
IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 123 | P a g e

A Systematic Analysis of Test Case Generation using UML

Sequence and State Chart Diagrams

Iqbaldeep Kaur

Associate Professor,

Computer Science& Engineering,

Chandigarh Engineering College,

Landran, Punjab, India
iqbaldeepkaur.cu@gamil.com

Navneet Kaur

M. Tech. Research Scholar,

Computer Science & Engineering,

Chandigarh Engineering College,

Landran, Punjab, India
kaur.navneet1109@gmail.com

Dr. Amit Verma

Head of Department

Computer Science& Engineering,

Chandigarh Engineering College,

Landran, Punjab, India
Dramitverma.cu@gmail.com

Abstract— With the increasing industrialization, demand for

the quality software’s also increased. For quality software,

there is the need of advanced technology and proper testing of

software. Software testing is an important module of software

development that consumes more time & cost as compare to

development stage. Source code based traditional methods are

mostly adapted aspects in software testing. But those methods

are complex and not easy to understand for developers. So,

here model based UML approaches are used for test code

generation. In this paper, UML sequence & state chart

diagram are considered for the systematic analysis of test case

generation. Considered work described a systematic analysis

on the test case generation using sequence, state chart and

integrated diagrams. Based on this integration, test case

generation method is also presented using genetic algorithm.

Also a comparative analysis of existing concept based on case

study, used tools and other key features is presented.

Keywords— UML Diagram, Test Case Generation, Sequence

Diagram, State Chart Diagram, Software Development

I. INTRODUCTION

Software testing is an important aspect in software

development. There is the consumption of more than 50% of

the software development resources for testing 1. Software

testing involves three states of test case creation, test case

execution and text case evaluation 2. Test case execution and

evaluation are easy steps but creation of test cases is the work

of deep knowledge and expert skills. Software testing is

important because it not involves only debugging but also

maintains the software quality with validation & verification

of test cases. So, for the success of software, there should be

proper creation of test cases. Test cases should be minimum

with maximum coverage of different software development

aspects. Test case is a function of three parts input, state and

output. Input is given as initial resource, state for which we

need to evaluate software results and output is the result value

for the desired software development state. One of the

common methods to generate test cases is to make use of

source code but this is traditional and complex approach for

test case creation.

So, here unified modelling language is considered for the

creation of test cases as UML model that reduces problem

complexity with increasing software complexities 3, 4. Unified

modelling language is a widely accepted software modelling

language in the field of software development. UML presents

a manner to envisage the architecture of system in a diagram

form. It consists of some elements as mentioned in Table 1.

Table 1: Elements of UML Architecture

 Kind of Activities/Jobs

 System’s Individual Components

 Interactaction of individual components with other

software components

 System working behaviour

 Interaction of different entities (components and

interfaces)

 End User interface

UML consists of mainly structural and behavioural models
5 but as per viewing model, it can be categorized in user’s

view, structural view, behavioural view, implementation view

and environmental view 6, 7. A well elaborated UML diagram

is shown in figure 1 with their respective feature diagrams.

These UML views are discussed here:

A. User’s View

User’s view is the kind of black box view that is available

to end user. It presents the information only about the system

requirements but hides the other internal structure and system

performance and work implementation.

B. Structural View

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 124 | P a g e

It defines the problem structure in terms of objects/classes

and shows their relationship to implement the concept and

resolve the problem.

C. Behavioral View

It defines the interaction behaviour in the system by

highlighting the data flow and control among the modelled

system. Behaviour view mainly represents the dynamic model

of system.

D. Implementation View

It defines the internal work implementation of the system

in terms of GUI presentation and database connectivity.

E. Environment View

It defines the implementation of different components on

available hardware elements.

Figure 1: Views Supported in UML Diagram

In this paper, behavioural view based sequence diagram

and state chart diagram are considered for test case generation.

