

University Hospitals Bristol

NHS Foundation Trust

PROMEDICA INTERNATIONAL CME

Neuroprotection: Importance of Covering All Three Cerebral Vessels

Andreas Baumbach, MD, FRCP, FESC Consultant Cardiologist, hon. Professor of Interventional Cardiology Bristol Heart Institute University Hospitals Bristol

Conflicts of Interest

Research support and speaker fees Keystone Heart

TAVI and Embolic Protection

- Is there a clinically relevant problem with embolic cerebral events ?
- Can we protect the brain with devices ?
- Can we see a difference in cases with partial vs. completely protected cerebral arteries ?

Pathophysiology

Potential Paths of Cerebral Embolism

Protecting Left Subclavian Artery - Vital 27% of the DWI MRI Lesions are in the Distribution of the Cerebellum/Brain Stem and 33% in the Posterior Region Vascular Territories Potential Paths of Cerebral Embolism Layton KF et al. Bovine Aortic Arch Variant in Humans. AJNR 2006. Middle Cerebral Left Right Carotid a. Carotid a. Left Right 27% 38% Vertebral a. Posterior Vertebral a. Cerebral 2% Anterior Cerebral 33% Left Subclavian a. Right Subclavian a. Cerebellum/Brain Innominate a. stem CMAYO 2005

Vertebral Arteries

- Supply **exclusively** the CEREBELLUM and BRAIN STEM
 - BRAIN STEM is critical for sustaining life
 - regulation of cardiac and respiratory function
 - regulates Central Nervous System
 - pivotal in maintaining consciousness and regulating the sleep cycle
 - CEREBELLUM coordinates the motor movements, basic memory and learning processes
 - coordination of voluntary motor movement, balance, equilibrium, and muscle tone
- Provide blood flow to the POSTERIOR CEREBRAL CIRCULATION
 - center for all visual ability
 - involuntary movements, memory defects

Spectrum of Cerebrovascular Events

Reporting Stroke: What if we ask Neurologists ?

Stroke After Aortic Valve Surgery: Results From a Prospective Cohort Steven R. Messé, Michael A. Acker, Scott E. Kasner, Molly Fanning, Tania Giovannetti, Sarah J. Ratcliffe, Michel Bilello, Wilson Y. Szeto, Joseph E. Bavaria, W. Clark Hargrove, III,, Emile R. Mohler, III, and Thomas F. Floyd for the Determining Neurologic Outcomes from Valve Operations (DeNOVO) Investigators

Circulation. 2014;129:2253-2261; originally published online April 1, 2014;

- Prospective evaluation of pts undergoing surgical AVR
- Pre and post assessment and DW MRI
- Clinical strokes in hospital: 17%
- Moderate/severe: 4%
- TIA 2%
- Silent infarcts on MRI: 54%

Stroke After Aortic Valve Surgery

2257

Messé et al

Figure 4. Examples of infarcts on magnetic resonance imaging. A, Patient with 14 clinically silent infarcts totaling 3292 mm³. B, Patient with 7 clinically silent infarcts totaling 2695 mm³. C, Patient with a clinical stroke (National Institutes of Stroke Scale [NIHSS], 15) and 34 infarcts totaling 12033 mm³. D, Patient with a clinical stroke (NIHSS, 3), 6 small infarcts totaling 412 mm³. E, Patient with a single clinically silent infarct measuring 766 mm³. F, Patient with a clinical stroke (NIHSS, 13) and 27 infarcts totaling 51871 mm³.

Postoperative cognitive capacity

cognitive decline memory mood disturbances psychomotor speed personality changes

THE DATA SO FAR

EMBOLIC PROTECTION DEVICES

Feature	Embrella	Triguard	Claret Medical	
Access	Radial	Femoral	Radial	
Position	Aorta	Aorta	Brachiocephalic Left Common Carotid	
Coverage Area	Brachiocephalic & LCC	Brachiocephalic & LCC & LSC	Brachiocephalic & LCC	
Mechanism	Deflection	Deflection	Capture	
Size	6F	9F	6F	
Pore Size	100 microns	~200 microns	140 microns	

Embrella Embolic Deflector System

Embolic protection device designed to reduce the amount of embolic material that may enter the carotid arteries during TAVI and valvuloplasty procedures.

- Access: radial, brachial (right). 6F sheath
- The distal end of the deflector consists of an oval shaped nitinol frame (length: 59 mm; width 25.5 mm) covered with a porous polyurethane membrane (100 microns pore size).
- The frame has two opposing petals that are positioned along the greater curvature of the aorta, covering the ostia of both the brachiocephalic and the left common carotid arteries.

