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ABSTRACT
The leading approach for solving large imperfect-information
games is automated abstraction followed by running an equi-
librium-finding algorithm. We introduce a distributed ver-
sion of the most commonly used equilibrium-finding algo-
rithm, counterfactual regret minimization (CFR), which en-
ables CFR to scale to dramatically larger abstractions and
numbers of cores. The new algorithm begets constraints on
the abstraction so as to make the pieces running on different
computers disjoint. We introduce an algorithm for generat-
ing such abstractions while capitalizing on state-of-the-art
abstraction ideas such as imperfect recall and earth-mover’s
distance. Our techniques enabled an equilibrium computa-
tion of unprecedented size on a supercomputer with a high
inter-blade memory latency. Prior approaches run slowly on
this architecture. Our approach also leads to a significant
improvement over using the prior best approach on a large
shared-memory server with low memory latency. Finally, we
introduce a family of post-processing techniques that outper-
form prior ones. We applied these techniques to generate an
agent for two-player no-limit Texas Hold’em, called Tarta-
nian7, that won the 2014 Annual Computer Poker Compe-
tition, beating each opponent with statistical significance.
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1. INTRODUCTION
The leading approach for creating strong agents for large

imperfect-information games—which is used by all of the
strongest Texas Hold’em (TH) poker agents—is to first cre-
ate a sufficiently small strategic approximation of the full
game, called an abstraction, then to apply an equilibrium-
finding algorithm [27, 14] to the abstraction, and finally to
apply post-processing techniques [11, 23, 6, 4] to obtain a
strategy in the original game from the approximate equi-
librium of the abstraction. Initially abstractions were cre-
ated manually [24, 2], while nowadays they are created by
algorithms [8, 9, 10, 26, 18, 5]. The equilibrium-finding al-
gorithm used by today’s strongest TH agents is a Monte
Carlo version of the counterfactual regret minimization al-
gorithm (MCCFR) [21]. That algorithm involves repeatedly
sampling chance outcomes and actions down the tree, and
updating regret and average strategy values that are stored
at each information set.

On a shared-memory architecture, MCCFR can be paral-
lelized straightforwardly. True shared-memory architectures
typically come with relatively little memory and relatively
few cores, however, and it would be desirable for scalability
to be able to run on architectures that have more memory (in
order to be able to run on larger, more detailed abstractions)
and more cores (for speed). However, on distributed archi-
tectures and supercomputers with high inter-blade1 memory
access latency, straightforward MCCFR parallelization ap-
proaches lead to impractically slow runtimes because when
a core does an update at an information set (extensive-form
games and information sets therein are formally defined in
Appendix C) it needs to read and write memory with high la-
tency. A second issue in MCCFR (even on a shared-memory
architecture) is that different cores working on the same in-
formation set may need to lock memory, wait for each other,
possibly over-write each others’ parallel work, and work on
out-of-sync inputs. Our approach solves the former problem
and also helps mitigate the latter issue.

To obtain these benefits, our algorithm creates an infor-
mation abstraction that allows us to assign different compo-
nents of the game tree to different blades so the trajectory
of each sample only accesses information sets located on the

1Such supercomputers consists of blades, which are them-
selves computers that are plugged into racks. A core can
access memory on its blade faster than memory on other
blades—seven times faster on the computer we used. On
regular distributed systems, the difference between local and
remote memory access is even greater.



same blade. At a high level, the first stage of our hierarchical
approach is to cluster public information at some early point
in the game (public flop cards in the case of Texas Hold’em
poker—see Appendix A for the rules), giving a global basis
for distributing the rest of the game into non-overlapping
pieces; then our algorithm conducts clustering of private in-
formation. A key contribution is the specific way to cluster
the public information. As we will detail in Section 2, two
prior abstraction algorithms motivated by similar consid-
erations have been developed for poker by others [26, 15],
but ours differs in that it does not use hand-crafted poker
features, is applicable to the large, and does not have the
conceptual weaknesses from which they suffer.

We developed an equilibrium-finding algorithm that can
be applied to this abstraction. It is a modified version of
external-sampling MCCFR [21]. Applied to TH, it samples
one pair of preflop (i.e., first betting round) hands per it-
eration. For the later betting rounds, each blade samples
public cards from its public cluster and performs MCCFR
within each cluster. Our algorithm weighs the samples to re-
move bias. Ours is similar to the algorithm of Jackson [15].
However, we implement MCCFR instead of chance-sampled
CFR, and split only based on public information (chance
actions) rather than players’ actions. Another related prior
approach used vanilla CFR (which converges significantly
slower in practice) and split based only on players’ actions
(which does support nearly as much parallelization) [16].

The new abstraction and equilibrium-finding algorithms
enabled an equilibrium computation of unprecedented size
on a supercomputer with high inter-blade memory access
latency. Experiments also show that this run outperforms
the strongest prior approach executed on a large shared-
memory server with low memory latency but fewer cores.

Finally, post-processing techniques have been shown to
be useful to mitigate the issues from overfitting to one’s ab-
straction and approximate equilibrium finding. We intro-
duce a family of post-processing techniques that outperform
prior ones. Our techniques combine 1) the observation that
rounding action probabilities mitigates the above-mentioned
issues [6], 2) the new observation that similar abstract ac-
tions should be bucketed before such rounding so that fine-
grained action discretization (aka action abstraction) does
not disadvantage those actions, and 3) the new observation
that biasing toward actions that reduce variance is helpful in
a strong agent and our experiments show that this increases
expected value as well.

