
IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 279 | P a g e

Secure Session Management using Cookie for Mobile

Agent
Aradhana1, Samarendra Mohan Ghosh2

Department of Computer Science Engineering

Dr. C. V. Raman University Bilaspur, C.G

Abstract- Internet based mobile agent system often use

cookies to maintain the authentication states between agent

to cloud. Every subsequent request will generate a cookie

that will automatically be allowed by internet based

application on agent platform. The attackers easily identify

the user details using cookies. Cross site scripting (XXS) is

a common attack technique that theft cookies related to

subsequent request from mobile agent or web browser’s

databases .In this paper, we proposed a new method for

cookie rewriting that encrypts the cookies and protect from

Cross Site Scripting attack. This method is implemented for

mobile agents it will be automatically rewrite the cookies

therefore it protect against XXS attack.

Keyword- Agent, XXS attack, Cookie, Offloading,

Encryption, Decryption, Hash

I. INTRODUCTION

Mobile agents are the mobile code on cloud environment.

The concept of mobile agent is the dynamic installation of

code on a remote host. Complexity of execution demands

resources. Agent system is simple approach to protect the

computation environment. Agents are the dedicated lines for

home platform normally it is more trusted environment. An

agent platform may support multiple computation

environments where agent can interact with cloud. Mobile

Agent has some hidden security problem in these phases:-

 Transferring Phase: The agent transfer from host to

another platform.

 Running Phase: The agent’s code in another platform

during computational offloading.

This approach of mobile agent is new and attractive

interaction of computation, it arises significant challenges in

terms of data and code security and their cookies security

during the offloading. Executing data and code during

offloading with secure session management requires

understanding a few basic concept of cookies like their

attributes value their fields, path, domain and name and also

requires to developers to understand how to make it

confidential, and how real world attackers are miss using he

weak session management in real application today. A

mobile agent contains:

 Code – It defines the agent’s behaviour

 State – It stores the agent’s internal state which enables

it to resume its activities after moving to another host.

 Attributes - information describing the agent, its origin

and owner, its movement history, resource

requirements, authentication keys, for use by the

infrastructure. Part of this may be accessible to the

agent itself, but the agent must not be able to modify

the attributes [2].

II. COOKIE REVIEW

Most web application frameworks use client-side cookies to

index a state table on the server side. Session state is usually

represented with a special-purpose object type, stored on the

server, and could contain anything relevant to the

application like user profile, user privileges, cached data

from a back-end store, browsing history and page flow

state.

Many times application was to be stateless in which server

did not store any session state. These are the special security

factors which develops make a stateless session

management system. These issues depend on application’s

requirement and implementation. Consider these potential

issues:

 The cookie’s confidentiality is protected from attackers.

They can read the session state. This could leak the

confidential issues.

 The cookie’s integrity is protected from attackers. They

could change the information leakage issues.

 Cookies has limited size, decreasing the amount of

storage available for session state.

III. STRUCTURE OF COOKIES

Cookies are simple text files that store the information about

client’s detail. It maintains the state of application. Cookies

are used for authentication, storing website information /

preferences, other browsing information and anything else

that can help the Web browser while accessing Web servers

[3]. Cookies are very sensitive in nature. More than one

cookie will be a set upon subsequent request. It would be

encoded and encrypted in an attempt to protect the

information of cookie from attacks

For example, in the case of an online purchasing, user visits

many items so they add multiple items to the shopping cart.

Additionally, there will typically be a cookie for

authentication (session token as indicated above) once the

user logs in, and multiple other cookies used to identify the

items the user wishes to purchase and their auxiliary

information (i.e., price and quantity) in the online store type

of application[4].

The main attributes name, domain, path and value .Other

attributes of cookies are shown in figure 1.

 Name: It signifies the name of cookie.

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 280 | P a g e

 Domain: This attribute signifies the domain for which

the cookie is valid and can be submitted with every

request for this domain or its sub-domains

 Path: This attribute signifies the URL or path for which

the cookie is valid.

 Value: It signifies the Id generated by network

 Secure: Cookies may be theft by sniffing. It will be

solved by encrypting the cookie’s detail before sending

the network.