Behavioural diagrams describe the interaction in the

system by highlighting the data flow and control among the

modelled system. Behavioural diagram shows the dynamic

nature of the system. Some of behavioural diagrams are State

Chart Diagram, Collaboration Diagram, Activity Diagram,

Sequence Diagram etc. The reason for the selection of state

chart and sequence diagram is the presence of unit level fault

tolerance behaviour and integration level fault tolerance

behaviour respectively for the UML diagrams.

 Sequence Diagram: Sequence diagram describes the

process of object communication based on message

sequence with an indication of object life span 8, 9.

Sequence diagrams have the ability of integration level

fault tolerance. For example: Sequence diagram

indicates the sequence of message flow as shown in

figure 2.

Figure 2: Sequence Diagram of Email System

 State Chart Diagram: State chart diagram illustrates

about the object states and state transition in UML

diagram 10, 11. State chart diagrams have the ability to

tolerate the unit level faults. It graphically represents

finite state machine. For example: A finite state

machine for ticket reservation system is shown in

figure 3.

Figure 3: State Chart Diagram based Finite State Machine

Structural View

Class Diagram

Object Diagram

Behavioural View

Sequence Diagram

Collaboration Diagram

Activity Diagram

State Chart Diagram Implementation View

Component Diagram

Environmental View

Deployment Diagram

User’s View

Use Case Diagram

: Computer : Server

Check Email

Inbox/Sent Emails

Compose New Email

Reply

Download Email

Delete Old Email

Initialization Pre-reservation

Confirmation

Status

Done

Calculate Price

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 125 | P a g e

Both these UML diagrams work efficiently but their

integrated form can even handle the message interaction,

scenario faults, message sequence faults, correctness and error

handling etc. In this paper, systematic analysis is made on the

sequence diagram, state chart diagram and their integrated

form for software based test case generation.

The rest of the paper is organized in the following manner:

Section II describe the test cases in UML. Section III explains

the considered concepts for test case generation, Section IV

presents the test case generation model and Section V

concludes the paper with some future directions.

II. MODEL BASED SOFTWARE TESTING

Software testing involves the testing of a product for

different test cases. For quality test, there should be proper

designing of test cases and test data 12. Researchers are

continuously working to develop the autonomous method to

generate superlative test data and test cases for testing 13.

Basically, software testing is of two categories: functional

testing and structural testing. Functional testing is black box

testing 14 and structural testing is white box testing 15. Another

important type of test is model based testing. Model based

testing concentrates on design work instead of source code. In

this paper, UML model based testing is considered for test

case generations. A general model based testing process is

shown in figure 4. Moreover model based testing is easy to

understand for developers with ease to generate test cases 16.

Figure 4: Model based Testing Process

III. TEST CASE GENERATION USING UML DIAGRAMS

In this section, test case generation is explained using

UML sequence diagram, state chart diagram and integrated

approach of sequence diagram and state chart diagram.

Different authors have presented their concept for test case

generation using UML diagram. Also a systematic analysis is

described in Table 2 for test case generation.

In 17 authors adapted the approach of statistical

probabilistic testing for the creation of test cases from UML

state chart diagram. The considered approach is adapted for

the object oriented software testing. For the automation of

testing criteria, authors have used Rational Rose Software. For

the evaluation of concept, authors have implemented proposed

approach on FGS (Flight Guidance System) case study. In this

study, test cases are generated for the Java based files and

exhibits fault revealing power. The proposed concept supports

transition coverage for the test cases.

In 18 authors generated the test cases using UML state

machine diagrams. The proposed approach involves the steps

of test case generation as mentioned: selection of predicates

by transition of UML state diagram using DFS (Depth First

Search) approach, transformation of predicates to predicate

functions using minimization function and final step is to

generate test cases as per predicate function. Authors have

considered the example of Ice Cream Vending Machine for

the evaluation of testing criteria. The proposed concept is

implemented in Java with integration of MagicDraw Tool.

Evaluated results exhibit transition path coverage. The

considered approach can also handle transition with guards,

time events and change events.

