full distributions of
hand strength, as opposed to just its expectation, paints a
very different picture, as previous work has shown (Gilpin,
Sandholm, and Sørensen 2007; Johanson et al. 2013). Fig-



ures 1 and 2 (which are similar to part of Figure 2 from Jo-
hanson et al.’s work) show the full histograms of expected
hand strength for the two hands, where each bar corresponds
to the probability mass of the given level of hand strength.
For example, if the public board cards are 7dQh4h2s3c, then
KcQc has an equity of 0.856 against a uniform random op-
ponent hand; so the histogram entry corresponding to the
column for an equity of 0.84–0.86 is incremented by one for
this hand (prior work has assumed that the equities are di-
vided into 50 regions of size 0.02, as do these figures). As
the figures indicate, despite the fact that these hands have
similar expected hand strengths, their full distributions are
very different. For example, 6c6d frequently has an equity
between 0.5 and 0.7 and rarely has an equity between 0.7
and 0.9, while the reverse is true for KcQc.

An abstraction algorithm that considers the full distribu-
tions of hand strength, as opposed to just the expectation, is
called distribution aware. The leading abstraction algorithm
for imperfect-information games generates abstractions that
are distribution aware (Johanson et al. 2013), and it has been
shown empirically that the distribution-aware approach sig-
nificantly outperforms EHS-based approaches (Gilpin and
Sandholm 2008; Johanson et al. 2013). The natural met-
ric for computing distances between histograms of hand-
strength distributions is the earth mover’s distance (EMD).
Informally, EMD is the “minimum cost of turning one pile
into the other, where the cost is assumed to be amount
of dirt moved times the distance by which it is moved.”
Earlier work on distribution-aware abstraction used the L2

distance metric instead (Gilpin, Sandholm, and Sørensen
2007), which has been shown to be significantly less ef-
fective because it does not properly account for how far
the “dirt” needs to be moved (only how much needs to be
moved). Using one-dimensional histograms as done above,
EMD can be computed by a straightforward linear time pro-
cedure that scans the histogram and keeps track of how much
dirt needs to be transported between consecutive bins. How-
ever, computing EMD is much more challenging as the di-
mensionality of the data increases, and as we will present
later, multi-dimensional EMD computation will be needed
in more sophisticated abstraction algorithms.

In the domain of Texas Hold’em poker,1 the leading ab-
straction algorithm works as follows (Johanson et al. 2013).
In the first round, there is no card abstraction, and each hand
is in its own bucket. In the second and third rounds, abstrac-
tions are computed as follows. First, an equity histogram is
constructed for each hand, similarly to those in Figures 1
and 2. For example, for the flop, we will create a histogram
for the hand where the private cards are Kc3h and the public
cards are KsTd8h. Then k-means is used to compute an ab-
straction with a desired number of clusters, using the EMD

1Texas Hold’em contains four betting rounds. In the first round
(preflop), players are each dealt two private cards; in the second
round (the flop), three public cards are dealt on the table; in the
third round (the turn), one more public card is dealt; and in the
final round (the river), one final public card is dealt. If play makes
it to the end of the final round, then the player with the best five-
card hand (out of his two private cards and the five public cards)
wins the pot.

between each pair of histograms as the distance metric. One
important feature of these abstractions is that they have im-
perfect recall: a player can be made to forget information
that he knew earlier in the hand. For example, the hands
Kc3h-KsTd8h and Kc4h-KsTd8h will likely be grouped to-
gether on the flop, even though the player could distinguish
between Kc3h and Kc4h in the preflop round. Imperfect re-
call abstractions have been demonstrated to lead to signif-
icantly stronger performance than perfect recall for an ab-
straction of a given size, because they allow the player to
have a more refined view of the present since he is allowed
to forget details about the past (Waugh et al. 2009b).2 That
algorithm computes abstractions for the flop and turn rounds
independently using this approach. It computes the abstrac-
tion for the final round using a different approach (k-means
with L2 over vectors of EHS against first-round clusters of
the opponent).

As described above, the equity histograms for the flop
(and turn) rounds consider distributions over future strength
at the final round of the game (i.e., after all the public
cards are dealt). However, it is possible that two flop hands
have very similar distributions over strength after the river
is dealt, but they realize the equity at very different rates
throughout the hand. Section 2 provides example situations
of how this can arise, both in poker and in a general domain-
independent game. Thus, a natural direction to explore is
whether one might benefit by considering the distribution
over strength in all future rounds, not just the final round.
An abstraction algorithm that takes all future rounds into
account is called potential aware. Prior work on potential-
aware abstraction (Gilpin, Sandholm, and Sørensen 2007)
applied only to perfect-recall abstraction and used the L2

distance metric, both of which have significant shortcom-
ings, as described above.

