
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1184 | P a g e

Implementation of Floating Point Multiplier

Unnati Mehta, Prerna Gupta, Pooja Sengar, Hitanshi Shishodia, Priyanka Yadav

Department of Electronics and Communication Engineering College
18th km stone, Nh-24-ABES Engineering College,

 Ghaziabad, Uttar Pradesh, India

Abstract: In VERILOG design it is possible to perform
normal multiplication, addition, subtraction but it is difficult to
perform floating point multiplication. So in this we
implementing a new algorithm for performing the floating
point multiplication. Floating point number can represent a
very large or a very small. It could also represent very large
negative number and very small negative number as well as
zero. Floating point number is typically expressed in the
scientific notation, with a fraction (F), and exponent (E) of a
certain radix(r). Modern computers adopt IEEE 754 standard
for representing floating point numbers. Floating point number
consists of two fixed point components, whose range depends
exclusively on the number of bits or digits in their
representation. Whereas components linearly depend on their
range, the floating point range linearly depends on the
significant range and exponentially on the range exponent
component, which attaches outstandingly wider range to the
number. In this paper we perform -32-bit and 64-bit floating-
point multiplication. Floating point multiplication is important
in many commercial applications including financial analysis,
banking, tax calculation, currency conversion, insurance, and
accounting.

Keywords: Floating point number, Exponent, Mantissa,
Normalization, rounding.

INTRODUCTION:

IEEE 754 floating point standard is the most common
representation today for real numbers on computers. The IEEE
(Institute Of Electrical And Electronics Engineers) has
produced a standard to define floating –point representation
and arithmetic. Although there are other representation used
for floating point numbers. The standard brought out by the
IEEE come to be known as IEEE 754.It is interesting to note
that the string of significant digits is technically termed the
mantissa of the number, while the scale factor isappropriately
called the exponent of the number.

LITERATURE REVIEW

Various researches have been done to increase the
performance on getting best and fast multiplication result on
two floating point numbers. Some of which are listed below-

Addanki Puma Ramesh, A. V. N. Tilak, A.M.Prasad [1]
the double precision floating point multiplier supports the
LEEE-754 binary interchange format. The design achieved the
increased operating frequency. The implemented design is
verified with single precision floating point multiplier and
Xilinx core, it provides high speed and supports double
precision, which gives more accuracy compared to single
precession. This design handles the overflow, underflow, and
truncation rounding mode resp.

Itagi Mahi P and S. S. Kerur [2] ALU is one of the
important components within a computer processor. It
performs arithmetic functions like addition, subtraction,
multiplication, division etc along with logical functions.
Pipelining allows execution of multiple instructions
simultaneously. Pipelined ALU gives better performance
which will evaluated in terms of number of clock cycles
required in performing each arithmetic operation. Floating
point representation is based on IEEE standard 754. In this
paper a pipelined Floating point Arithmetic unit has been
designed to perform five arithmetic operations, addition,
subtraction, multiplication, division and square root, on
floating point numbers. IEEE 754 standard based floating
point representation has been used. The unit has been coded in
VHDL. The same arithmetic operations have also been
simulated in Xilinx IP Core Generator.

Remadevi R [3] Multiplying floating point numbers is a
critical requirement for DSP applications involving large
dynamic range. This paper presents design and simulation of a
floating point multiplier that supports the IEEE 754-2008
binary interchange format, the proposed multiplier does not
implement rounding and presents the significant multiplication
result. It focuses only on single precision normalized binary
interchange format. It handles the overflow and underflow
cases. Rounding is not implemented to give more precision
when using the multiplier in a Multiply and Accumulate
(MAC) unit. Rakesh Babu, R. Saikiran and Sivanantham S
[4] A method for fast floating point multiplication and the
coding is done for 32-bit single precision floating point
multiplication using Verilog and synthesized. A floating point
multiplier is designed for the calculation of binary numbers
represented in single precision IEEE format. In this
implementation exceptions like infinity, zero, overflow are
considered. In this implementation rounding methods like
round to zero, round to positive infinity, round to negative

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1185 | P a g e

infinity, round to even are considered. To analyse the working
of our designed multiplier we designed a MAC unit and is
tested. These results are compared with the previous work
done by various authors.