In 19 authors have extended the work of Variable

Assignment Graph by introducing the UML state machine

diagrams along with sequence diagram for test case generation.

Sequence diagram can extract the message paths that are

essential for a system. Further, state machine diagram can

generate more execution paths from message paths by system

state transition. For the evaluation of considered approach,

authors have applied the concept for mutation analysis on a

video store system. The evaluation results shows effectiveness

of approach in terms of message transition and selective test

cases with reduced cost values.

In 20 authors applied minimization method to automatically

generate test cases from UML state chart diagram. This test

case generation process is initialized with the construction of

state chart diagram for an object. Further, state chart diagram

is traversed, selection of conditional predicates occurs and

converted into source code. Authors have applied DFS (Depth

First Search) algorithm for the selection of associated

predicates. Then an initial dataset is generated based on the

selected predicates and finally test cases are generated. The

applied method shows the capability for action coverage,

Informal Specification

Model

Verdict: Pass or Fail Test Oracle

Test Sequences

Implementation

Author

Generate

Control
Observe

Issue

Feedback

Feedback

Feedback

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 126 | P a g e

transition pair coverage, transition coverage and state

coverage. But the considered method does not concentrate on

the optimization of test cases.

In 21 authors proposed ATGSD (Automatic Test Sequence

Generation from Sequence Diagram) for test case generation.

The proposed approach involves the steps of construction of

sequence diagram, conversion of sequence diagram into

sequence graph, model parsing to maintain the path traversal

details, use of DFS for the selection of predicates,

transformation of predicates into java source code using

ModelJUnit library, test case generation using minimization

approach and then test case machine & result storage. The

complete process is applied for the test cases of Bank ATM.

The considered approach achieves the coverage like action

coverage, message path pair coverage, message path coverage

and object coverage. But there is the need to optimize test

cases.

In 22 authors have used state chart diagram for the

generation of test cases. State chart diagram maintains the

possible states of object and their transition. For the

generation of test cases, authors have initially converted the

state diagram into Finite State Machine (FSM). In FSM, state

is represented by node and transition state is represented by

arrows. For the pre & post condition of use cases, authors

have used the object constraint language (OCL). The overall

approach consumes less time with better software quality and

optimum number of test cases. To illustrate the proposed

concept, authors have discussed the application of ATM

banking. The proposed concept accomplishes the state

coverage, transition pair coverage and transition coverage for

generated test cases.

In 23 authors presented a novel slicing based approach for

test case creator using UML 2.0 sequence diagrams. These

sequence diagrams are used for the construction of message

dependency graph (MDG) which is further traversed for the

selection of conditional predicates. Then slicing is done for

each conditional predicate to examine test cases as their

complexities of software. The generated test cases are

efficient to detect operational faults and object interactions.

The proposed concept shows 80% satisfy results for message

path coverage and slice coverage. But still there is need to

maintain synchronization in message dependency graph for

test cases.

In 24 authors used UML diagram for test case generation

especially for cluster level source code. Initially, sequence

diagrams are generated using Rational Software Architecture

(RSA). Then, sequence flow chart is created from state chart

diagram which is further converted into Message Control

Flow Graph (MCFG). From MCFG, test paths are generated

using Depth First Search (DFS) algorithm. Then test cases are

created from test paths and finally Genetic Algorithm (GA) is

applied for the optimization of concept. The considered

concept is evaluated for ATM transaction system. The

effectiveness of concept is shown in terms of selective test

cases and reduced time & cost values.

In 25 authors used UML state chart diagram and sequence

diagram for the generation of test cases. Authors have

designed a SYstem Testing Graph (SYTG) by integrating

sequence graph and state chart graph which is a converted

from sequence diagram and state chart diagram respectively.

Rational Rose is used for UML diagram and Genetic

Algorithm (GA) is used to generate test cases from SYTG

based paths. GA is also used for the optimization of test cases.