We applied all of the above-mentioned techniques to gen-
erate an agent for two-player no-limit TH (NLTH). It won
the 2014 Annual Computer Poker Competition (ACPC),
beating each opponent with statistical significance.

2. ABSTRACTION ALGORITHM
The first contribution of this paper is a new hierarchical

abstraction algorithm. It is domain independent, although
in many places of the description we present it in the con-
text of poker for concreteness. In order to enable distributed
equilibrium finding, it creates an information abstraction
that assigns disjoint components of the game tree to differ-
ent blades so that sampling in each blade will only access
information sets that are located on that blade.

At a high level, the first stage of our hierarchical abstrac-
tion algorithm is to cluster public information at some early
point in the game (public flop boards, i.e., combinations of

public flop cards, in the case of TH), giving a global basis for
distributing the rest of the game into non-overlapping pieces.
Then, as a second stage our algorithm conducts clustering of
information states (that can include both public and private
information) in a way that honors the partition generated
in the first stage.

As an example, suppose that in the first stage we clus-
ter public flop boards into 60 buckets. Suppose bucket 4
contains only the boards AsKhQd and AsKhJd. Then we
cluster all private hands for each betting round, starting
with the flop, i.e., the second round (we assume the abstrac-
tion for the preflop round has already been computed—the
strongest agents, including ours, use no abstraction preflop).
We perform abstraction over full (five-card) flop hands sepa-
rately for each of the 60 blades. For blade 4, only the hands
for which the public board cards are AsKhQd or AsKhJd are
considered (for example, 5s4s-AsKhQd and QcJc-AsKhJd).
There are 2,352 such hands. If we allowed an abstraction
at the current round with 50 private buckets per blade, we
would then group these 2,352 hands into 50 buckets (using
some abstraction algorithm; we discuss ours in detail later).
We then perform a similar procedure for the third (aka turn)
and fourth (aka river) rounds, ensuring that the hands for
each blade are limited only to the hands that contain a pub-
lic flop board that was assigned to that blade in the first
stage of the algorithm.

A game has perfect recall if, informally, no player ever
forgets information that he knew at an earlier point in the
game. This is a useful concept for several reasons. First, cer-
tain equilibrium-finding algorithms can only be applied to
games with perfect recall [19, 14]. Second, other equilibrium-
finding algorithms, such as CFR [27] and its sampling vari-
ants, have no theoretical guarantees in games that have im-
perfect recall, though they can still be applied. (One notable
exception is recent work giving a theoretical guarantee of the
performance of CFR in one class of imperfect-recall games
called well-formed games [20].) And third, Nash equilibria
are not even guaranteed to exist in general in behavioral
strategies in games with imperfect recall.

Despite these limitations, poker agents using abstractions
with imperfect recall have consistently been shown to out-
perform agents that use perfect recall abstractions [26]. In-
tuitively, perfect-recall abstractions force agents to distin-
guish all information at a later round in the tree that they
were able to distinguish at an earlier round, even if such a
distinction is not very significant at the later round. For ex-
ample, if an agent can distinguish between Kh3c and Kh4c
in the preflop round (as is the case in the abstractions of the
best agents), then a perfect-recall abstraction would force
them to be able to distinguish between Kh3c on a KsJd9h
flop, and Kh4c on the same flop, despite the fact that the
3c vs. 4c distinction is extremely unlikely to play a strategic
role in the hand. On the other hand, with imperfect recall,
agents are not forced to remember all of these distinctions
simply because they knew them at a previous round, and
are free to group any hands together in a given round with-
out regard to what information was known about them in
prior rounds of the abstraction. The most successful prior
abstraction algorithms use imperfect recall [18, 5].

Unfortunately, running CFR on imperfect-recall abstrac-
tions on a machine with high inter-blade memory access la-
tency can be problematic, since regrets and strategy values
at different buckets along a sample may be located on dif-



ferent blades. We now describe in detail our new approach
that enables us to produce strong abstractions for this set-
ting. Our approach requires players to remember certain
information throughout the hand (public flop bucket), but
does not force players to distinguish between other pieces of
information that they may have been able to distinguish be-
tween previously (if such distinctions are no longer relevant).
Thus, our approach achieves the benefits of imperfect recall
to a large extent (though not the flexibility of full imperfect
recall) while achieving partitioning of the game into disjoint
pieces for different blades to work on independently.

2.1 Main Abstraction Algorithm
Our main abstraction algorithm, Algorithm 1, which is

domain independent, works as follows. Let r̂ be the spe-
cial round of the game where we perform the public cluster-
ing. For the initial r̂ − 1 rounds, we compute a (potentially
imperfect-recall) abstraction using an arbitrary algorithm
Ar for round r. For example, in poker the strongest agents
use no abstraction in the preflop round (and even if they did
use abstraction for it, it would not require public clustering
and could be performed separately). Next, the public states
at round r̂ are clustered into C buckets. The algorithm for
this public clustering is described in Section 2.2. Once this
public abstraction has been computed, we compute abstrac-
tions for each round from r̂ to R over all states of private
information separately for each of the public buckets that
have been previously computed. These abstractions can be
computed using any arbitrary approach, Ar. For our poker
agent, we used an abstraction algorithm that had previously
been demonstrated to perform well as the Ar’s [18].