PROTAVI-C Pilot Study

<u>Prospective Randomized Outcome study in</u> patients undergoing <u>TAVI</u> to Examine <u>Cerebral</u> Ischemia and Bleeding Complications

Josep Rodés-Cabau, MD

Quebec Heart & Lung Institute Quebec City, QC, Canada

on behalf of the PROTAVI-C Pilot Investigators

Study Patient Flow

A Multidisciplinary Approach

Transcranial Doppler Findings

Transcatheter Valve Therapies (TVT)

A Multidisciplinary Approach

FOUNDATION

DW-MRI Within 7 Days After TAVI

DW-MRI Data

	TAVI + Embrella (N=33)
Time from TAVI procedure, days, median (min, max)	3 (1-7)
Patients with new lesions	33 (100%)
Lesion location, patients	
Anterior cerebral arte	7 (21%)
Medial cerebral arte All terminad nelaci	29 (88%)
Posterior cerebral	22 (67%)
Cerebellum Cerebellum	23 (70%)
Border zone	2 (6%)
Patients with single lesions	4 (12%)
Patients with multiple lesions	29 (88%)
Lesions per patient, median (min, max)	8 (1, 70)
Lesion volume (mm ³), median (IQR)	42.3 (27.5, 85.0)

2: Keystone Heart Embolic Deflection Device Triguard

Designed for Coverage of All 3 Take-Offs

Simple, Fast, Familiar through Femoral access to reduce procedural complexity

Nitinol Frame and Mesh Self-positioning, with stabilizing atraumatic arms to avoid migration/embolization

Study Protocol: DEFLECT I

• Pre Procedure

Neurocognitive Assessment

DW MRI

30 Day Follow-up

Neurocognitive Assessment

DW-MRI Results

Lesion Volume Reduction vs. Historic Controls

(Kahlert 2010, Ghanem 2011, Astarci 2011, Stolz 2004, Rodes Cabau 2011)

28 Paired DW-MRI

Parameter	DEFLECT-I N=28	Historical Data N=150	
Proportion of Patients with New Lesions	78.6%	77%	
Number of New Lesions	5.14 <u>+</u> 6.10 (0 - 28)	4.60 (0 -36)	
Average New Lesion Volume	0.13 <u>+</u> 0.13 cm ³ (0 – 0.47)	0.33 cm ³	
Total New Lesion Volume	0.77 <u>+</u> 0.96 cm ³ (0 – 3.94)	2.18 <u>+</u> 4.5 cm ³ (1.65 – 4.3)	

Proof of Principle Complete Coverage

Subgroup analysis of those patients where the device was documented in place throughout the procedure

DW-MRI Results Mean Total New Lesion Volume (cm³)

DW-MRI Results Mean Single New Lesion Volume (cm³)

Total lesion volume (cm³) TriGuard full Coverage Vs. Partial Coverage Protection until after TAVR implant is good but until after TAVR removal is better!

3. Claret Montage

- The Claret Montage[™] dual-filter Cerebral Protection System was developed to protect the brain from injury caused by embolic debris.
- Randomized controlled trial data showing the efficacy of any embolic protection device in TAVR are missing.

CLEAN-TAVI: A prospective, randomized trial of cerebral embolic protection in high-risk patients with aortic stenosis undergoing transcatheter aortic valve replacement

Axel Linke¹, Stephan Haussig¹, Michael G Dwyer², Norman Mangner¹, Lukas Lehmkuhl¹, Christian Lücke¹, Felix Woitek¹, David M Holzhey¹, Friedrich W Mohr¹, Matthias Gutberlet¹, Robert Zivadinov², Gerhard Schuler¹

¹University of Leipzig, Heart Center, Leipzig, Germany, ²University of Buffalo, Buffalo, NY, US

Study Flow Chart

Design

- DESIGN: Prospective, 1:1
 randomized controlled, doubleblind study
- OBJECTIVE: To evaluate the impact of the use of Claret Montage[™] on the number of cerebral lesions in higher-risk patients with aortic stenosis undergoing TAVR with the Medtronic CV
- PRINCIPAL INVESTIGATOR Axel Linke, MD University of Leipzig, Heart Center, Germany

NewYork-Presbyterian

Linke et al., CLEAN-TAVI

Study Endpoints

• Primary Endpoint:

 Numerical reduction in positive post procedure Diffusion Weighted MRI (DW-MRI) perfused brain lesions relative to baseline at 2 days in protected territories