In this paper, we present the first algorithm for com-
puting potential-aware imperfect-recall abstractions, using
EMD as the distance metric. We design a new abstrac-
tion algorithm that combines these three threads, each of
which has been shown helpful separately in the past. Com-
puting imperfect-recall abstractions is significantly more
challenging than in the perfect-recall case, since the set
of hands that must be clustered at each step is much
larger. Additionally, computing EMD in this setting is sig-
nificantly more challenging than in the one-dimensional
distribution-aware setting, and is also much more challeng-
ing than computing L2 distance in the potential-aware set-
ting. The best commercially-available algorithm for com-
puting (multi-dimensional) EMD (Pele and Werman 2008;
2009) is far too slow to compute abstractions in poker, and
we develop a fast custom heuristic for approximating EMD
in our setting. Experiments on no-limit Texas Hold’em show
that our algorithm leads to a statistically significant improve-
ment in performance over the previously best abstraction al-
gorithm.

2A downside of using imperfect-recall abstractions is that they
typically cause equilibrium-finding algorithms to lose their conver-
gence guarantees.



Figure 1: Equity distribution for 6c6d. Figure 2: Equity distribution for KcQc.

2 Potential-Aware Abstraction
In this section, we present examples that demonstrate the
difference between potential-aware abstraction and the lead-
ing distribution-aware approach, which considers distribu-
tions over future strength at the final round of the game.
The examples show that it is possible for two different states
of private information to have very similar (even identical)
histograms over equity at the end of the game, but to real-
ize this equity in very different ways throughout the play of
the game. We first present a domain-independent example
in Section 2.1, followed by an example of a poker situation
demonstrating this phenomenon in Section 2.2.

2.1 Domain-Independent Example
We consider the following game. A player is initially given
private signal xi, and then chance makes up to two moves
before the game ends. The information equity trees for x1

and x2 are given in Figures 3 and 4. The opponent is also
given a private signal from some distribution, and the equi-
ties of the initial player against the opponent’s distribution
are given in the leaves of the trees. If the player has x1,
then chance selects the right branch with probability 1 in
the first round, then selects each branch with probability 1

2
in the second round. If chance selects the right branch in the
second round, then the player has an equity of 1; otherwise,
he has equity 0. If the player has x2, then chance selects each
branch with probability 1

2 in the first round, and selects the
right branch with probability 1 in the second round (for each
choice of actions in the first round). If chance selected the
left branch in the first round, then the player’s equity is 0; if
chance selected the right branch in the first round, then his
equity is 1.

If we use the traditional distribution-aware approach of
considering equity assuming the end of the game is reached,
then equity histograms for both x1 and x2 are the same and
given in Figure 5: with probability 1

2 , the player will have
equity 0, and with probability 1

2 , he will have equity 1. For
this example, we assume that the equities are broken into
five equally-sized intervals. (Several of the strongest poker
agents use fifty intervals each of width 0.02.) Since these
histograms are identical, the EMD between the two states
corresponding to the two private signals respectively would
be zero, so they would be treated as being identical.

However, these two states are actually quite different if
we consider how the equity changes between the first and
second round, as opposed to just jumping to the end of the
game. With x2, the player will know for sure whether he
has an equity of 0 or 1 after chance’s first move, while with
x1 he will not. To perform potential-aware abstraction, the
first step is to compute the histograms for both players at
the possible states in the second round. The histogram for
x1 after chance selects the right branch (i.e., at B) is also
the histogram given in Figure 5; the histogram for x2 after
chance selects the left branch (i.e., at D) has unit mass in the
left-most column (equity of 0–0.2); and the histogram for x2

after chance selects the right branch (i.e., at E) has unit mass
in the right-most column (equity of 0.8–1).