Algorithm 1 Main abstraction algorithm

Inputs: number of rounds R; round where public informa-
tion abstraction is desired r̂; number of public buckets C;
number of desired private buckets per public bucket at round
r, Br; abstraction algorithm used for round r, Ar

for r = 1 to r̂ − 1 do
cluster information states at round r using Ar

cluster public information states at round r̂ into C buckets
(e.g., using Algorithm 2)
for r = r̂ to R do

for c = 1 to C do
cluster private information states at round r that
have public information in public bucket c into Br
buckets using abstraction algorithm Ar

2.2 Algorithm for Computing Abstraction of
Public Information

The algorithm used to compute the abstraction of public
information at round r̂ is shown as Algorithm 2. For TH,
this corresponds to computing a bucketing of the public flop
boards. To do this, we need a distance function di,j between
pairs of public states (or, equivalently, a similarity function
si,j that can be transformed into a distance function). We
use this distance function to compute the public abstraction
using the clustering algorithm described in Section 2.3.

Two prior approaches have been applied to abstract pub-
lic flop boards. One uses poker-specific features that have
been constructed manually [15]. The second, due to Waugh
et al., uses k-means clustering with L2 distance over transi-
tion tables that were constructed from a small perfect-recall

base abstraction with 10 preflop buckets and 100 flop buck-
ets [26]. The entry T [f ][i][j] in the table gives the proba-
bility of transitioning from preflop bucket i to flop bucket
j in the abstraction when the public flop board is f . In
addition to potentially prohibitive computational challenges
of scaling that approach to large base abstractions (such as
the one we will use, which has 169 preflop and 5,000 flop
buckets), there are also conceptual issues, as the following
example illustrates. Consider the similar public flop boards
AhKs3d and AhKs2d. Suppose the base abstraction does
not perform abstraction preflop and places 4c3s-AhKs3d and
4c2s-AhKs2d into the same flop bucket, (which we would ex-
pect, as they are very similar—both have bottom pair with
a 4 “kicker”), say bucket 12, while it places 4c3s-AhKs2d
and 4c2s-AhKs3d into bucket 13 (these hands are also very
similar—the worst possible non-pair hand with a “gutshot”
straight draw). Suppose 4c3s is in bucket 7 preflop and 4c2s
is in bucket 8. Then the transition table for AhKs2d would
have value 0 for the probability of transitioning from preflop
bucket 7 into flop bucket 12, while it would have value 1 for
transitioning from preflop bucket 8 into flop bucket 12 (and
the reverse for AhKs3d). So the L2 distance metric would
maximally penalize the boards for this component, despite
the fact that they should actually be considered very simi-
lar based on this component, since they map hands that are
extremely similar to the same bucket. Our new approach ac-
counts for this problem by building a distance function based
on how often public boards result in a given flop bucket in
the base abstraction for any private cards (not necessarily
the same private cards, as the prior approach has done).

We have developed an efficient approach that was able
to use the strong 169-5,000-5,000-5,000 imperfect-recall ab-
straction as its base. We refer to this abstraction as A. The
algorithm is game independent, and pseudocode (that is not
specific to poker) is presented in Algorithm 2. As in Waugh’s
approach described above, we first compute a transition ta-
ble T that will be utilized later in the algorithm, though
our table will contain different information than theirs. For
concreteness, and to demonstrate the implementation used
by our agent so that it can be replicated, we will describe
how the table is constructed in the context of TH poker.

We first construct a helper table called PublicFlopHands.
The entry PublicFlopHands[i][j] for 1 ≤ i ≤ 1, 755, 1 ≤ j ≤ 3
gives the j’th public flop card corresponding to index i, us-
ing a recently developed indexing algorithm that accounts
for all suit isomorphisms [25] (there are 52·51·50

6
= 22, 100 to-

tal public flop hands, but only 1,755 after accounting for all
isomorphisms). We specify one such canonical hand for each
index. Next, using this table, we create the transition table
T , where the entry T [i][j] for 1 ≤ i ≤ 1, 755, 1 ≤ j ≤ 5, 000
gives the number of private card combinations for which a
hand with public flop i transitions into bucket j of the ab-
straction A, which has B = 5, 000 buckets. This is computed
by iterating over all public flop indices, then looking up the
canonical hand in PublicFlopHands, and iterating over the
49·48

2
= 1, 176 possible private card combinations given that

public flop hand. We then construct the 5-card flop hand by
combining the two private cards with the given public flop
hand, look up the index of this hand (again using Waugh’s
indexing algorithm), and then look up what bucket A places
that flop hand index into. Thus, the creation of the transi-
tion table involves iterating over 1, 755 · 1, 176 = 2, 063, 880
combinations, which can be done quickly.



In poker-independent terms, T [i][j] stores how often pub-
lic state i will lead to bucket j of the base abstraction, ag-
gregated over all possible states of private information. In
contrast, Waugh’s table stores separate transition probabil-
ities for each state of private information.