FLOATING POINT MULTIPLICATION ALGORITHM:

As stated in the introduction, normalized floating point
numbers. To multiply two floating point numbers the
following is done:

1. Multiplying the significand; i.e. (1.M1*1.M2)

2. Placing the decimal point in the result

3. Adding the exponents; i.e. (E1+ E2– Bias)

4. Obtaining the sign; i.e. s1 xor s2

5. Normalizing the result; i.e. obtaining 1 at the MSB of
the results’ significand

6. Rounding the result to fit in the available bits.

7. Checking for underflow/overflow occurrence

IEEE 754 Floating Point Formats:

IEEE 754 specifies four formats for representing floating-
point values:

1. Single precision (32-bit)

2. Double precision (64-bit)

3. Single-extended precision (≥43-bits, not commonly
used)

4. Double-extended precision (≥79-bit, usually
implemented with 80 bits)

A. Single Precision floating point Numbers:

The Single-precision number is 32-bit wide. The single-
precision number has three main fields that are sign, exponent,
and mantissa .The 24-bit mantissa can approximately
represents a 7-digit decimal number, while an 8-bit exponent
to an implied base of 2 provides a scale factor with a
reasonable range. Thus a total of 32-bit is needed for single-
precision number representation. To achieve this, a bias equal
to 2n-1-1 is added to the actual exponent in order to obtain the
stored exponent. This equals 127 for an eight-bit exponent of

the single127 for an eight-bit exponent of the single precision
format. The addition of bias allows the use of an exponent in
the range from -127 to +128, corresponding to a range of 0-
255 for single precision. The single-precision format offers the
range from 2-1 27 to 2+127. Which equivalent to 10-38 to 10+38.

Steps for conversion:

Let us represent the decimal number (-0.03125)10 in
IEEE floating-point format.

STEP1: Convert the number into binary form (0.03125)
10 = (0.00001)2

STEP2: Convert (0.00001)2 into floating point
representation. 0.00001× 2+0 = 0.00001

STEP3: Normalized the value 0.00001 000001×2-5 = 1×
2-5

STEP4: Biased exponent =127-5

=122 =1111010

Fig: example of single precision

EXAMPLE:

Let A=85.125 and B=45.125

IEEE Representation of operands

A =01000010101010100100000000000000

B =01000010001101001000000000000000

To multiply A and B

1. Multiply significand

 1.01010100100000000000000

*1.01101001000000000000000

2. Add exponents

10000101 + 10000100= E

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1186 | P a g e

The exponent representing the two numbers is already
shifted/biased by the bias value (127) and is not the true

exponent; i.e. EA= EA-true+ bias and EB= EB-true+

biasandEA+ EB= EA-true+ EB-true+ 2 bias .So we should
subtract the bias from the resultant exponent otherwise the
bias will be added twice.

 E-01111111

3.Xoring the sign bit and put the result together:

Xor bits:0 Exponent:10001010
mantissa:11.1100000001010001000000000000000000000000
0000000

4.Normalize the result so that there is a 1 just before the
radix point (decimal point). Moving the radix point one
place to the left increments the exponent by 1; moving
one place to the right decrements the exponent by 1.

The result is (without the hidden
bit):01000101011100000001010001000000

IMPLEMENTATION

Simulation flow in ModelSim:

Creating the working library: In ModelSim , all the
designs are compiled into a library. We start a new simulation
in ModelSim by creating a working library called work. Work
is the library name used by the compiler as the default
destination for compiled design units.

Compile the design: Before the simulate a design, we
must first create and compile the source code into that library.

Loading the design into simulator: Load the test design
module into the simulator. Double click test design in the
Main window Workspace to load the design. It can also load
the design by selecting Simulate > Start Simulation in the
menu bar. This opens the Start Simulation dialog.

Running the simulation: Go to simulate > start simulation
> run > run all. Time taking for simulation is 950ps.

Debugging the results: If we don’t get the results we
expect, then we can use ModelSim’s robust debuggung
environment to track down the cause of the problem.

CONCLUSION:

This paper presents an implementation of a floating
point multiplier that supports the IEEE 754-2008 binary
interchange format; the multiplier doesn’t implement
rounding and just presents the significand multiplication
result as is (48 bits); this gives better precision if the whole 48
bits are utilized in another unit; i.e. a floating point adder to
form a MAC unit. The design has three pipelining stages
and after implementation on a Xilinx Virtex5 FPGA it
achieves 301 MFLOPS

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1187 | P a g e

REFERENCES:

 [1] IEEE754-2008,IEEE Standardfor Floating-
PointArithmetic,2008.

[2] B.Faginand C.Renard,“Field ProgrammableGateArraysand
FloatingPointArithmetic,”IEEETransactionsonVLSI,vol.2,no.3
.

[3] N.Shirazi,A.Walters,andP.Athanas,“QuantitativeAnalysis of
Floating Point Arithmeticon FPGA Based CustomComputing

Machines,”Proceedingsofthe IEEESymposiumon
FPGAsforCustom Computing Machines (FCCM’95),pp.155–
162,1995.

[4] L.Louca,T.A.Cook,andW.H.Johnson,“Implementation of IEEE
Single PrecisionFloating PointAdditionand Multiplicationon
FPGAs,”
Proceedingsof83theIEEESymposiumonFPGAsforCustom
Computing Machines(FCCM’96),pp.107–116,1996.

