
Use of JSON to Supplement XML

Prepared by the PESC Technical Advisory Board
5/21/2015

Problem

JavaScript Object Notation (JSON) has become a popular alternative to XML for various
reasons: It is less verbose, has simpler syntax than XML and is easily generated and consumed
by client side JavaScript. JSON has found extensive use in REpresentational STate Services
(REST or RESTful Web services) as the format for sending and receiving structured data for
web applications. The older XML-based web services based upon Simple Object Access
Protocol (SOAP) has fallen out of favor and is used with few new applications. While some
RESTful web services still provide a choice of XML or JSON, many of web services provide only
JSON.

To prepare for the same trend occurring in the data exchange realm, PESC must be able to
support JSON when the education community requires it. To do this, PESC must have JSON
solutions available when needed rather than be forced to react to industry trends.

This document, identifies the issues in translating between the two notations, and provides a
recommendation on how PESC might proceed in incorporating JSON into its standards.

Conversion Issues
There are several differences between XML and JSON that may make translation difficult:
1. JSON Objects are not equivalent to XML Complex elements. In JSON, the order of the

object properties is not required to be maintained like an XML sequence. Also, JSON object
property names need to be unique while XML sub-elements can be duplicated.

2. Processing instructions and comments do not have an equivalent structure in JSON.
3. JSON does not have a date type, and thus, a string representing a date in JSON may need

to be recognized as a date and translated into an XML date type format.
4. JSON has less strict naming rules than XML. Direct translation of names from JSON to XML

may require the creation of new element names.
5. XML has standard validation specifications while JSON does not. While there is currently

activity on creating a JSON schema, XML Schema language is the best supported method
to specify and validate instance documents.

Recommendation
The TAB recommends that JSON conformant exchanges be sanctioned by PESC under the
following conditions: For those applications requiring JSON exchange, the exchange can be
classified as PESC conformant if the JSON is derived from a PESC schema validated XML
instance document using the translation rules specified in this document (or using the PESC
sanctioned XSLT conversion program).

In addition, PESC will provide an XSLT stylesheet that implements the conversion rules for use
by the education community. The TAB has found an open source XSLT that can be used for
this purpose.

Translation Rules
The rules below are recommended for adoptions as a PESC standard:
Object Source example Rule Result

Element
with only
text

<A>text The element name is
represented as JSON
property name and the

"A":"text"

text as the JSON property
value

Namespace <ns:A>text</ns:A) The element name
includes the namespace
prefix.

"ns:A:":"text"

Element
with only
an
attribute

 The element is
represented as a JSON
object with the attribute
represented as a name
value pair property. To
allow future potential
two way conversion the
attribute name is prefixed
by "@".

"A":{
"@x":"att value"

}

Element
with
attribute(s)
and text

<A x="att1 value" y="att2
value">text

The property name "$" is
used as the name of the
property that has a value
of the content of the
element.

"A":{
"@x":"att1 value",
"@y":"att2 value",
"$":"text"

}

Null
Elements

<A/> The value of null
elements is the JSON null
unless there is an
attribute.

"A":null

Complex
Elements

<A>
text 1
<C>

<D>text 2</D>
</C>

Complex element
contents will be treated
as properties of the
object that is named after
the top level element

"A":{
"B":"text 1",
"C":{

"D":"text 2"
}

}

Repeated
Elements

<A>
text 1
text 2
<C>

<D>text 3</D>
</C>
<C>

<D>text 4</D>
</C>

<A>

Repeated elements use
the element name as a
JSON array name and the
values in the array as the
text or child elements of
the parent element.

"A":{
"B":["text 1",

"text 2"],
"C":["D":"text 3",

"D":"text 4"]
}

Entities <A>"Testing" If the entity must be
escaped in JSON then it is
preceded by a slash.
Other characters will be
translated directly.

"A":"\"Testing\""

Special
Characters

<A>C:\\ If a character must be
escaped in JSON, it will be
preceded by a slash

"A":"C:\\\\"

Comments <!--Comment--> These will not be
converted to JSON

Processing
Instructions

<?xml version="1.0"
encoding="UTF-8"?>

These will not be
converted to JSON

Production Rules for translating XML to JSON
Another way of expressing these rules is to use production rules for translating XML structures
into JSON:
<element> ::= "<element name>":<element value>| "$":"<element text>"
<element value> ::= <element>|"<element text>"|<complex element>|<repeated element>|null
<complex element> ::= {<attribute list><element value>}
<repeated element> ::= [<element value>,<repeated element>|<element value>]
<attribute list> ::= <attribute>,<attribute list>|<attribute>
<attribute> ::= "@<attribute name>":"<attribute value>"
<attribute value> ::="<attribute value text>"

Appendix

JSON Definition
This link provides the complete syntax for JSON:

http://json.org/

Conversion between XML and JSON:
http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

http://badgerfish.ning.com/

http://wiki.open311.org/index.php?title=JSON_and_XML_Conversion

http://www.bramstein.com/projects/xsltjson/

http://code.google.com/p/xml2json-xslt/

http://json-lib.sourceforge.net/index.html

We also tested the Altova XML-Spy conversion:
http://www.altova.com/xmlspy.html.

The conversion lost much of the XML structure in a round trip. It made attributes into elements
and lost all processing instructions and comments.

JSON conversion to and from POJO

https://json-processing-spec.java.net/

http://www.javaworld.com/article/2074650/core-java/javaone-2012--jsr-353--java-api-for-json-
processing.html

http://examples.javacodegeeks.com/enterprise-java/rest/resteasy/json-example-with-resteasy-jaxb-
jettison/

Other XML organizations using JSON
OASIS

The following link lists OASIS Technical Committees that either currently feature JSON and/or REST in
their charters, or are discussing REST or JSON:

https://www.oasis-open.org/resources/topics/rest-json

OASIS has also recently approved version 4.0 of the Open Data Protocol (OData) and the
OData JSON Format. A press release on MarketWatch is here:

http://www.marketwatch.com/story/oasis-approves-odata-40-standards-for-an-open-
programmable-web-2014-03-17

Languages that support JSON parsing

• C (jason-parser)

• awk (json.awk)

• C++ (a bunch, including JSONKit, JSON++ and libjson)

• C# (JSON for .net, JSONSharp, Manatee Json)

• Javascript (JSON, kson2.js, clarinet)

• Java (JSON Tools, google-gson, Argo, SOJO, XStream, Json-lib, jjson)

• Objective C (JSONKit, NSJSONSerialization, json-framework, ObjFW)

• Perl (CPAN, perl-JSON-SL)

• PHP (native in 5.2, Services_JSON, json)

• PL/SQL (pljson, Librarie-JSON)

• Python (standard library, simplejson, pyson, ultraison)

• Ruby (built-in)

• Visual Basic (VB-JSON, PW.JSON)

