
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 587 | P a g e

Design of Low Power Globally Asynchronous Locally

Synchronous Modeling Using Xilinx
N.SRIKANTH1, Dr.SACHIN S SHARMA2

1P.G Student, Department of Electronics and Communication Engineering
2Assistant professor, Avn institute of engineering and technology

Abstract- In this paper a novel Globally Asynchronous

Locally Synchronous (GALS) modeling and verification tool

is introduced for XILINX circuits. The tool provides a

structured environment for GALS in which organization of the

modeling and verification enables it to handle a variety of

implementation tasks facilitating a process which would

otherwise be difficult for the end user. The tool provides

verification techniques at different levels. A new unfolding

algorithm is presented that uses Structured Occurrence nets. A

novel representation for deadlocks is introduced using

deadlock relations enabling the causality of local and global

deadlocks to be visualized. This helps in the investigation of

total or partial system shutdown. In particular, the approach

enables the visualization of point-to-point causality of

problems occurring between different parts of the system

which are more difficult to analyze. In addition different types

of deadlock related to the synchronizer can be detected. The

work presented here provides structured visualization

capability facilitating the analysis of complex communication

systems.

I. INTRODUCTION

 there has been a lot of interest in researching new

architectures for GALS [1] [2], there have been few attempts

at providing modeling solutions for GAL’s communication.

Thus, modeling of GALS from specifications has been limited

to hardware description languages such as Verilog, VHDL [3]

or synchronous programming languages such as C or

ESTEREL [4]. Specialist verification languages that have

been introduced for GALS include GRL [5] and process

calculi [6] but these languages tend to be used at a higher level

of abstraction than hardware. A graphical tool has been

developed in [7] but the models here are also used at a higher

level i.e. they are not used for circuit deadlock analysis.

Although the techniques are higher level they offer better

modeling of things like protocols. The work in [8] is more

similar in the sense that different formats are interchangeable

allowing different tools to be linked which is a useful

approach to take but is centered on co-simulation rather than

verification or deadlock analysis. Hardware models for

communication logic in the past have relied on standard

languages, e.g. Verilog, which require a significant amount

of”glue logic” to connect communicating primitives together.

This kind of modeling tends to be unwieldy and non-intuitive.

XILINX [9] [10] [11] represents a significant improvement in

the representation and modeling of communication systems. It

provides a set of graphical communication primitives which

are more natural, i.e. they are closer to the hardware, and their

higher level of abstraction enables them to be easily

understood. Although XILINX model checking has been

covered extensively at the Boolean level for purposes like

deadlock checking [12] [13] [14] [15] [16] little work has

been done using net level models such as Petri nets. In [17]

basic techniques for GALS synthesis to Circuit Petri nets [18]

for XILINX were presented offering some distinct advantages:

they are well suited to the visualization of distributed models

of local machines in terms of concurrency and for verification

they capture a complete knowledge in the unfolding hence

providing a representation of the full causality. In [17] an

additional XILINX synchronizer primitive was introduced to

provide a synchronization wrapper for synthesizing a range

of”glue” solutions e.g. asynchronous, mesochronous, etc.

Basic techniques for GALS verification were also presented

including unfolding to occurrence nets.

II. LITERATURE SURVEY

Convolutional neural network (CNN), a well-known deep

learning architecture extended from artificial neural network,

has been extensively adopted in various applications, which

include video surveillance, mobile robot vision, image search

engine in data centers, etc [6] [7] [8] [10] [14]. Inspired by the

behavior of optic nerves in living creatures, a CNN design

processes data with multiple layers of neuron connections to

achieve high accuracy in image recognition. Recently, rapid

growth of modern applications based on deep learning

algorithms has further improved research on deep

convolutional neural network. Due to the specific computation

pattern of CNN, general purpose processors are not efficient

for CNN implementation and can hardly meet the

performance requirement. Thus, various accelerators based on

FPGA, GPU, and even ASIC design have been proposed

recently to improve performance of CNN designs [3] [4] [9].

