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Abstract- In this paper a novel Globally Asynchronous 

Locally Synchronous (GALS) modeling and verification tool 

is introduced for XILINX circuits. The tool provides a 

structured environment for GALS in which organization of the 

modeling and verification enables it to handle a variety of 

implementation tasks facilitating a process which would 

otherwise be difficult for the end user. The tool provides 

verification techniques at different levels. A new unfolding 

algorithm is presented that uses Structured Occurrence nets. A 

novel representation for deadlocks is introduced using 

deadlock relations enabling the causality of local and global 

deadlocks to be visualized. This helps in the investigation of 

total or partial system shutdown. In particular, the approach 

enables the visualization of point-to-point causality of 

problems occurring between different parts of the system 

which are more difficult to analyze. In addition different types 

of deadlock related to the synchronizer can be detected. The 

work presented here provides structured visualization 

capability facilitating the analysis of complex communication 

systems. 

 

I. INTRODUCTION 

 there has been a lot of interest in researching new 

architectures for GALS [1] [2], there have been few attempts 

at providing modeling solutions for GAL’s communication. 

Thus, modeling of GALS from specifications has been limited 

to hardware description languages such as Verilog, VHDL [3] 

or synchronous programming languages such as C or 

ESTEREL [4]. Specialist verification languages that have 

been introduced for GALS include GRL [5] and process 

calculi [6] but these languages tend to be used at a higher level 

of abstraction than hardware. A graphical tool has been 

developed in [7] but the models here are also used at a higher 

level i.e. they are not used for circuit deadlock analysis. 

Although the techniques are higher level they offer better 

modeling of things like protocols. The work in [8] is more 

similar in the sense that different formats are interchangeable 

allowing different tools to be linked which is a useful 

approach to take but is centered on co-simulation rather than 

verification or deadlock analysis. Hardware models for 

communication logic in the past have relied on standard 

languages, e.g. Verilog, which require a significant amount 

of”glue logic” to connect communicating primitives together. 

This kind of modeling tends to be unwieldy and non-intuitive. 

XILINX [9] [10] [11] represents a significant improvement in 

the representation and modeling of communication systems. It 

provides a set of graphical communication primitives which 

are more natural, i.e. they are closer to the hardware, and their 

higher level of abstraction enables them to be easily 

understood. Although XILINX model checking has been 

covered extensively at the Boolean level for purposes like 

deadlock checking [12] [13] [14] [15] [16] little work has 

been done using net level models such as Petri nets. In [17] 

basic techniques for GALS synthesis to Circuit Petri nets [18] 

for XILINX were presented offering some distinct advantages: 

they are well suited to the visualization of distributed models 

of local machines in terms of concurrency and for verification 

they capture a complete knowledge in the unfolding hence 

providing a representation of the full causality. In [17] an 

additional XILINX synchronizer primitive was introduced to 

provide a synchronization wrapper for synthesizing a range 

of”glue” solutions e.g. asynchronous, mesochronous, etc. 

Basic techniques for GALS verification were also presented 

including unfolding to occurrence nets. 

 

II. LITERATURE SURVEY 

Convolutional neural network (CNN), a well-known deep 

learning architecture extended from artificial neural network, 

has been extensively adopted in various applications, which 

include video surveillance, mobile robot vision, image search 

engine in data centers, etc [6] [7] [8] [10] [14]. Inspired by the 

behavior of optic nerves in living creatures, a CNN design 

processes data with multiple layers of neuron connections to 

achieve high accuracy in image recognition. Recently, rapid 

growth of modern applications based on deep learning 

algorithms has further improved research on deep 

convolutional neural network. Due to the specific computation 

pattern of CNN, general purpose processors are not efficient 

for CNN implementation and can hardly meet the 

performance requirement. Thus, various accelerators based on 

FPGA, GPU, and even ASIC design have been proposed 

recently to improve performance of CNN designs [3] [4] [9].  