 HTTPOnly: It signifies the accessibility control of

cookies means it will be allow to access or not.

 Expires: This attribute is used to determine the time and

date when the browser will delete the cookie [5].

Fig.1: Attributes of cookies

IV. THREATS RELATED TO COOKIES

1) Sniffing Network Traffic for Cookies: In this attack

the malicious user hacks the unencrypted data. There

are many software available for hacking the cookies

like wireshark, kismet, Cain and able, commView,

Microsoft network monitor [6].

2) Cross-Site Scripting Attack: In this type of attack an

attacker steals cookie information by making user

clicking on a link that contains a malicious script.

This script code reads cookie information and sends

this information to the attacker by mail [7].

3) Cross-site request forgery (CSRF) Attack: In this

type of attack an attacker forces a logged in user to

perform an important action without his consent or

knowledge. This attack can also be used to modify

firewall settings, posting unauthorized data or even

to conduct fraudulent financial transactions [8] [9].

4) Session Fixation Attack: Session fixation attacks

exploit the vulnerability of a system which allows

one person to find another person's session identifier

[5].

V. PRIVACY CONSIDERATIONS IN AGENT

Cookies are often criticized for letting servers track users.

For example most of web based company has used cookie to

identifying the user detail to track their domain or sub

domain across agent sessions can be shared with different

hosts [1].

A. Third-Party Cookies

In cloud, agent uses more than one severs .The third party

server track the user domain even if user never visit the

server directly. Some mobile agent blocks third party

cookies. These policies are sometimes very ineffective.

B. User Controls

Some agents provide users with the ability to approve

individual writes to the cookie store. Agent provides many

facilities to user to manage and disabling the cookies

session.

C. Expiration Dates

For the user privacy agent can select reasonable cookie

expiration periods based on the purpose of the cookie.

VI. PROPOSED METHODOLOGY

Proposed methodology carried out from existing technique

where we create dynamic hash value of four fields which

randomizes all four original values in to the dynamic hash

value. The creation of four dynamic hash values will deviate

the hackers who want to access the cookie value. Hacker

will not be able to understand the original cookie name as

well as its original value. In this technique all four fields

along with their original values will be randomize before

send to the client memory. Further at request time of the

client the hash values will be taken and convert all hash

values in the original form and send to the server.

If unauthorized person has accessed the fields from client

memory and tries to identify the original value then he has

to first identify the name of all the fields and then their

respective value that would be so tedious and would be time

consuming therefore the generation of hash values of four

fields will be more secure as compare to single field hash

generation. The process of cookies encryption and

decryption is shown in figure 2.

Fig.2: Agent sends to Hash value of cookie to User

https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#privacy-considerations
https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#third-party-cookies
https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#user-controls
https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#expiration-dates

IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 281 | P a g e

Following step should be follow to encrypt the cookie:

1. Retrieve cookie values.

2. Extract Fields and respective values.

3. Apply random method to encrypt original value.

a. Get the original value

b. Use random method to randomize the asscii value of

character.

c. Val=val*random(val)+counter++

d. Store the value in session object for future use

e. Rewrite the field

4. Apply hash function to change the position of field.

a. Retrieve the field position

b. Change the position using toggling bit value function

c. register = (register & ~bitmask) | value;

d. Rewrite position

5. Rewrite the encrypted field into cookies.

Here are the original values of cookie sent by server as

shown in table 1:

Table 1: Original value of Cookie

Origi

nal

Field

Name Domain
Pa

th
Value

Origin

al

Value

Cookie

111

www.paymentdes

k.com

./Ro

ot

admin@

220

Further the agent will convert the original value into hash

value and send these values to the client machine. As the

browser stores the hash value of cookies, so even the XSS

attack can steal the cookies from browser‘s database, the

cookies cannot be used later to hijack or take off the user‘s

session. Cookies will be secured as shown in Table 2.