Both sequence diagram & state chart diagram are efficient to

reveal integration level faults & unit level faults respectively.

But integrated approach is more appropriate to detect scenario

faults, message sequence faults, integration, pre-post

condition faults, correctness and error handling etc. The

considered concept only lacks for the non-autonomous

behaviour of test case generation.

Table 2: Test Case Generation using UML Diagrams

Authors &

Year

Used UML

Diagram
Case Study

Tools/Platform

Used
Key Features

Clevalley

and Fosse

(2001)
17

State Chart

Diagram

Flight

Guidance

System (FGS)

Rational Rose and

Java Program

1. Fault revealing power.

2. Supports transition coverage.

Samuel et al.

(2008)
18

State Machine

Diagram

Ice Cream

Vending

Machine

UML behavioural

test case generator

(UTG), Java

Platform and

MagicDraw

1. Exhibit transition path coverage.

2. Handle transition with guards, time events

and change events.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 127 | P a g e

Bandyopadh

yay and

Ghosh

(2008)
19

State Machine

Diagram and

Sequence Diagram

Mutation

Analysis on a

Video Store

System

Java Library

Functions

1. Effectiveness of approach in terms of

message transition and selective test cases

with reduced cost values.

Swain et al.

(2012)
20

State Chart

Diagram

Soft Drink

Vending

Machine

Rational Rose,

JAVA library file

ModelJUnit and

Net Beans IDE

and

1. Shows the capability for action coverage,

transition pair coverage, transition coverage

and state coverage.

2. Does not concentrate on the optimization of

test cases.

Panthi and

Mohapatra

(2013)
21

Sequence Diagram
Bank ATM

Transactions

JAVA based

library file

ModelJUnit, Net

Beans IDE and

and Rational Rose

1. Achieves the coverage like action coverage,

message path pair coverage, message path

coverage and object coverage.

2. But there is the need to optimize test cases.

Ali et al.

(2014)
22

State Chart

Diagram
ATM Banking

Visual Paradigm

v. 8.0 and Java

based Parser

1. Consumes less time with better software

quality and optimum number of test cases.

2. Accomplishes the state coverage, transition

pair coverage and transition coverage.

Swain et al.

(2014)
23

Sequence Diagram
Slicing based

Cases

ModelJUnit,

JAVA and Net

Beans IDE, Swing

component of

Java

1. Efficient to detect operational faults and

object interactions.

2. Shows 80% satisfy results for message path

coverage and slice coverage.

Jain et al.

(2015)
24

Sequence Diagram

ATM

Transaction

System

Rational Software

Architecture

(RSA) and Java

under NetBeans

IDE

1. Selective test cases and reduced time & cost

values.

Khurana and

Chillar

(2015)
25

State Chart

Diagram and

Sequence Diagram

Online Voting

System
Rational Rose

1. Appropriate to detect scenario faults,

message sequence faults, integration, pre-

post condition faults, correctness and error

handling, considered concept.

2. Only lacks for the non-autonomous behavior

of test case generation.

IV. TEST CASE GENERATION METHOD USING INTEGRATION

OF STATE CHART DIAGRAM AND SEQUENCE DIAGRAM

The concept of integrated UML sequence diagram and state

chart diagram to generate test cases using genetic algorithm

has been proposed by Khurana and Chillar 25. Here, authors

have used unit level fault tolerance state chart diagram and

integration level fault tolerance sequence diagram for test case

generation. Final optimization is performed using

evolutionary genetic algorithm. The steps for the test case

generation are as discussed in Table 3. The work flow for the

algorithm is shown in figure 5.

Table 3: Test Case Generation using Integrated Sequence and State

Chart Diagram

Step 1: Consider UML Sequence and State Chart Diagram.

Step 2: Convert Sequence Diagram into Sequence Graph.

Step 3: Convert State Chart Diagram into State Chart

Graph.

Step 4: Integrate both the graphs and generate System

Testing Graph (SYTG).

Step 5: Generate the test cases using integrated SYTG

graph.