We would like our distance function to assign a small value
between public states that are frequently grouped into the
same bucket by A, since we already know A to be a very
strong abstraction. We compute distances by iterating over
the B (private) buckets in round r̂ of A. We initialize a
variable si,j which corresponds to the similarity between i
and j to be zero. For each bucket b, let ci denote the num-
ber of private states with public state i that are mapped to
b under A (and similarly for cj). For example, suppose i
corresponds to the public flop board of AsQd6h and b = 7.
Then ci would denote the number of private preflop card
combinations (x,y), such that the flop hand xy-AsQd6h is
placed in bucket 7 under A. We then increment si,j by the
minimum of ci and cj . For example, if ci = 4 and cj = 12,
this would mean that i and j are both placed into the cur-
rent bucket b four times. Then the distance di,j is defined as
V−si,j
V

, which corresponds to the fraction of private states
that are not mapped to the same bucket of A when paired
with public information i and j.2

Algorithm 2 Algorithm for computing abstraction of pub-
lic information
Inputs: number of public buckets C; number of public
statesM ; number of private information sets per public state
V ; prior abstraction A with B buckets; transition table T
for public states into buckets of A; clustering algorithm L

for i = 1 to M − 1 do
for j = i+ 1 to M do

si,j ← 0
for b = 1 to B do

ci ← T [i][b], cj ← T [j][b], si,j += min(ci, cj)

di,j ← V−si,j
V

Cluster the M public states into C clusters using L with
distance function d

For our application of Algorithm 2 to poker, the number of
public buckets we used is C = 60, the total number of private
states for each public state is V = 1, 176, and B = 5, 000 as
described above. The full number of public flop boards after
accounting for all suit isomorphisms is M = 1, 755. Thus, to

compute all of the distances we must iterate over BN(N−1)
2

=
7.7 billion triples. This can be performed quickly in practice,
since for each item we only need to perform lookups in the
precomputed transition table.

2.3 Public Abstraction Clustering Algorithm
Given the distance function we have computed, we next

perform the clustering of the public states into C public clus-
ters, using the procedure shown in Algorithm 3. The initial
clusters c0 are computed by applying k-means++ [1], using
the pairwise point distance function di,j , which is taken as
an input. The k-means++ initialization procedure only re-

2Note that d is not a distance metric. It is possible to have
di,j = 0 for boards that are different, if the boards send the
same number of preflop hands into each flop bucket in A.
Thus, we view d as an arbitrary matrix of distances rather
than viewing the space as a metric space. This will affect se-
lection of the clustering algorithm, described in Section 2.3.

quires knowing distances between data points, not distances
from a point to a non-data-point. Next, for each iteration
t, we iterate over all points i. We initialize clusterDistances
to be an array of size K of all zeroes, which will denote the
distance between point i and each of the current clusters.
We then iterate over all other points j 6= i, and increment
clusterDistances[ct−1[j]] by di,j . Once we have iterated over
all values of j, we let ct[i] denote the cluster with smallest
distance from i. If no clusters changed from the clustering
at the previous iteration, we are done. Otherwise, we con-
tinue this procedure until T iterations have been performed,
at which point we output cT [i] as the final abstraction.

Algorithm 3 Clustering algorithm for public abstraction

Inputs: Number of public states to cluster M ; desired num-
ber of clusters K; distances di,j between each pair of points;
number of iterations to run T

Compute initial clusters c0 (e.g., using k-means++)
for t = 1 to T do

for i = 1 to M do
clusterDistances ← array of size K of zeroes
for j = 1 to M , j 6= i do

clusterDistances[ct−1[j]] += di,j

ct[i]← cluster with smallest distance

if no clusters were changed from previous iteration
then break

This algorithm only takes into account distances between
pairs of data points, and not distances between points in the
space that are not data points (such as means). Clustering
algorithms that are designed for metric spaces, such as k-
means, are not applicable to this setting.3

3. EQUILIBRIUM-FINDING ALGORITHM
To solve the abstract game, one needs an algorithm that

converges to a Nash equilibrium. The most commonly used
equilibrium-finding algorithm for large imperfect-informa-
tion extensive-form games is counterfactual regret minimiza-
tion (CFR) and its extensions. We review CFR and the
formal notation of extensive-form games in the appendix.

There is a large benefit to not needing to sample all ac-
tions at every iteration of CFR, and the variants that selec-
tively sample more promising actions more often are Monte
Carlo CFR (MCCFR) and Pure CFR. The external sam-
pling variant of MCCFR converges faster than Pure CFR in
practice but requires twice as much memory [7]. We build
our equilibrium-finding algorithm starting from MCCFR be-
cause it converges faster and we are no longer memory con-
strained since we can run on distributed architectures.

External-Sampling MCCFR (ES-MCCFR) does a sepa-
rate iteration for each player. On a player’s iteration, ES-
MCCFR samples opponent action and chance nodes down
the tree (while exploring all of the player’s actions). Actions

3We could have used the k-medoid algorithm (though it
has a significant computational overhead over our approach,
both in terms of running time and memory), or used the
objective of minimizing the average distance of each point
from the points in a cluster (rather than the sum). It would
be interesting to explore the effect of using different choices
for the clustering objective on abstraction quality. We chose
the sum objective because it is computationally feasible and
gives a clustering with clusters of more balanced sizes than
the average objective.



are selected according to regret minimization. Regret is up-
dated in the player’s information sets, while average strategy
is updated for encountered opponent information sets. This
is problematic on a machine with high inter-blade memory
access latency because the information sets traversed on a
single iteration can be located on different blades. On the
supercomputer we used, for example, accessing memory on
the same blade takes 130 nanoseconds, while accessing mem-
ory on different blades takes about one microsecond.