Among these approaches, FPGA based accelerators have 

attracted more and more attention of researchers because they 

have advantages of good performance, high energy efficiency, 

fast development round, and capability of reconfiguration [1] 

[2] [3] [6] [12] [14]. For any CNN algorithm implementation, 

there are a lot of potential solutions that result in a huge 
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design space for exploration. In our experiments, we find that 

there could be as much as 90% performance difference 

between two different solutions with the same logic resource 

utilization of FPGA. It is not trivial to find out the optimal 

solution, especially when limitations on computation resource 

and memory bandwidth of an FPGA platform are considered. 

In fact, if an accelerator structure is not carefully designed, its 

computing throughput cannot match the memory bandwidth 

provided an FPGA platform. It means that the performance is 

degraded due to under-utilization of either logic resource or 

memory bandwidth. 161 Unfortunately, both advances of 

FPGA technology and deep learning algorithm aggravate this 

problem at the same time. On one hand, the increasing logic 

resources and memory bandwidth provided by state-of-art 

FPGA platforms enlarge the design space. In addition, when 

various FPGA optimization techniques, such as loop tiling and 

transformation, are applied, the design space is further 

expanded. On the other hand, the scale and complexity of 

deep learning algorithms keep increasing to meet the 

requirement of modern applications. 

III. PROPOSED SYSTEM 

A. GALS Asynchronous Primitive 
In addition to the standard XILINX symbols for all the basic 

primitives an asynchronous synchronisation primitive has 

been added. The primitive is used for inserting 

asynchronous”glue” components in communication channels 

that cross clock domains. The interface signals are defined 

using the XILINX format so that it can be interfaced to other 

XILINX primitives. The synchronization primitive is shown 

in Fig. 1. 

 
Fig.1: xMAS synchronization primitive. 

A synchronization primitive is used for communication 

between two islands. The synchronization primitive accepts a 

variable number of send signals, i1.irdy .. iN.irdy, from the 

incoming primitives from one island and returns the required 

number of receive signals, i1.trdy .. iN.trdy. Similarly it 

communicates with the target island by issuing the required 

number of send signals, o1.irdy .. oN.irdy and by accepting 

the required number of receive signals, o1.trdy .. oN.trdy. The 

new asynchronous primitive is generic and incorporates a 

number of synchronisation schemes. A black box is used to 

house the specific implementation style used for 

synchronization, which is designed to accommodate different 

GALS implementation styles: asynchronous, mesochronous, 

plausible clocking, etc. [22]. 

The Circuit Petri net translator is implemented inside our 

WORKCRAFT tool. The translator accepts a JSON (data 

interchange format) representation of the XILINX model and 

translates it into a Petri net representation. For translation each 

primitive is generated as shown in the examples in Fig. 6 to 

Fig. 9. The net primitives are connected by a process which 

links together all external connections. A data line is added 

later automatically to include data signals. Data is treated as 

signals e.g. 0.. 1. The signals pass through the data CPNs of 

the respective gates similar to the examples shown in Fig. 2. 

T qload < (T − T qload − T oracle) (1) 

Where T is the set of all transitions, T qload is the set of 

transitions associated with loading/unloading of the queue 

slots and T oracle is the set of source and sink oracle 

transitions. Proposition 1: There is a logical equivalence 

between the CPN primitives and XILINX primitives 

[equivalence is determined by truth table] Proposition 2: If ζ = 

enabled (T qload) then each t ∈ ζ must fire in the same step 

(clock step) as they have a unique common priority level. 

Lemma1: If t ∈ ζ fires in a single clock step ≡ (read/write) 

[32] and [χ = (T −T qload−T oracle)] > T qload then the 

execution semantics of (1) are equivalent to the clocked 

XILINX execution semantics. Proof: Given χ = 

communication transitions which execute between clock steps 

(read/writes) - similar to the transitions islands of [32]. If χ > 

T qload then T qload cannot fire until all χ have fired even if 

they are enabled. Therefore, χ will fire in a different step to T 

qload. If proposition 1 and proposition 2 hold it follows due to 

the alternating firing of χ and T qload that the execution 

semantics of (1) are equivalent to the XILINX execution 

semantics. In addition the source and sink oracles must occur 

as a multiple of queue transfers. For this the following relation 

is required: 