Among these approaches, FPGA based accelerators have

attracted more and more attention of researchers because they

have advantages of good performance, high energy efficiency,

fast development round, and capability of reconfiguration [1]

[2] [3] [6] [12] [14]. For any CNN algorithm implementation,

there are a lot of potential solutions that result in a huge

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 588 | P a g e

design space for exploration. In our experiments, we find that

there could be as much as 90% performance difference

between two different solutions with the same logic resource

utilization of FPGA. It is not trivial to find out the optimal

solution, especially when limitations on computation resource

and memory bandwidth of an FPGA platform are considered.

In fact, if an accelerator structure is not carefully designed, its

computing throughput cannot match the memory bandwidth

provided an FPGA platform. It means that the performance is

degraded due to under-utilization of either logic resource or

memory bandwidth. 161 Unfortunately, both advances of

FPGA technology and deep learning algorithm aggravate this

problem at the same time. On one hand, the increasing logic

resources and memory bandwidth provided by state-of-art

FPGA platforms enlarge the design space. In addition, when

various FPGA optimization techniques, such as loop tiling and

transformation, are applied, the design space is further

expanded. On the other hand, the scale and complexity of

deep learning algorithms keep increasing to meet the

requirement of modern applications.

III. PROPOSED SYSTEM

A. GALS Asynchronous Primitive
In addition to the standard XILINX symbols for all the basic

primitives an asynchronous synchronisation primitive has

been added. The primitive is used for inserting

asynchronous”glue” components in communication channels

that cross clock domains. The interface signals are defined

using the XILINX format so that it can be interfaced to other

XILINX primitives. The synchronization primitive is shown

in Fig. 1.

Fig.1: xMAS synchronization primitive.

A synchronization primitive is used for communication

between two islands. The synchronization primitive accepts a

variable number of send signals, i1.irdy .. iN.irdy, from the

incoming primitives from one island and returns the required

number of receive signals, i1.trdy .. iN.trdy. Similarly it

communicates with the target island by issuing the required

number of send signals, o1.irdy .. oN.irdy and by accepting

the required number of receive signals, o1.trdy .. oN.trdy. The

new asynchronous primitive is generic and incorporates a

number of synchronisation schemes. A black box is used to

house the specific implementation style used for

synchronization, which is designed to accommodate different

GALS implementation styles: asynchronous, mesochronous,

plausible clocking, etc. [22].

The Circuit Petri net translator is implemented inside our

WORKCRAFT tool. The translator accepts a JSON (data

interchange format) representation of the XILINX model and

translates it into a Petri net representation. For translation each

primitive is generated as shown in the examples in Fig. 6 to

Fig. 9. The net primitives are connected by a process which

links together all external connections. A data line is added

later automatically to include data signals. Data is treated as

signals e.g. 0.. 1. The signals pass through the data CPNs of

the respective gates similar to the examples shown in Fig. 2.

T qload < (T − T qload − T oracle) (1)

Where T is the set of all transitions, T qload is the set of

transitions associated with loading/unloading of the queue

slots and T oracle is the set of source and sink oracle

transitions. Proposition 1: There is a logical equivalence

between the CPN primitives and XILINX primitives

[equivalence is determined by truth table] Proposition 2: If ζ =

enabled (T qload) then each t ∈ ζ must fire in the same step

(clock step) as they have a unique common priority level.

Lemma1: If t ∈ ζ fires in a single clock step ≡ (read/write)

[32] and [χ = (T −T qload−T oracle)] > T qload then the

execution semantics of (1) are equivalent to the clocked

XILINX execution semantics. Proof: Given χ =

communication transitions which execute between clock steps

(read/writes) - similar to the transitions islands of [32]. If χ >

T qload then T qload cannot fire until all χ have fired even if

they are enabled. Therefore, χ will fire in a different step to T

qload. If proposition 1 and proposition 2 hold it follows due to

the alternating firing of χ and T qload that the execution

semantics of (1) are equivalent to the XILINX execution

semantics. In addition the source and sink oracles must occur

as a multiple of queue transfers. For this the following relation

is required:

 T oracle < (T − T qload − T oracle) (2)

Fig.2: Asynchronous synchronization.