As discussed in the previous section, our new abstraction
addresses this issue by ensuring that after a certain point
(for the flop through river rounds in the case of TH) all
remaining information sets encountered in the current MC-
CFR iteration are stored on the same blade (i.e., the blade
that the public flop was assigned to in the first stage of the
abstraction algorithm.)

We developed a modification of MCCFR specifically for
architectures with high inter-blade memory access latency.
It designates one blade as the “head” blade, which stores the
regrets and average strategies for the top part of the game
tree (preflop round in TH). The algorithm begins by sam-
pling private information and conducting MCCFR on the
head blade. When an action sequence is reached that tran-
sitions outside the top of the game tree (to the flop in TH),
the algorithm sends the current state to each of the C child
blades. Each child blade then samples public information
from its public bucket and continues the iteration of MC-
CFR. Once all the child blades complete their part of the
iteration, their values are returned to the head blade. The
head blade calculates a weighted average of these values,
weighing them by the number of choices of public informa-
tion (possible flops in TH) that they sampled from. This
ensures that the expected value is unbiased. The head node
then continues its iteration of MCCFR, repeating the pro-
cess whenever the sample exits the top part (a flop sequence
is encountered), until the iteration is complete. Pseudocode
of the detailed algorithm appears in Algorithm 4.

In practice, rather than communicating with the child
nodes every time sampling passes beyond the top part of
the tree (i.e., a flop sequence is encountered in TH), we
instead use a two-pass approach. On the first pass, we
only record which continuation (flop) sequences were en-
countered. These sequences are then sent to the child blades,
so they can calculate values for those sequences; the child
blades work in parallel, but within each child blade the con-
tinuation sequences assigned to that blade are handled one
after another. The head blade then does a second pass that
is identical to the first, except that values returned from the
child blades are used whenever a sample gets beyond the top
part of the tree (i.e., the flop is reached in TH).

Our algorithm encounters the inter-blade latency when-
ever the head node sends data to the cluster blades, and
again when receiving the responses. This only amounts to
around 60 microseconds per MCCFR iteration. Each itera-
tion takes about 15 milliseconds, so this latency overhead is
negligible. In settings where this overhead is significant, one
can easily make it negligible by having the child blades take
more samples on each iteration, thereby increasing the ratio
of time spent sampling to time spent on latency; however,
this reduces the role of sampling, and moves the algorithm
closer to vanilla CFR, which converges slower than MCCFR.

Since the head node can only proceed after receiving a re-
sponse from all the cluster blades, some clusters may be idle

Algorithm 4 Our equilibrium-finding algorithm

for all histories h at the end of the first part of the tree
do // combinations of the players’ preflop hands

for all clusters Cn, n 6= 0 do // public (flop) clusters
|Fn,h| ← number of public samples in Cn given h

for all information sets I and actions a do
regret rI [a]← 0
cumulative strategy sI [a]← 0

loop // Keep iterating
for all p ∈ N, p 6= c do // Players other than chance

Iter(∅, p, C0)

function Iter(History h, Player p, Cluster C)
if h ∈ Z then // Terminal state

return u(h)
else if P (h) = c then // Chance node

Draw action a ∈ A(h) according to fc(·|h)
if C = C0 and (h, a) 6∈ TopOfTree then

~u← 0
for all Cn ∈ Clusters do

~u← ~u+ |Fn,h| · Iter((h, a), p, Cn)

~u← ~u/
∑
n |Fn,h| // Remove bias

else
~u← Iter((h, a), p, C)

else if P (h) = p then
for all a ∈ A(h) do // Traverse all actions

Pr(a)← max{rI [a],0}∑
a′ max{rI [a′],0}

// Regret matching

if C = C0 and (h, a) 6∈ TopOfTree then
~u′[a]← 0
for all Cn ∈ ChildClusters do
~u′[a]← ~u′[a] + |Fn,h| · Iter((h, a), p, Cn)
~u′[a]← ~u′[a]/

∑
n |Fn,h| // Remove bias

else
~u′[a]← Iter((h, a), p, C)

~u← ~u+ Pr(a) · ~u′[a]

for all a ∈ A(h) do
rI [a]← rI [a] + u′p[a]− up // Update regret

else// Sample an action

~σI ← max{~rI ,0}∑
a′ max{rI [a′],0}

~sI ← ~sI + ~σI // Update cumulative strategy
Draw action a ∈ A(h) from ~σI
if C = C0 and (h, a) 6∈ TopOfTree then

~u← 0
for all Cn ∈ Clusters do

~u← ~u+ |Fn,h| · Iter((h, a), p, Cn)

~u← ~u/
∑
n |Fn,h| // Remove bias

else
~u← Iter((h, a), p, C)

return ~u

for a significant amount of time if their MCCFR iterations
complete faster than other blades’. This happens despite
the fact that our abstraction algorithm evenly divides the
game tree among the child blades: on some blades the cur-
rent strategies computed by MCCFR are such that the path
of play ends sooner (e.g., by folding in poker).

In more detail, the algorithm begins by sampling private
information and conducting MCCFR on the head blade.
When an action sequence is reached that transitions beyond
the top part of the tree (i.e., transitions to the flop in Texas



Hold’em), the algorithm sends the current state to each of
the K child blades C1, C2, ..., CK . Each child blade Ck then
samples public information from its public bucket (i.e., a
flop from the valid flops Fk assigned to it), and continues
the iteration of MCCFR. Once all the children blades com-
plete their part of the iteration, their calculated values ~uk
are returned to the head blade. The head blade calculates
a weighted average of these values, weighing them by the
number of choices of public information (possible flops in

Texas Hold’em) that they sampled from: ~u =
∑K

k=1 Fk~uk∑K
k=1

Fk
.