 T oracle < (T − T qload − T oracle) (2) 

 
Fig.2: Asynchronous synchronization. 
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which assigns the oracles a lower priority than all signals apart 

from the queue: if the source and sink are eager they are 

activated once at the start via the system control signals (see 

Fig. 6); if they are non-deterministic then according to (2) 

they can only be activated when the communication signals 

other than the queue have already been activated. Lemma 2: If 

each t ∈ enabled (T oracle) fires in a single clock step and [T 

− T qload − T oracle] > T oracle then the execution semantics 

of (2) are equivalent to the XILINX execution semantics. 

Proof: the proof follows from lemma1 with T qload switched 

with T oracle i.e. the same must hold for the sources and sinks 

as holds for the queues. Finally a specific mapping Π = ΠQO 

is required which relates queue to source and sink oracles: 

ΠQO = (T oracle = T qload if eager T oracle ≤ T qload if non-

deterministic (3) Here ΠQO represents a priority mapping 

relation between the queue and the source and sink oracles. 

The first part of the expression operates in a similar manner to 

(2) with regards initialization i.e. the oracles are only activated 

once at the start if they are eager. The second part of the 

expression in (3) dynamically sets the prioritization of the 

oracle to be less than or equal to the queue depending on the 

non-deterministic setting that is generated by the system for 

each oracle. Theorem 1: If Case 1: T oracle = T qload (the 

setting of the oracle is eager) or Case 2: T oracle ≤ T qload 

(the setting of the oracle is non-deterministic), then for either 

case, Case 1 or Case 2, the execution semantics must be 

equivalent to the XILINX execution semantics.  

IV. SIMULATION RESULTS 

A. WAVEFORMS 

 

 

 

 

 

B. TIMING REPORT 

 

C. POWER REPORT 

 

D. DESIGN SUMMARY 
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E. RTL SCHEMATIC 

 
 

V. CONCLUSION 

We have introduced a structured visual GALS modeling and 

verification environment for communication circuits. An 

integrated GALS platform has been provided using the 

WORKCRAFT tool which allows a comprehensive approach 

by integrating multiple tasks into a unified environment. The 

visualization capabilities provide enhanced feedback to the 

user during verification making it much easier for the user to 

investigate the causality of problems. The verification 

approach is based on unfolding and deadlock analysis using 

Structured Occurrence nets which is well suited for GALS 

analysis. A novel representation has been presented using 

deadlock relations which enables the point-to-point causality 

between deadlocks to be viewed. This includes analysis of 

local and global deadlocks and enables visualization of total 

or partial system shutdown. Results show that deadlocks can 

be visualized easily and resolved efficiently. For future work 

we intend to adapt the system to check for lovelock and test a 

wider range of synchronizers including MUTEX based. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. REFERENCES 
[1]. S. Suhaib, D. Mathaikutty and S. Shukla, “Dataflow 

Architectures for GALS,” ACM Journal. Electronic Notes in 

Theoretical Computer Science (ENTCS), Vol 200, No. 1, pp. 

33–50, 2008.  

[2]. T. Jungeblut, J. Ax, M. Porrmann and U. Ruckert, “A TCM-

based architecture for GALS NoCs,” Proceedings of 

ISCAS’2012, pp. 2721– 2724, 2012.  

[3]. A. Yakovlev, P. Vivet and M. Renaudin, “Advances in 

asynchronous logic: from principles to GALS and NOC, recent 

industry applications, and commercial CAD tools,” Proceedings 

of DATE’2013, 2013.  

[4]. C. Koch-Hofer, Y. Renaudin, Y. Thonnart and P. Vivet, “ASC, 

a System C extension for modelling asynchronous systems, and 

its application to an asynchronous NOC,” Proc. on Networks-

on-Chip NOCS’2007, pp. 295– 306, 2007.  

[5]. Fatma Jebali, Frdric Lang and Radu Mateescu, “A Specification 

Language for Globally Asynchronous Locally Synchronous 

Systems,” Proc. ICFEM’2014, pp. 219–234, 2014.  