Next, we compute the histograms for x1 and x2 at the
first round, with respect to the possible states that could be
reached at the second round. The histogram for x2 is given
in Figure 6. The possible states B, D, and E correspond
to the second round states in the information equity trees.
We omit additional states that could have originated from
x3, x4, etc. (they will all have probability 0). As the figure
shows, with x2 the player will be in states D and E with
probability 1

2 . The histogram for x1 will have unit mass in
the column for state B. Unlike the histograms above, whose
x-axis is cardinal (i.e., equity), the x-axis of these histograms
is not even ordinal (the next-round states can be listed in any
arbitrary order).

To transform this new histogram for x1 into the his-
togram for x2, we must move a mass of 1

2 from the B
column to both the D and E columns. Thus, the EMD is
1
2d(B,D)+ 1

2d(B,E), where the ground distances d(B,D)
and d(B,E) are computed using the second-round his-
tograms described above. To transform the histogram at B
into the histogram at D, we must move a mass of 1

2 from
the rightmost column to the leftmost column; so d(B,D) =
1
2 · 4 = 2. Similarly, d(B,E) also equals 2. So the EMD
between the two, non-ordinal first-round histograms is 1

2 ·
2 + 1

2 · 2 = 2. Thus, potential-aware abstraction will treat
x1 and x2 differently, and potentially group them into differ-
ent clusters (while the distribution-aware approach will treat
them as identical, as shown above).



Figure 3: Information equity tree for private signal x1. Figure 4: Information equity tree for private signal x2.

Figure 5: Histogram of equity for both private information
x1 and x2 at round 1, assuming the game reaches the end
of the final round.

Figure 6: Histogram for private signal x2 at round 1 over
non-ordinal information states at round 2.

2.2 Poker Example

In Section 1 we provided a canonical example of two Texas
Hold’em hands with similar EHS, but very different his-
tograms over equity at the end of the hand (KcQc vs. 6c6d).
We now present an example of two hands that have simi-
lar histograms over equity at the final round (and thus also
similar EHS), but realize their equity in very different ways
throughout the hand.

Consider the two flop hands TcQd-7h9hQh and 5c9d-
3d5d7d (the first two cards are the private cards, and the
next three are the public flop cards). These are both relatively
strong hands. The first hand has top pair (a pair of queens),
and the second hand has second pair (a pair of fives) plus a
flush draw (another diamond on the board would complete
a flush). The hands both have very similar EHS, assuming
both the turn and river are dealt; TcQd-7h9hQh has EHS
0.683 and 5c9d-3d5d7d has EHS 0.679. These two hands
also have very similar full distributions over equity at the
final round, as can be seen in Figures 7 and 8. The EMD
between these two distributions is 0.559, where the unit is
equity intervals (assuming fifty intervals of width 0.02, and
a total unit mass for both distributions). This value is suffi-
ciently low that these two hands are grouped into the same
bucket by the leading distribution-aware abstraction algo-
rithm (and therefore, they would be treated as being identical
by equilibrium-finding algorithms).

However, despite similarities between the equity distribu-
tions after the river is dealt, these two hands realize their eq-

uity very differently throughout the hand. Figures 9 and 10
show their expected hand strength distributions on the turn
(the next public card), assuming a uniform random distribu-
tion for the river card and the opponent’s cards. These two
distributions are very different; for example, a large portion
of the time TcQd-7h9hQh will have a turn equity between
0.68 and 0.78, while 5c9d-3d5d7d has a large portion of its
equity in the 0.56–0.66 range.

We note that Figures 9 and 10 depict the distributions of
expected turn hand strength, as opposed to full distributions
over distributions of river hand strength (since each turn card
will lead to a distribution over strength in the next round, not
a single value). For example, for the hand TcQd-7h9hQh, if
the turn card is Ad, the hand’s expected equity, assuming a
uniform random river card and uniform random hand for the
opponent, is 0.695 (though it will vary for individual river
cards); so the interval for 0.68–0.7 in the histogram would
be incremented by one for that turn card. This is signifi-
cantly more simplistic than our potential-aware approach,
which takes into account the full distribution of turn ‘buck-
ets’, which are themselves distributions over equity intervals
after the river. However, comparing these distributions is still
useful for several reasons. First, if the full distributions over
turn hand strength (which are, themselves, distributions over
river hand strength) were similar, then the distributions over
the expectation of turn hand strength distributions would
necessarily be similar as well; thus, the fact that the expec-
tation distributions differ significantly indicates that the full
distributions also differ significantly. And second, it is not



Figure 7: Equity distribution for TcQd-7h9hQh on the
river (final betting round).