This ensures that the expected value is unbiased, that is,
in expectation each flop is weighed equally. The head node
then continues its iteration of MCCFR, repeating the pro-
cess whenever the sample exits the top part (a flop sequence
is encountered), until the iteration is complete.

Within each child blade—i.e., each child cluster—we ac-
tually have, and use, multiple cores (not shown in the pseu-
docode for simplicity). Whenever a child cluster is reached,
each core is given the same inputs but uses a different ran-
dom number seed to select which public sample (public flop
in Texas Hold’em) from within the cluster to work on, and
how to randomly sample actions thereunder according to
MCCFR. Given the nature of the game, the cores will do
redundant work with very low probability, and iterates in
different parts of the cluster will be stale by at most one
iteration. (Another choice would be to lock parts of the
tree within the cluster to prevent cores from working on the
same information sets, but that would introduce overhead,
and does not seem warranted at least in Texas Hold’em.)

4. POST-PROCESSING TECHNIQUE
Post-processing is important in solving imperfect-informa-

tion games. In games where the action spaces are very large,
action abstraction is typically used to select only some ac-
tions (e.g., bet sizes in poker) to include in the abstraction.
However, the opponent may use actions that are not part
of the abstraction. This begets the need to map the oppo-
nent’s actions back into the abstract game. Throughout our
experiments we used the leading reverse mapping approach,
the pseudo-Harmonic mapping [4], which has been adopted
broadly among the top NLTH agents over the last two years.

Post-processing techniques have also been shown to be
useful for mitigating the issue of overfitting the equilibrium
to one’s abstraction and the issue that approximate equi-
librium finding may end up placing positive probability on
poor actions.4 Two approaches have been studied, thresh-
olding and purification [6]. In thresholding, action proba-
bilities below some threshold are set to zero and then the
remaining probabilities are renormalized. Purification is the
special case of thresholding where the action with the high-
est probability is played with probability 1 (ties are broken
uniformly at random).

We observe that combining reverse mapping and thresh-
olding leads to the issue that discretizing actions finely in
some area of the action space disfavors those actions be-
cause the probability mass from the equilibrium finding gets
diluted among them. To mitigate this problem, we propose

4Each of the post-processing techniques discussed can in-
crease the agent’s exploitability; however, opponents may
have a hard time exploiting the agent in complex imperfect-
information games. In the ACPC, post-processing has been
shown to be beneficial in practice [6].

to bucket abstract actions into similarity classes for the pur-
poses of thresholding (but not after thresholding). For ex-
ample, in no-limit poker any bet size is allowed up to the
number of chips a player has left. In a given situation our
betting abstraction may allow the agent to fold, call, bet 0.5
pot, 0.75 pot, pot, 1.5 pot, 2 pot, 5 pot, and all-in. If the
action probabilities are (0.1, 0.25, 0.15, 0.15, 0.2, 0.15,0,0,0),
then purification would select the call action, while the vast
majority of the mass (0.65) is on betting actions. In this
example, our approach—detailed below—would make a pot-
sized bet (the highest-probability bet action).

Finally, we observe that biasing toward conservative ac-
tions that reduce variance (e.g., the fold action in poker) is
helpful in a strong agent (variance increases the probability
that the weaker opponent will win). Our experiments will
show that preferring the conservative “fold” action in TH in-
creases expected value as well. One reason may be that if an
agent is uncertain about what should be done in a given sit-
uation (the equilibrium action probabilities are mixed), the
agent will likely be uncertain also later down that path and
it may be better to end the game here instead of continuing
to play into a part of the game where the agent is weak.

Our new post-processing technique combines all the ideas
listed above. It first separates the available actions into three
categories: fold, call, and bet. If the probability of folding
exceeds a threshold parameter, we fold with probability 1.
Otherwise, we follow purification between the three options
of fold, call, and the “meta-action” of bet. If bet is selected,
then we follow purification within the specific bet actions.

Clearly, there are many variations of this technique—so it
begets a family—depending on what threshold for definitely
using the conservative action (fold) is used, how the actions
are bucketed for thresholding, what thresholding value is
used among the buckets, and what thresholding value is used
within (each of possibly multiple) meta-actions.

5. EXPERIMENTS
We experimented on the version of two-player no-limit

Texas Hold’em (NLTH) used in the ACPC, which has 10165

nodes [17] in its game tree.
We used our new abstraction algorithm to create an in-

formation abstraction with 169 preflop buckets, 60 public
flop buckets, and 500 private buckets for the flop, turn, and
river for each of the public flop buckets, that is, 30,000 total
private buckets for each of the three postflop rounds. Our
action abstraction had 6,104,546 nodes (including leaves). In
total, our abstract game then had 5.49·1015 nodes (including
leaves), 6.6·1010 information sets (not including leaves), and
1.8 · 1011 infoset actions (a new measure of game size that
is directly proportional to the amount of memory that CFR
uses [17]). This is six times larger than the largest abstrac-
tions used by prior NLTH agents—and, to our knowledge,
the largest imperfect-information game ever tackled by an
equilibrium-finding algorithm. This scale was enabled by
our new, distributed approach.