Secondary Endpoints:

- Serial volumetric and numerical reduction in positive post procedure DW-MRI perfused brain lesions at 2, 7, 30, 360 days
- Serial neurological assessment by NIHSS-trained specialist
- Serial neurocognitive assessment
- Peri-procedural Transcranial Doppler assessment

Cerebrovascular Territories

Stct2014

Anterior cerebral a. Middle cerebral a. Anterior choroidal a. Posterior cerebral a. Superior cerebellar a. Anterior inferior cerebellar a. Posterior inferior cerebellar artery

Anterior cerebral and anterior communicating aa. (perforating branches)

Middle cerebral a. (perforating branches)

Posterior cerebral and posterior communicating aa. (perforating branches)

- NewYork-Presbyterian

Procedural Results

Device Success 48/50 (96%)

- Unsuccessful distal filter deployment due to LCC tortuosity, n=1
- Unsuccessful deployment of both filters due to SC tortuosity, n=1

Procedural Success 47/50 (94%)

Accidental dislocation of a correctly deployed filter by pigtail, n=1

Procedural Outcomes	Control Group (N = 50)	Filter Group (N = 50)	р
Acute kidney injury – no. (%)	5 (10)	1 (2)	0.226
Thoracotomy – no. (%)	0 (0)	3 (6)	0.242
New-onset or worsening atrial fibrillation – no. (%)	7 (14)	7 (14)	1.000
Death at 30 days – no. (%)	1 (2)	0 (0)	1.000
Fluoroscopy time – min.	14.3 ± 6.5	17.0 ± 9.1	0.028
Amount of contrast medium - ml	131 ± 33	125 ± 29	0.613
Lesions positive at 2 days – no. (%)	44/45 (98)	47/48 (98)	1.000
Gtot 2017		Columb Medica	ia University l Center

Linke et al., CLEAN-TAVI

Total Lesion Number at 2 & 7 days

The boxes identify the 25%-75% CI, the black lines and number represents the median.

COLUMBIA UNIVERSITY MEDICAL CENTER

Linke et al., CLEAN-TAVI

Total Lesion Volume at 2 & 7 days

The boxes identify the 25%-75% CI, the black lines and number represents the median.

Columbia University Medical Center

Linke et al., CLEAN-TAVI

- NewYork-Presbyterian

Neurological Outcome

intention-to-treat		cumulative	2 days (No, %)	7 days (No, %)	30 days (No, %)
Control	Any symptom	17 (34 %)	14 (28 %)	5 (10 %)	6 (12 %)
	- Ataxia	16 (32 %)	12 (24 %)	4 (8 %)	5 (10 %)
Filter	Any symptom	14 (28 %)	8 (16 %)	8 (16 %)	6 (12 %)
	- Ataxia	12 (24 %)	6 (12 %)	7 (14 %)	6 (12 %)
RR 1.379 (0.927 to 2.050), OR 2.042, p=0.175 RR 1.439 (0.963 to 2.149), OR 2.316, p=0.118					

Linke et al., CLEAN-TAVI

Neurological Outcome

per protocol		cumulative	2 days (No, %)	7 days (No, %)	30 days (No, %)
Control	Any symptom - Ataxia	17 (34 %) 16 (32 %)	14 (28 %) 12 (24 %)	5 (10 %) 4 (8 %)	6 (12 %) 5 (10 %)
Filter	Any symptom - ataxia n=45	11 (24 %) 9 (20 %)	6 (13 %) 4 (9 %)	6 (13 %) 5 (11 %)	4 (12 %) 4 (12 %)

RR 1.458 (1.006 to 2.114), OR 2.5, p=0.08 RR 1.559 (1.083 to 2.214), OR 3.2, p<0.05

Linke et al., CLEAN-TAVI

Neurological Outcomes Summary

 The 'Intent-to-Treat' analysis at 2 days post TAVR shows that neurological deficit was observed in 28% of the control patients when evaluated by a NIHSS-trained specialist.

 The Filter group in 'Per Protocol' analysis at 2 days post TAVR shows a significantly lower ataxia rate (24% vs 9%) than the control group, which supports the notion that the filter has the potential to improve neurological outcome.

Summary

- 'Silent' cerebral infarcts are frequent and are likely to impact on cognitive function
- Initial results with cerebral protection devices are promising and need to be validated in powered randomised trials
- Failure to cover all ostia completely (by design or suboptimal positioning) results in increased embolic events compared to full coverage

Postoperative cognitive capacity