Step 6: Optimize the test cases using Genetic Algorithm.

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 128 | P a g e

Figure 5: Work flow for Test case generation

V. CONCLUSION

Software testing is an important aspect of software

development life cycle as it checks for the matching of

software demand and their fulfil functionalities. The

traditional methods of software testing lacks system due to

manual source code based testing. In this paper, UML model

based test cases generation methods are considered which are

efficient approaches even for high software complexities. The

overall objective of the paper is to make a comparative

analysis of the existing methods for test case generation using

UML sequence diagram, state chart diagram and their

integrated approach. Different methods uses different tools for

test case generation and supports different coverage like

action coverage, transition pair coverage, transition coverage

and state coverage etc. Each test case generation method is

suitable for different case studies. So, there is the need of

some efficient method with advanced computing so that

testing can be completed with reduced cost and time. Also

need of optimization in generated test cases so that there

should be some specific test cases for the testing in software

development life cycle.

REFERENCES

[1]. Myers, Glenford J., Corey Sandler, and Tom Badgett. The art of

software testing. John Wiley & Sons, ISBN: 9781118031964, 2011.

[2]. Hailpern, Brent, and Padmanabhan Santhanam. "Software debugging,

testing, and verification." IBM Systems Journal , ISSN: 0018-8670,

vol no. 41, issue no. 1, pp. 4-12, 2002.

[3]. Mellor, Stephen J., Marc Balcer, and Ivar Foreword By-

Jacoboson. Executable UML: A foundation for model-driven

architectures. Addison-Wesley Longman Publishing Co., Inc., ISBN:

0201748045, 2002.

[4]. Kovse, Jernej, and Theo Härder. "Generic XMI-based UML model

transformations." In International Conference on Object-Oriented

Information Systems, Springer Berlin Heidelberg, ISBN: 978-3-540-

44087-1 , series vol. 2425, pp. 192-198, 2002.

[5]. Offutt, Jeff, and Aynur Abdurazik. "Generating tests from UML

specifications." In International Conference on the Unified Modeling

Language, Springer Berlin Heidelberg, ISBN: 978-3-540-66712-4 ,

Series vol. 1723, pp. 416-429., 2003.

[6]. Booch, Grady. The unified modeling language user guide. Pearson

Education India, ISBN: 978-81-317-1582-6, 2005.

[7]. Idani, Akram, and Yves Ledru. "Dynamic graphical UML views from

formal B specifications." Information and Software Technology ,

ISSN: 0950-5849 , vol. no. 48, issue no. 3, pp. 154-169, 2006.

[8]. Sarma, Monalisa, Debasish Kundu, and Rajib Mall. "Automatic test

case generation from UML sequence diagram." In Advanced

Computing and Communications, 2007. ADCOM 2007. International

Conference on, ISBN: 0-7695-3059-1 , pp. 60-67. IEEE, 2007.

[9]. Li, Xiaoshan, Zhiming Liu, and He Jifeng. "A formal semantics of

UML sequence diagram." In Software Engineering Conference, 2004.

Proceedings. 2004 Australian, ISBN : 0-7695-2089-8 , pp. 168-177.

IEEE, 2004.

[10]. Bernardi, Simona, Susanna Donatelli, and José Merseguer. "From

UML sequence diagrams and statecharts to analysable petri net

models." InProceedings of the 3rd international workshop on

Software and performance, ISBN: 1-58113-563-7, pp. 35-45. ACM,

2002.

[11]. Whittle, Jon, and Johann Schumann. "Generating statechart designs

from scenarios." In Software Engineering, 2000. Proceedings of the

2000 International Conference on, ISBN: 1-58113-206-9, pp. 314-

323. IEEE, 2000.

[12]. El‐Far, Ibrahim K., and James A. Whittaker. "Model‐Based Software

Testing."Encyclopedia of Software Engineering ISBN:

9780471028956, 2001.