Figure 8: Equity distribution for 5c9d-3d5d7d on the river
(final betting round).

Figure 9: Equity distribution for TcQd-7h9hQh on the
turn (next betting round). Each point is the expected hand
strength for a given turn card assuming a uniform random
distribution for the river card and the opponent’s cards.

Figure 10: Equity distribution for 5c9d-3d5d7d on the
turn (next betting round). Each point is the expected hand
strength for a given turn card assuming a uniform random
distribution for the river card and the opponent’s cards.

feasible to compactly represent the full distributions visu-
ally, while the distributions of expected hand strength can
be represented easily as two-dimensional histograms.

While the EMD between the river equity distributions
depicted in Figures 7 and 8 is 0.559, the EMD between
full turn distributions using the potential-aware approach is
4.519 (using comparable units). Potential-aware abstraction
is able to correctly identify that these hands are quite differ-
ent, and places them into different buckets due to their large
EMD (while the prior abstraction algorithm places them in
the same bucket).

3 Algorithm for Potential-Aware
Imperfect-Recall Abstraction, with EMD

In this section, we present our new algorithm for computing
potential-aware imperfect-recall abstractions using EMD.
We first present our main algorithm, followed by a heuris-
tic for quickly approximating the EMD in our setting that
we use to make the algorithm practical for large games such
as Texas Hold’em.

Our abstraction algorithm, depicted in Algorithm 1, works
as follows. Assume the information tree has r+1 levels (0–
r), and for each level n, a number of clusters Cn is specified
as input. For the final rounds n = r̂, . . . , r, an arbitrary ab-

straction algorithm Sn is used, with distance function dn, to
produce Cn clusters; let An denote the resulting abstraction,
and let mn

i denote the mean of the i’th cluster in An. Next,
we compute the abstraction at round r̂ − 1 as follows. First,
we compute the distance dni,j between each pair of round-
(n+1) means mn+1

i and mn+1
j , using the distance metric

dn+1. Next, we compute histograms Hn(xn), where the i-th
element of Hn(xn) is the fraction of the time that chance’s
next move will send xn into cluster i in An+1. Finally, we
compute the abstraction An at round n, by clustering the
histograms Hn into Cn clusters using clustering algorithm
Ln (prior work in poker uses k-means). The distance met-
ric used, denoted dn, is the EMD between the histograms,
using dni,j as the ground distance between components i and
j of a histogram. We then compute the new cluster means
mn

i , and continue in the same fashion for n = r̂ − 2, . . . , 0.
The resulting abstraction, An, has imperfect recall since we
cluster all of the histograms Hn(xn) without any regard for
the information known at the corresponding states at previ-
ous stages of the game, and potentially we cluster two states
together that contain information that we could distinguish
between at earlier rounds.

To compute the distances in the main loop of Algo-
rithm 1 we implemented the fastest commercially-available



Algorithm 1 Main algorithm for computing potential-aware
imperfect-recall abstractions
Inputs: {Cn} : n = 0, . . . , r; {Sn}, {dn} : n = r̂, . . . , r;
{Ln} : n = 0, . . . , r̂ − 1

for n = r to r̂ do
Compute abstraction An with Cn clusters using ab-
straction algorithm Sn with distance function dn

end for
for n = r̂ − 1 to 0 do

for i = 1 to Cn do
mn+1

i ← mean of cluster i in An+1

end for
for i = 1 to Cn − 1 do

for j = i+ 1 to Cn do
dni,j ← distance between mn+1

i and mn+1
j using

distance function dn+1

end for
end for
for each point xn at round n do
Hn(xn) ← histogram for xn over clusters from
An+1

end for
Compute abstraction An over histograms Hn using
clustering algorithm Ln and distance function dn (i.e.,
EMD with dni,j as the ground distance) to produce Cn

clusters
end for

multi-dimensional EMD algorithm (Pele and Werman 2008;
2009); however, it was far too slow for the domain of Texas
Hold’em. So we were forced to develop a faster heuristic for
approximating EMD in this setting. Our heuristic is given in
Algorithm 2. The context is that we are running k-means to
compute an abstraction at level n of the tree, for which we
must compute the distance between each ‘point’ and each
mean. The ‘points’ correspond to the histograms Hn(xn)
over clusters in An+1, and were computed in the previous
step of Algorithm 1. The naı̈ve way of representing them
would be as vectors of dimension Cn+1. However, this vec-
tor may be very sparse. For example, if Cn+1 = 5000 (as
in our experiments), but the current point can only transi-
tion into 50 next-round clusters with positive probability,
we would like to take advantage of a sparser representation
rather than represent it as a vector of size 5000. Instead, we
represent the point as a vector of length 50 (in this example),
where each index corresponds to the index of the next-round
cluster we transition to. For example, if a point can transi-
tion to clusters 3, 5, or 10, for different chance moves, then
we represent the point as the vector (3, 5, 10), where each of
these will have probability 1