We ran our equilibrium-finding algorithm for 1,200 hours
on a supercomputer (Blacklight) with a high inter-blade
memory access latency using 961 cores (60 blades of 16
cores each, plus one core for the head blade), for a total
of 1,153,200 core hours. Each blade had 128 GB RAM.

The results from the 2014 ACPC against all opponents are
shown in Table 1. The units are milli big blinds per hand
(mbb/h), and the ± indicates 95% confidence intervals. Our



O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13

261 ± 47 121 ± 38 21 ± 16 33 ± 16 20 ± 16 125 ± 44 499 ± 68 141 ± 45 214 ± 57 516 ± 61 980 ± 34 1474 ± 180 1819 ± 111

Table 1: Win rate (in mbb/h) of our agent in the 2014 Computer Poker Competition against opposing agents.

agent beat each opponent with statistical significance, with
an average win rate of 479 mbb/h.

We also compared our algorithm’s performance to using
the prior best approach on a low-latency shared-memory
server with 64 cores and 512 GB RAM. This is at the upper
end of shared-memory hardware commonly available today.
The algorithm run on the server used external sampling MC-
CFR on a 169-5,000-5,000-5,000-bucket imperfect-recall card
abstraction (this size was selected because it is slightly under
the capacity of 512 GB RAM). We computed that informa-
tion abstraction using the state-of-the-art non-distributed
abstraction algorithm [5]. We used the same action abstrac-
tion as for the distributed case. The abstract game then had
1.5 ·1014 nodes (including leaves), 1.1 · 1010 information sets
(not including leaves), and 3.1 · 1010 infoset actions.

We benchmarked both against the two strongest agents
from the 2013 competition, Figure 1.5 The new approach
outperformed the old against both agents for all timestamps
tested. So, it is able to effectively take advantage of the
additional distributed cores and RAM.

Figure 1: Win rates over time against the two
strongest agents from the 2013 poker competition.

We also studied the effect of using our new post-proc-
essing techniques on the final strategies computed by our
distributed equilibrium computation. We compared using
no threshold, purification, a threshold of 0.15,6 and using the
new technique with a threshold of 0.2.7 We tested against
the same two strongest agents from the 2013 competition.
Results are shown in Table 2. The new post-processor out-
performed the prior ones both on average performance and
on worst observed performance.

6. CONCLUSION
We introduced a distributed version of the most com-

monly used algorithm for large-scale equilibrium computa-

5Both our distributed and parallel algorithms were evalu-
ated in play with purification (except no post-processing of
the first action), which had been shown to perform best
among prior techniques. This is also one of the benchmarks
we evaluate in the experiments presented in Table 2.
6This value was a prior benchmark [6]. Our exploratory
data analysis concurred that it is a good choice.
7This was a good choice based on exploratory analysis, and
it performed clearly better than 0.1 against both opponents.

Hyperborean Slumbot Avg Min
No Threshold +30 ± 32 +10 ± 27 +20 +10
Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19
New-0.2 +39 ± 26 +103 ± 21 +71 +39

Table 2: Win rate (in mbb/h) of several post-
processing techniques against strongest 2013 agents.

tion, counterfactual regret minimization (CFR), which en-
ables CFR to scale to dramatically larger abstractions and
numbers of cores. Specifically, we based our algorithm on
external-sampling Monte Carlo CFR. The new algorithm
begets constraints on the abstraction so as to make the
pieces running on different computers disjoint. We intro-
duced an algorithm for generating such abstractions while
capitalizing on state-of-the-art abstraction ideas such as im-
perfect recall and the earth-mover’s-distance similarity met-
ric. Our techniques enabled an equilibrium computation of
unprecedented size on a supercomputer with a high inter-
blade memory latency. Prior approaches run slowly on this
architecture. Our approach also leads to a significant im-
provement over using the prior best approach on a large
shared-memory server with low memory latency. Finally,
we introduced a family of post-processing techniques that
outperform prior ones. We applied these techniques to gen-
erate an agent for two-player no-limit Texas Hold’em. It
won the 2014 Annual Computer Poker Competition, beat-
ing each opponent with statistical significance.

The techniques are game independent. While we pre-
sented them for a setting that does not require abstraction
before the public information arrives, and there is only one
round of public information, they can be extended to set-
tings with any sequence of interleaved public and private
information delivery—while keeping the information sets on
different blades disjoint. Also, while we presented techniques
for two levels in the distribution tree (one blade to handle
the top part and the rest split disjointly among the other
blades), it is easy to see how the same idea can be directly
extended to trees with more than two levels of blades.

APPENDIX
A. RULES OF NO-LIMIT TEXAS HOLD’EM

Two players initially ante chips into a pot, which will go
to the winner of the hand. Then, there is an initial round
of betting (preflop). The player whose turn it is can:

• Fold: Give up on the hand, surrendering the pot.

• Call: Put in the minimum number of chips needed to
match the amount put into the pot by the opponent.

• Bet: Put in chips beyond what is needed to call.

The initial round ends if a player has folded or if a bet
has been called. If the round ends without a fold, then
three public cards are revealed on the table (the flop) and
a second round of betting occurs. This is followed by two
additional betting rounds with one public card each (turn
and river). If the final round is completed without a player
folding, then both players reveal their private cards, and the
player with the best hand wins the pot.