Table 2: Hash Value of Cookie

Has

h

Fiel

d

$%^^

&

&^%^^&

^

%^&%$

&*

#$%**^

^

Has

h

Valu

e

$%^74

5

#$%@#3774

$%
%^&1212

&&^#$%^

%$

Following step should be follow to decrypt the cookie:

1. Retrieve cookie values.

2. Extract Fields and respective values.

3. Apply random method to decrypt original value.

4. Apply hash function to find the actual position of field.

5. Rewrite the decrypted field into cookies.

After randomizing the value of the cookie it is send to the

browser’s memory. At the requesting time agent will access

the hash value which is stored in the browser’s memory and

convert it’s into original format and sends again to server

VII. RESULT ANALYSIS AND STRENGTH

Result of this approach will be improved the security of the

cookies at agent. It improves the speed of the transportation

of the cookies. If attacker found the cookie of the browser

and tries to decrypt the hash values of four fields then he has

to identify the sequence of the four fields as well as all

corresponding values. This process will take time till then

user will be finished his work and will be session out so

hacker has not much time to decrypt the cookies value. In

the hash generation we use four fields, which are as follows:

 Server sends new session cookie to the victim and agent

will generate its random value using random function

before sending to victim’s browser.

 After generating in hash format agent will send all

random values to the victim’s browser.

 Random value will be stored by the computer Memory of

the victim.

Strengths

 The proposed method described above does not affect

the performance of agent & victim’s browser.

 This method is used by agent therefore it is too secure

with respect to victim’s browser.

 Even if attacker will perform the XSS attack to steal

the cookies from browser’s machine, the attacker will

get the hash version of the cookies which are not

appropriate to impersonate the users.

VIII. CONCLUSION

We have applied a cryptographic hash approach to encrypt

cookies on agent that protects the user’s authentication

information (encrypts four fields name, domain, path &

value). Hash values of four fields will be more secure as

compare to single field hash generation .It improves the

cookie’s strength. Hacker will not be able to understand the

original cookie name as well as its original value therefore

we will manage secure session.

IX. REFERENCES
[1]. Singh R. and Kumar S. ,” A Study of Cookies and Threats to

Cookies , International Journal of Advanced Research in

Computer Science and Software Engineering Research,

Volume 6, Issue 3, March 2016 ISSN: 2277 128X.

[2]. https://www.w3.org/Conferences/WWW4/Papers/150/

[3]. https://www.techopedia.com/definition/7624/cookie

[4]. https://www.owasp.org/index.php/Testing_for_cookies_attrib

utes_(OTG-SESS-002)

[5]. https://tools.ietf.org/id/draft-ietf-httpstate-cookie-

23.html#rfc.section.4.2

[6]. https://en.wikipedia.org/wiki/Packet_analyzer

[7]. http://www.paladion.net/cross-site-scripting-attacks/

[8]. https://www.tinfoilsecurity.com/blog/what-is-cross- site-

request-forgery-csrf

[9]. http://searchsoftwarequality.techtarget.com/definition/cross-

site-request-forgery

[10]. https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

[11]. http://www.acunetix.com/websitesecurity/xss/

[12]. http://excess-xss.com/

[13]. http://www.acunetix.com/blog/articles/preventing-xss-attacks/

[14]. http://resources.infosecinstitute.com/how-to-prevent-cross-

site-scripting-attacks/

[15]. https://en.wikipedia.org/wiki/Cross-site_request_forgery

http://www.paymentdesk.com/
http://www.paymentdesk.com/
https://www.w3.org/Conferences/WWW4/Papers/150/
https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-002)
https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#rfc.section.4.2
https://tools.ietf.org/id/draft-ietf-httpstate-cookie-23.html#rfc.section.4.2
https://en.wikipedia.org/wiki/Packet_analyzer
http://www.paladion.net/cross-site-scripting-attacks/
https://www.tinfoilsecurity.com/blog/what-is-cross-%20site-request-forgery-csrf
https://www.tinfoilsecurity.com/blog/what-is-cross-%20site-request-forgery-csrf
http://searchsoftwarequality.techtarget.com/definition/cross-site-request-forgery
http://searchsoftwarequality.techtarget.com/definition/cross-site-request-forgery
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.acunetix.com/websitesecurity/xss/
http://excess-xss.com/
http://www.acunetix.com/blog/articles/preventing-xss-attacks/
http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/
http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/
https://en.wikipedia.org/wiki/Cross-site_request_forgery