3 . Each point xn in Algorithm 2
corresponds to such a vector, where N denotes the length.
For simplicity we assume that all of the elements are dis-
tinct, though repeated elements can be dealt with straight-
forwardly.

We similarly take advantage of sparsity in representing
the means. While each mean could potentially have Cn+1

entries, many of these entries may be zero. Instead, we sim-

Algorithm 2 Algorithm for efficiently approximating EMD
in our setting
Inputs: Point xn with N elements; mean m with Q ele-
ments; sortedDistances[i][j], orderedClusters[i][j], for 1 ≤
i ≤ Cn+1, 1 ≤ j ≤ Q

targets[]← array of size N with all elements equal to 1
N

meanRemaining[]← copy of m
done[]← array of size N with all elements set to false
totCost← 0
for i = 1 to Q do

for j = 1 to N do
if done[j] == true then

continue
end if
pointCluster← xn[j]
meanCluster← orderedClusters[pointCluster][i]
amtRemaining← meanRemaining[meanCluster]
if amtRemaining == 0 then

continue
end if
d← sortedDistances[pointCluster][i]
if amtRemaining < targets[j] then

totCost += amtRemaining * d
targets[j] -= amtRemaining
meanRemaining[meanCluster]← 0

else
totCost += targets[j] * d
targets[j]← 0
meanRemaining[meanCluster] -= targets[j]
done[j]← true

end if
end for

end for
return totCost

ply represent the mean m as the vector of the nonzero en-
tries, of which we assume there are Q. In order to iden-
tify which clusters the entries correspond to, and to make
our overall implementation more efficient, we utilize sev-
eral data structures. First, we precompute an array called
sortedDistances, where sortedDistances[i][j] is the distance
between next-round cluster i and the j-th closest cluster to i
for which the current mean has non-zero probability, where
distances have already been computed using dn+1. We also
use a structure orderedClusters, where orderedClusters[i][j]
is the index of the cluster that the mean assigns non-zero
probability to that is j-th closest to cluster i. These arrays
are precomputed in advance of the EMD computation; while
they require some time to compute, the EMD computations
are by far the bottleneck of the algorithm. This additional
computation helps us overall since it significantly speeds up
the EMD computations.

Given these data structures as input, we now approximate
EMD as follows. First, we start with the first entry of xn; we
call the round-(n+1) cluster to which this belongs ‘point-
Cluster.’ We then find the closest cluster to pointCluster that
corresponds to a nonzero element in the mean; this will be



the element orderedClusters[pointCluster][1], which we call
‘meanCluster.’ We shift as much mass as possible between
from this mean element to the corresponding point element.
The cost is increased by the amount of mass we shift mul-
tiplied by the distance. We then update the remaining point
mass and mean mass at the elements we have considered,
and continue for the remaining point indices j = 2, . . . , N .
Next, we set i = 2, and repeat the same procedure, now
shifting as much mass as is available from the second clos-
est nonzero mean cluster to each cluster of the point. We
repeat this for i = 3, . . . , Q, until the mean vector has been
fully transformed into the point vector. We then output the
resulting total cost.

As mentioned above, the fastest commercially-available
algorithm for computing EMD (Pele and Werman 2008;
2009) is far too slow to be effective in Texas Hold’em. (This
was despite the fact that we integrated the data structures de-
scribed above with this algorithm to exploit sparsity, as well
as applied several other enhancements to improve perfor-
mance of k-means, such as a pruning technique that exploits
the triangle inequality (Elkan 2012) and parallelizing each
step using 64 cores.) For the point-mean distances in the
first round of k-means, the exact EMD algorithm averaged
11.4 ms per computation, while our heuristic averaged only
0.008 ms per computation. Furthermore, the exact algorithm
scales extremely poorly as the dimensionality of the inputs
increases. Since the initial means are themselves data points,
their dimensionality is small; however, for future rounds of
k-means, the means are weighted averages over all points in
their cluster, and have higher dimensionality. Our new algo-
rithm performs well even in the future rounds of k-means
as this dimensionality increases, while the exact algorithm
scales very poorly.

