Calculus 3 - Double Integrals - Polar

Example. Find the volume under the paraboloid z = 2 — x*> — y? and inside

the cylinder x* + y*> =1, for z > 0.
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Figure 1: Region of integration

In this case, the height of the volume is given by the paraboloid z =
2 — x? — y? (this is the integrand) and so

1 ,vV1-x?
_ 22
V—/_l/_ 1—x2(2 x° —y°)dydx (1)
or
V= / /m (2 — x* — y?)dxdy 2)

The first integral (1) is when the rectangles are vertically and we have bot-
tom curve to top curve whereas, in the second integral (2), we have hori-

zontal rectangles and we have left curve to right curve.



Due to symmetry
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The integration in this problem was a little difficult and needed a trig sub.
Maybe there’s a better way!

Polar Coordinates

In calculus 2 we introduced polar coordinates where

x =rcosf, y=rsinf 3)
and
x% + y2 =72, tanf = % 4)

Consider the region in the previous problem - a circle of radius 1. Let’s talk

about sweeping out the region




We see that

r=0—1, 6=0—2m

so what about the integral from the previous example
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How would it change if we used r and 6 instead of x and y? Would it

becomes easier?
Double Integrals in Polar Coordinates

We consider the double integral

V= //f(x,y)dA.

R
This integral has three main parts:

1. the integrand
2. dA

3. limits

1. The integrand

For this part, we simplify substitute in
x=rcosf, y=rsinb,

into f(x,y) and simplify. So, in general,

V://f(x,y)dA://f(rCOSG,rsinG)dA.
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So if the integral was say

1 pvV1—x2
— /1 — x2 — 12
V—/_1/_ - 1—x%2—y? dydx. (10)

then

V:!/ﬂam (11)

2.dA
In cartesian coordinates, this is dA = dxdy. What about in terms of dr and
d0? Let us consider where the dxdy came from. It came from a small area

element
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Figure 2: Cartesian region of integration

Now from our arc length formula where s = rf then ds = rdf. The

change is r is dr and we have

dA = rdf x dr (12)
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Figure 3: Polar region of integration

3. Limits of Integration

These ultimately come from the picture of the region itself.
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Figure 4: Cartesian region of integration
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where r = r;(0) is the inner curve and r = r,(6) is the outer curve.
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Example 1. Find the volume under the paraboloid z = 2 — x> — y? and
inside the cylinder x* + y*> =1, forz > 0
Soln. The surface is given by z = 2 — 7? (this is the integrand). We are

integrating over a circle of radius 1 so the volume we seek is given by
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= / / r — r3drd6
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Example 2. Find the volume between the cone z = /x> + y? and the half

sphere z = /8 — x2 — 2.

Soln. The surfaces are




The intersection of the two surface will give the region of integration so

V8—x2—1y2=/x2+y2 = 8—x -y =x"+y’ (15)

or

X4yt =4 (16)

As there are two surfaces, there will be two parts in the integrand. The

setup is as follows:
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Example 3. Find the volume of the tetrahedran bound by the planes x +
y+z=1x=0,y=0andz = 0.

Soln. The surface and region of integration is




The setup for this problem is

/A s 941—sin9 .
/ / (1 —rcos@ —rsin@) rdrdd (18)
0 0

so polar is not the way to go!

Example 4. Pg. 995, #18 Evaluate

2 VA2
/ / xdydx (19)
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Soln.
We first draw the region. We integrate with respect to y first so we go from

a bottom curve to a top curve and in this case
y=0 = y=v4-—x° (20)

Next we integrate with respect to x and so this is a left point and right
point

x=0 = x=2 (21)

A picture of the region is below.
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Now the setup

/2
/ / rcos @ rdrdf =

cos 0 do (22)
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Example 4. Pg. 995, #24 Evaluate

4 py/ay—y?
/ / Y x*dxdy (23)
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Soln.
We first draw the region. We integrate with respect to x first so we go from

a left curve to a right curve and in this case
x=0 = x=,/4y—y> (24)

Next we integrate with respect to y and so this is a bottom point and top
point

y=0 = y=4 (25)

To get an idea of what the right curve is
x=J4y—y2 = x*+y*—4y=0, (26)

SO

r2_4rsjn9 =0 = r=4sinb. (27)



Now the setup
/2 r4sinf ’ /2 r4sinf
/ / (rcos@)” rdrdf = / / r3 cos? 0 rdrd
0 0 0 0
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4sin@ 5
cos” 0 do
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