B. REGRET MATCHING
In regret-minimization algorithms, a strategy is deter-

mined through an iterative process. While there are a num-
ber of such algorithms (e.g., [13, 12]), this paper will focus on
a typical one called regret matching (specifically, the polyno-
mially weighted average forecaster with polynomial degree
2). We will now review how regret matching works, as well
as the necessary tools to analyze it.

A normal-form (aka bimatrix) game is defined as follows.
The game has a finite set N of players, and for each player
i ∈ N a set Ai of available actions. The game also has:

• For each player i ∈ N a payoff function ui : Ai×A−i →
<, where A−i is the space of action vectors of the other
agents except i. Define

∆i = max〈ai,a−i〉 ui(ai, a−i) − min〈ai,a−i〉 ui(ai, a−i)
and define ∆ = maxi ∆i.

• For each player i, a strategy σi is a probability distribu-
tion over his actions. The vector of strategies of play-
ers N \ {i} is denoted by σ−i. We define ui(σi, σ−i) =∑
a,a−i

pσi(a)pσ−i(a−i)ui(a, a−i). We call the vector

of strategies of all players a strategy profile and denote
it by σ = 〈σi, σ−i〉. Moreover, the value of σ to player
i is defined as vi(σ) = ui(σi, σ−i).

Let σti be the strategy used by player i on iteration t. The
instantaneous regret of player i on iteration t for action a is

rt,i(a) = ui(a, σ
t
−i)− ui(σt, σt−i) (1)

The regret, for player i on iteration T for action a is

RT,i(a) =
1

T

T∑
t=1

rt,i(a) (2)

Also, RT,i = maxa{RT,i(a)}.
In the regret-matching algorithm, a player simply picks

an action in proportion to his positive regret on that action,
where positive regret is Rt,i(a)+ = max{Rt,i(a), 0}. For-
mally, at each iteration t+ 1, player i selects actions a ∈ Ai
according to probabilities

pt+1(a) =

{ Rt,i(a)+∑
a′∈Ai

Rt,i(a′)+
, if

∑
a′∈Ai

Rt,i(a
′)+ > 0

1
|A| , otherwise

(3)
As shown in [3, p. 10], one can bound regret as

RT,i ≤ RT,i+ ≤
∆i

√
|Ai|√
T

(4)

Thus, as T →∞, RT,i+ → 0.

C. EXTENSIVE-FORM GAMES
An extensive form game is defined as follows [22].

• A finite set N of players.

• A finite set H of sequences, the possible histories of
actions, such that the empty sequence is in H and
every prefix of a sequence in H is also in H. Z ⊆ H
are the terminal histories (those which are not a prefix
of any other sequences). A(h) = a : (h, a) ∈ H are the
actions available after a nonterminal history h ∈ H.

• A function P that assigns to each nonterminal history
(each member of H \ Z) a member of N ∪ c. P is
the player function. P (h) is the player who takes an
action after the history h. If P (h) = c then chance
determines the action taken after history h.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on A(h)
(fc(a|h) is the probability that a occurs given h), where
all pairs of measures are independent.

• For each player i ∈ N a partition Ii of {h ∈ H :
P (h) = i} with the property that A(h) = A(h′) when-
ever h and h′ are in the same member of the parti-
tion. For Ii ∈ Ii we denote by A(Ii) the set A(h)
and by P (Ii) the player P (h) for any h ∈ Ii. We de-
fine |Ai| = maxIi |A(Ii)| and |A| = maxi |Ai|. Ii is
the information partition of player i; a set Ii ∈ Ii is
an information set of player i. We denote by |Ii| the
number of information sets belonging to player i in the
game and |I| = maxi |Ii|.

• For each player i ∈ N a payoff function ui from Z to
the reals. If N = 1, 2 and u1 = −u2, it is a zero-sum
extensive game. Define ∆i = maxz ui(z) −minz ui(z)
to be the range of payoffs to player i.

D. COUNTERFACTUAL REGRET
MINIMIZATION (CFR)

Regret matching, described in Appendix B, is for normal-
form games. However, it can be efficiently generalized to
extensive-form games by using the counterfactual regret min-
imization (CFR) algorithm. CFR and its extensions are
widely used in solving large imperfect-information games.

In CFR [27], ui(σ, h) is defined as the expected utility
to player i given that history h has occurred, assuming all
players then play according to σ. Next, counterfactual utility
is defined as the expected utility given that information set
I is reached and all players play according to σ except that
player i plays to reach I. Formally, if πσ(h) is the probability
of reaching history h according to σ, and πσ(h, h′) is the
probability of going from history h to history h′, then

ui(σ, I) =
Σh∈I,h′∈Zπ

σ
−i(h)πσ(h, h′)ui(h

′)

πσ−i(I)

Further, for all a ∈ A(I), σ|I→a is defined to be a strategy
profile identical to σ except that player i always chooses ac-
tion a when in information set I. Immediate counterfactual
regret for an action is defined as

RTi,imm(I, a) =
1

T

T∑
t=1

πσ
t

−i(I)(ui(σ
t|I→a, I)− ui(σt, I))

and for an information set as

RTi,imm(I) = max
a∈A(I)

RTi,imm(I, a)

In CFR, on iteration T + 1 a player at an information set
selects among actions a ∈ A(I) by

pT+1(a) =


R

T,+
i (I,a)∑

a∈A(I) R
T,+
i (I,a)

, if
∑
a∈A(I)R

T,+
i (I, a) > 0

1
|A(I)| , otherwise

Using CFR, one can bound regret in extensive-form games.
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