There are many potential further improvements to approx-
imating EMD and doing clustering in this context. However,
even with the techniques we already developed and tested,
the approach outperforms the previously best abstraction al-
gorithm, as the experiments in the next section will show.

4 Experiments
We evaluated our abstraction algorithm in a very large se-
quential imperfect-information game, two-player no-limit
Texas Hold’em. While our abstraction algorithm works for
any number of agents and does not assume a zero-sum
game, we focused on this two-player zero-sum game in the
experiments—as is most common in this field—so that we
can compute a near equilibrium to a large abstraction, and
thereby evaluate the results.

4.1 Head-to-Head Performance vs. Best Prior
Abstraction Algorithm

We ran two different sets of experiments corresponding to
two different manually-generated betting abstractions. In
both experiments, we compared performance to the previ-
ously best abstraction algorithm (Johanson et al. 2013). In
each experiment, we used the same betting abstraction for us
and for the benchmark. In the first experiment, we used the
betting abstraction that was used by the agent that finished

in 2nd place in the 2012 Annual Computer Poker Competi-
tion. We chose to test on this relatively small betting abstrac-
tion so that we could obtain a good level of convergence to
equilibrium in the abstract game. In the second experiment,
we used a very large betting abstraction; it is about 8 times
larger than the version used by our 2013 competition agent,
and currently beats the winner from the 2013 competition.

In both experiments, we used 169, 5000, 5000, and 5000
card buckets respectively in the four betting rounds for both
the new algorithm and the prior algorithm. This card abstrac-
tion is used by our strongest agent that now beats the win-
ner from the 2013 competition, and was also used by the
2013 competition agent that finished in 3rd. Also, as is typ-
ical nowadays among all the top teams, the first round has
169 buckets corresponding to no abstraction at all.

In each of the two experiments, we created an agent that
was identical to the corresponding opponent, except that it
used our new algorithm to compute the abstraction for the
flop round (i.e., second betting round). For both flop ab-
straction algorithms, we conducted 25 restarts using the k-
means++ initialization procedure (Arthur and Vassilvitskii
2007), and selected the run that produced the lowest within-
cluster sum of squares. We chose to focus on the flop round
for the following reasons. First, the strongest agents do not
use any abstraction preflop (i.e., on the first betting round),
and there is no potential on the river (i.e., last betting round)
since no further cards will be dealt; so potential-aware ab-
straction would not help on those rounds. The approach is
potentially useful on the turn (i.e., third betting round) as
well, but it appears to be computationally intractable, even
using our fast heuristic for EMD (there are around 1.3 mil-
lion hands to be clustered on the flop, and 55 million on the
turn). For each of the generated abstractions (two new and
two benchmarks), we computed an approximate equilibrium
for the abstraction using a sampled version of counterfactual
regret minimization (Lanctot et al. 2009).

In each of the two experiments, we ran 20,000 duplicate
matches between our new agent and the respective bench-
mark agent. In both experiments, our new approach led to a
statistically significant improvement over the old approach.
In the first experiment, the new agent beat its benchmark by
2.58 milli big blinds per hand (mbb/h) with a 95% confi-
dence interval of ±1.56 mbb/h. In the second experiment,
the new agent beat its benchmark by 2.22 mbb/h (±1.28
mbb/h).

4.2 Evaluating the Approximation of
Potential-Aware EMD

To evaluate how closely the distance computed by Algo-
rithm 2 approximates the true potential-aware EMD, we re-
peatedly generated the histograms (over turn buckets) for
two random flop hands, and computed the exact EMD be-
tween the histograms. If this distance was less than some
threshold, then we also ran Algorithm 2 to approximate the
EMD. (We chose a threshold of 30003 since it appears that
the vast majority of the closest point-mean distances were

3These values must be divided by 1081 for the total histogram
mass to be normalized to one.



in the 0–2500 range, and we are mostly interested in how
well our heuristic does at approximating EMD for the point-
mean pairs with low distance, since those represent the clus-
ter to which a point might actually be assigned. We are not
as concerned about how far off our heuristic is for distances
that are extremely large, as they will likely be pruned and
have no chance of being assigned as the closest mean.) We
computed the relative error between the EMD computed by
our heuristic and the true EMD, and averaged it over many
samples. Our algorithm had average relative error of 0.1496
(with 95% confidence interval ±0.0014).