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 589 | P a g e

which assigns the oracles a lower priority than all signals apart

from the queue: if the source and sink are eager they are

activated once at the start via the system control signals (see

Fig. 6); if they are non-deterministic then according to (2)

they can only be activated when the communication signals

other than the queue have already been activated. Lemma 2: If

each t ∈ enabled (T oracle) fires in a single clock step and [T

− T qload − T oracle] > T oracle then the execution semantics

of (2) are equivalent to the XILINX execution semantics.

Proof: the proof follows from lemma1 with T qload switched

with T oracle i.e. the same must hold for the sources and sinks

as holds for the queues. Finally a specific mapping Π = ΠQO

is required which relates queue to source and sink oracles:

ΠQO = (T oracle = T qload if eager T oracle ≤ T qload if non-

deterministic (3) Here ΠQO represents a priority mapping

relation between the queue and the source and sink oracles.

The first part of the expression operates in a similar manner to

(2) with regards initialization i.e. the oracles are only activated

once at the start if they are eager. The second part of the

expression in (3) dynamically sets the prioritization of the

oracle to be less than or equal to the queue depending on the

non-deterministic setting that is generated by the system for

each oracle. Theorem 1: If Case 1: T oracle = T qload (the

setting of the oracle is eager) or Case 2: T oracle ≤ T qload

(the setting of the oracle is non-deterministic), then for either

case, Case 1 or Case 2, the execution semantics must be

equivalent to the XILINX execution semantics.

IV. SIMULATION RESULTS

A. WAVEFORMS

B. TIMING REPORT

C. POWER REPORT

D. DESIGN SUMMARY

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 590 | P a g e

E. RTL SCHEMATIC

V. CONCLUSION

We have introduced a structured visual GALS modeling and

verification environment for communication circuits. An

integrated GALS platform has been provided using the

WORKCRAFT tool which allows a comprehensive approach

by integrating multiple tasks into a unified environment. The

visualization capabilities provide enhanced feedback to the

user during verification making it much easier for the user to

investigate the causality of problems. The verification

approach is based on unfolding and deadlock analysis using

Structured Occurrence nets which is well suited for GALS

analysis. A novel representation has been presented using

deadlock relations which enables the point-to-point causality

between deadlocks to be viewed. This includes analysis of

local and global deadlocks and enables visualization of total

or partial system shutdown. Results show that deadlocks can

be visualized easily and resolved efficiently. For future work

we intend to adapt the system to check for lovelock and test a

wider range of synchronizers including MUTEX based.

VI. REFERENCES
[1]. S. Suhaib, D. Mathaikutty and S. Shukla, “Dataflow

Architectures for GALS,” ACM Journal. Electronic Notes in

Theoretical Computer Science (ENTCS), Vol 200, No. 1, pp.

33–50, 2008.

[2]. T. Jungeblut, J. Ax, M. Porrmann and U. Ruckert, “A TCM-

based architecture for GALS NoCs,” Proceedings of

ISCAS’2012, pp. 2721– 2724, 2012.

[3]. A. Yakovlev, P. Vivet and M. Renaudin, “Advances in

asynchronous logic: from principles to GALS and NOC, recent

industry applications, and commercial CAD tools,” Proceedings

of DATE’2013, 2013.

[4]. C. Koch-Hofer, Y. Renaudin, Y. Thonnart and P. Vivet, “ASC,

a System C extension for modelling asynchronous systems, and

its application to an asynchronous NOC,” Proc. on Networks-

on-Chip NOCS’2007, pp. 295– 306, 2007.

[5]. Fatma Jebali, Frdric Lang and Radu Mateescu, “A Specification

Language for Globally Asynchronous Locally Synchronous

Systems,” Proc. ICFEM’2014, pp. 219–234, 2014.