[13]. Rubin, Jeffrey, and Dana Chisnell. Handbook of usability testing:

how to plan, design and conduct effective tests. John Wiley & Sons,

ISBN: 978-81-265-1690-2, 2008.

[14]. Beizer, Boris. Black-box testing: techniques for functional testing of

software and systems. John Wiley & Sons, Inc., ISBN: 0-471-12094-

4 , 1995.

[15]. Haley, Allen, and Stuart Zweben. "Development and application of a

white box approach to integration testing." Journal of Systems and

Software ISSN: 0164-1212 , vol. 4, issue no. 4, pp. 309-315, 1984.

[16]. Dalal, Siddhartha R., Ashish Jain, Nachimuthu Karunanithi, J. M.

Leaton, Christopher M. Lott, Gardner C. Patton, and Bruce M.

Horowitz. "Model-based testing in practice." In Proceedings of the

21st international conference on Software engineering, ISBN: 1-

58113-074-0 , pp. 285-294. ACM, 1999.

[17]. Chevalley, Philippe, and Pascale Thévenod-Fosse. "Automated

generation of statistical test cases from UML state diagrams."

In Computer Software and Applications Conference, 2001.

COMPSAC 2001. 25th Annual International, ISBN: 0-7695-1372-7 ,

pp. 205-214. IEEE, 2001.

[18]. Samuel, Philip, R. Mall, and Ajay Kumar Bothra. "Automatic test

case generation using unified modeling language (UML) state

diagrams." IET software,ISSN : 1751-8806, vol 2, issue no. 2, pp.

79-93, 2008.

[19]. Bandyopadhyay, Aritra, and Sudipto Ghosh. "Using UML Sequence

Diagrams and State Machines for Test Input Generation." In 2008

19th International Symposium on Software Reliability Engineering

(ISSRE), ISSN: 1071-9458 , pp. 309-310. IEEE, 2008.

[20]. Swain, Ranjita, Vikas Panthi, Prafulla Kumar Behera, and Durga

Prasad Mohapatra. "Automatic test case generation from UML state

chart diagram."International Journal of Computer

UML Sequence Diagram and State Chart Diagram

Convert Sequence diagram and state chart

diagram into their respective graphs

Create testing graph SYTG

Generate test cases using SYTG

Optimization using Genetic Algorithm

IJRECE VOL. 4 ISSUE 4 OCT.-DEC. 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 129 | P a g e

Applications ISSN: 0975 – 8887, vol. 42, issue no. 7 pp.- 26-36,

2012.

[21]. Panthi, Vikas, and Durga Prasad Mohapatra. "Automatic test case

generation using sequence diagram." In Proceedings of International

Conference on Advances in Computing, ISBN: 978-81-322-0739-9 ,

pp. 277-284. Springer India, 2013.

[22]. Ali, Md Azaharuddin, Khasim Shaik, and Shreyansh Kumar. "Test

case generation using UML state diagram and OCL

expression." International Journal of Computer Applications ISSN:

0975 – 8887, vol 95, issue no. 12 (2014).

[23]. Swain, Ranjita Kumari, Vikas Panthi, Prafulla Kumar Behera, and

Durga Prasad Mohapatra. "Slicing-based test case generation using

UML 2.0 sequence diagram." International Journal of Computational

Intelligence Studies 2, ISSN: 1755-4977, vol. 3, issue no. 2-3 pp.

221-250, 2014.

[24]. Jena, Ajay Kumar, Santosh Kumar Swain, and Durga Prasad

Mohapatra. "Test case creation from UML sequence diagram: a soft

computing approach." In Intelligent Computing, Communication and

Devices, ISBN: 978-81-322-2011-4 , pp. 117-126. Springer India,

2015.

[25]. Khurana, Namita, and R. S. Chillar. "Test Case Generation and

Optimization using UML Models and Genetic Algorithm." Procedia

Computer Science, ISSN: 1877-0509, vol. 57, pp. 996-1004, 2015.