For comparison, we also computed the EMD between the
same flop hands using the previously best distribution-aware
approach, where the histograms consider equity assuming
the end of the game is reached. That approach produced
an average relative error of 0.2084 (±0.0014) compared to
the potential-aware EMD over the same sample. Thus, our
potential-aware, but heuristically-computed EMD, approxi-
mates the true potential-aware EMD 28.2% better than the
prior approach for computing EMD, which used exact cal-
culation but was not potential aware.

Though we already demonstrated the superiority of our
abstraction algorithm over the prior algorithm in the ex-
periments described in Section 4.1, these results provide a
further sanity check that Algorithm 2 does in fact lead to
a better degree of approximation of potential-aware EMD
than the prior method. The results also indicate that there is
still room for significant improvement toward more accurate
potential-aware EMD computation.

5 Additional Related Research
The closely related research on game abstraction was al-
ready cited earlier. Here we discuss additional papers on
game abstraction.

The GameShrink algorithm computes a lossless informa-
tion abstraction (Gilpin and Sandholm 2007b) in a class of
games, but in very large games like Texas Hold’em, lossy
abstraction is needed to create an abstract game that is small
enough to solve to near equilibrium.

This paper, like most prior work on game abstraction,
has been about information abstraction. Typically action ab-
straction (e.g., selection of bet sizes to include in the abstrac-
tion in poker) is done manually—as was done in this paper
as well. There is also an emerging thread of research into
automated action abstraction (Hawkin, Holte, and Szafron
2011; 2012; Brown and Sandholm 2014).

Recently, a framework and algorithms were presented for
lossy abstraction with bounds on the resulting equilibrium
quality. It applies both to information and action abstraction.
This is for stochastic games (Sandholm and Singh 2012),
and more recently extensive-form games (Kroer and Sand-
holm 2014). For extensive-form games, the algorithm—an
integer program—only scales to a tiny poker game (with a
five-card deck and two rounds of betting with a fixed bet
size), so the algorithm is not applicable to large poker vari-
ants, such as Texas Hold’em. That framework does apply
to Texas Hold’em, and it remains an open question whether
scalable algorithms within that framework can be developed.
Other recent work provides a regret bound in the full game

for a class of games for strategies produced by applying an
equilibrium-finding algorithm (counterfactual regret mini-
mization) to abstractions (Lanctot et al. 2012). The regret
bound applies for both perfect and imperfect recall abstrac-
tions of games from the given class.

6 Conclusions and Future Research
We presented the first algorithm for computing potential-
aware imperfect-recall abstractions using earth mover’s dis-
tance as a distance metric. This is the first algorithm that
combines potential-aware abstraction with imperfect recall.
It is also the first time earth mover’s distance has been used
in potential-aware abstraction. Both of these are concep-
tually clear improvements, and experiments showed in the
large that the new algorithm outperforms the best prior ab-
straction algorithm with statistical significance.

A future direction would be to develop more accurate
and/or faster heuristics for approximating EMD in our set-
ting, or faster algorithms for computing exact EMD. One
technique for achieving the latter would be to use a cluster-
ing algorithm that selects cluster centers that have lower di-
mensionality than the centers selected by k-means, since the
best commercially-available algorithm for computing EMD
is slow for points with high dimensionality. A promising
approach is the k-medoids algorithm, which only uses data
points as the cluster centers. However, k-medoids is signifi-
cantly slower than k-means and it requires additional mem-
ory, so it is unclear whether it will be feasible to apply to
poker or other large games. We would also like to extend
our approach to the turn round as well, though this appears
to be infeasible, even using our fast heuristic, due to the large
number of turn hands that need to be clustered. One tech-
nique that may help is to sample a subset of the turn hands
and perform clustering only over that subset.

We expect our algorithm to be applicable to games be-
yond no-limit Texas Hold’em (NLHE). We would expect it
to lead to an even more significant performance improve-
ment over the prior approach in certain other popular vari-
ants of poker, such as pot-limit Omaha Hold’em (aka PLO),
since the strength of hands changes much more significantly
between rounds than in Texas Hold’em, so taking the full
trajectory of strength into account would be more important
in that game. PLO also has a significantly larger state space
than Texas Hold’em (in all rounds), and therefore we would
expect abstraction to play a larger role than in NLHE. In par-
ticular, there are many more hands for the preflop and flop
rounds in PLO than in NLHE, and we expect our approach
to help the most when performing abstraction in the earlier
rounds, since that is where there is the biggest difference
between the distribution of hand strength assuming the fi-
nal round is reached and the full trajectory of hand strength
distributions in all future rounds.

We would also like to apply our algorithm to games out-
side of poker. It would be applicable to any large sequential
game of imperfect information where information abstrac-
tion is necessary, and it would be especially useful for games
where the strength of private information can change signif-
icantly between rounds, since the algorithm accounts for the
full trajectory of strength over all future rounds.



7 Acknowledgments
This material is based on work supported by the Nation-
al Science Foundation under grants IIS-1320620, CCF-
1101668, and IIS-0964579, as well as XSEDE computing
resources provided by the Pittsburgh Supercomputing Cen-
ter. We would also like to thank Michael Johanson for pro-
viding us with the data used for Figures 1 and 2.

References
Arthur, D., and Vassilvitskii, S. 2007. k-means++: The ad-
vantages of careful seeding. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA).
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing game-theoretic optimal strategies for full-scale poker. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI).
Brown, N., and Sandholm, T. 2014. Regret transfer and
parameter optimization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI).
Elkan, C. 2012. Using the triangle inequality to accelerate
k-means. In Proceedings of the International Conference on
Machine Learning (ICML).
Gilpin, A., and Sandholm, T. 2006. A competitive Texas
Hold’em poker player via automated abstraction and real-
time equilibrium computation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI).
Gilpin, A., and Sandholm, T. 2007a. Better automated ab-
straction techniques for imperfect information games, with
application to Texas Hold’em poker. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Gilpin, A., and Sandholm, T. 2007b. Lossless abstraction of
imperfect information games. Journal of the ACM 54(5).
Gilpin, A., and Sandholm, T. 2008. Expectation-based ver-
sus potential-aware automated abstraction in imperfect in-
formation games: An experimental comparison using poker.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI). Short paper.
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2007.
Potential-aware automated abstraction of sequential games,
and holistic equilibrium analysis of Texas Hold’em poker.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI).
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2008. A
heads-up no-limit Texas Hold’em poker player: Discretized
betting models and automatically generated equilibrium-
finding programs. In Proceedings of the International Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS).
Hawkin, J.; Holte, R.; and Szafron, D. 2011. Automated
action abstraction of imperfect information extensive-form
games. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).
Hawkin, J.; Holte, R.; and Szafron, D. 2012. Using sliding
windows to generate action abstractions in extensive-form

games. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).
Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing techniques for computing Nash equilibria of se-
quential games. Mathematics of Operations Research 35(2).
Conference version appeared in WINE-07.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).
Johanson, M. 2013. Measuring the size of large no-limit
poker games. Technical report, University of Alberta.
Kroer, C., and Sandholm, T. 2014. Extensive-form game
abstraction with bounds. In Proceedings of the ACM Con-
ference on Economics and Computation (EC).
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-
tensive games. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).
Lanctot, M.; Gibson, R.; Burch, N.; Zinkevich, M.; and
Bowling, M. 2012. No-regret learning in extensive-form
games with imperfect recall. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).
Pele, O., and Werman, M. 2008. A linear time histogram
metric for improved SIFT matching. In Proceedings of the
European Conference on Computer Vision.
Pele, O., and Werman, M. 2009. Fast and robust earth
mover’s distances. In Proceedings of the International Con-
ference on Computer Vision.
Sandholm, T., and Singh, S. 2012. Lossy stochastic game
abstraction with bounds. In Proceedings of the ACM Con-
ference on Electronic Commerce (EC).
Shi, J., and Littman, M. 2002. Abstraction methods for
game theoretic poker. In CG ’00: Revised Papers from the
Second International Conference on Computers and Games.
London, UK: Springer-Verlag.
Waugh, K.; Schnizlein, D.; Bowling, M.; and Szafron, D.
2009a. Abstraction pathologies in extensive games. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS).
Waugh, K.; Zinkevich, M.; Johanson, M.; Kan, M.; Schni-
zlein, D.; and Bowling, M. 2009b. A practical use of imper-
fect recall. In Proceedings of the Symposium on Abstraction,
Reformulation and Approximation (SARA).
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).


