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Molecular modelling: what is a model? 
 

According to the Oxford English Dictionary: 

 
Model: ‘Simplified or idealised description of a system or process, 

often in mathematical terms, devised to facilitate calculations and 

predictions’. 

 

 Use of models in Materials Science: 

 

• Understanding via problem isolation 

• Interpretation of experimental data 

• Simulation of situations where experiments are difficult to perform 

• Rapid screening of properties 

• Prediction of new behaviour 



Modelling scales (and multi-scale modelling)  



Atom-level modelling methods 

(Based on the evaluation of the interaction energy for all the 

atoms in the system) 

Quantum  

Mechanical  

Methods 

Molecular Mecanics 

or  

Force-field Methods 

Energy evaluation 



Quantum mechanical methods (QM) 
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Schrödinger equation for the H2 molecule: 



Two merging types of QM methods 

  
Chemistry community 

 

• “Quantum Chemistry”, 

Hartree-Fock (HF) 

 

•  Calculation of atoms and 

molecules 

 

•  Wavefunction. Molecular 

orbitals as linear combination 

of atomic orbitals (LCAO) 

 

 

Physics community 

 

•“Band theory”,  

Density Functional Theory 

(DFT) 

 

• Calculations of solids 

 

• Electron density. Plane 

waves.  

  

From 1990’s 

DFT in Chemistry, HF in Physics 

Hybrid DFT/HF in Chemistry, Physics, and Materials  



Force-field (FF) / Molecular Mechanics (MM) 

/ Interatomic Potentials (IP) methods:  

Example: 
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Morse potential: 

- Much cheaper (computationally) than QM methods! 

- Parameters can be obtained by fitting to experiment or to QM results  

E 



What can be done with the energy functions? 

1. Geometry search:  

 

     Equilibrium geometry is the one that minimises the potential 

energy. 

Images from Rempe and Jonsson. The Chemical Educator 3 (1998) 1-17  



What can be done with the energy functions? 

Images from Rempe and Jonsson. The Chemical Educator 3 (1998) 1-17  

2. Vibrational properties:  

Frequencies depend on the curvature of U(r) 



What can be done with the energy functions? 

3. Molecular dynamics:  

 

Ions are (typically) heavy enough to follow Newton’s 

second law of motion:  
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MD simulation of water droplet on a silica surface 

http://www.ks.uiuc.edu/Gallery/Movies/ 
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Quantum (QM) vs. Classical (FF) simulations 

• QM calculations are much more computationally expensive than  FF 

calculations.  

 

• Van der Waals interactions are easy to include within FF methods, but require 

sophisticated (and more expensive) approaches within QM.  

 

• QM methods give access to the electronic properties of the system (via the 

calculation of one-electron spectra). 

 

• QM methods allow the investigation of bond breaking and formation, and of 

metallic behaviour in solids. These properties are generally beyond the reach of FF 

methods. 

 

• In principle, QM methods require no adjustable parameters, and are completely 

transferable.  



Quantum mechanical approaches 

“The underlying physical laws necessary for the mathematical theory of a large 
part of physics and the whole of chemistry are thus completely known, and the 
difficulty is only that the application of these laws leads to equations much too 
complicated to be soluble.” 
 
Paul Dirac (1902-1984), British physicist. 
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http://upload.wikimedia.org/wikipedia/commons/7/74/Dirac.gif
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Schrödinger equation for M nuclei and N electrons:  

Atomic units:  

 

(lengths in Bohrs, energies in Hartrees)  
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1. Born-Oppenheimer approximation:  

 

Nuclei are much heavier and move much slower than electrons, so we can 

study the movement of electrons considering fixed nuclei positions:  
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2. Introduction of spin: x={r,σ} are the generalised coordinates of one electron. 

 

We impose the antisymmetry principle (Pauli exclusion): 

 

1 1( ,..., ,...., ,..., ) ( ,..., ,...., ,..., )i j N j i N  x x x x x x x x



• Solving the non-relativistic electronic problem, even after the 

BO approximation, is a formidable task! 

 

 

• Other approximations are required. They include: 

 
 

-  Approximations for the electron – electron interaction (e.g. Hartree-Fock).  

 

- Approximations for dealing with core electrons (e.g. Pseudopotentials)  

 

Further approximations 
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The Hartree – Fock approximation 

The multielectron wavefunction is built as a Slater determinant: 

Simplest form that holds the antisymmetry principle. 

N is the number of electrons in the system.  
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The variational principle 

 Any state defined by an approximate wave function                 has 

an average energy that is above or equal to the true groundstate 

energy.  

approx approx
ˆ| |  H E  

approx

The equality holds only if the wave function is exact.  

 

Therefore, the lower the energy of the approximate wavefunction, the closer 

this is to the real wavefunction.  

 

 

Application:  We can find the best wavefunction within a certain class of 

functions by choosing the one for which the energy is the lowest. We say that 

we “minimise the energy”. 
17 
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Minimising the HF electronic energy:  

HF HF HF
ˆ| |E H  

Its value depends on the selection of the electronic orbitals         in the Slater determinant. 

 

After some maths, it is found that the energy is minimised when: 
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HF

iv represents the e-e interaction in the HF approximation:  average potential 

experienced by the ith electron due to the presence of the other electrons. 

Again, one-electron 

problem! 
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The one-electron Hamiltonian operator 

also depends on the orbitals of the other electrons!  

 

But now        contains two terms:  
HF

iv

HF
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Coulomb term: 

 

Classical interaction of the 

electron with the cloud of all 

the other electrons 

Exchange term: 

 

No classical equivalent. 

Creates repulsion between 

electrons of like spin. 

Consequence of antisymmetry 

(or Pauli principle) 19 



Egg-and-chicken problem: 

 

We need the effective potential to find the electron orbitals, but 

we need the electron orbitals to find the effective potential! 

 

 
Solution: The self-consistent field method 

Initial guess of orbitals 

Effective potential  

Hartree-Fock equation 

New set of orbitals Convergence? 

No 

Yes 
End 

20 
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(number of calculated spatial orbitals = number of basis functions = K) 

 

Orbitals and orbital energies 

1

( ) ( )
K

i iC 


 


r r i=1, K 

We always need  K > N/2 basis functions!  

Orbitals for N electrons 

(assuming closed shells) 

 

K-N/2  

virtual  

orbitals 

1
2

3

/ 2N

/ 2 1N 

K

N/2  

occupied  

orbitals 



22 

Sources of errors in the Hartree-Fock approach 

1. Incompleteness of the basis set 

1

( ) ( )
K

i iC 


 


r r only exact when  K  (impossible  

in practice)  

2. Intrinsic HF error 

Even in the limit of a complete basis set, there is a remaining error in the solution, 

because we have forced the Slater determinant shape for the all-electron 

wavefunction! 

Exact energy 

HF energy 
Correlation 

energy 
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Quality of the HF solutions 

• Reasonable values for total energies of atoms and molecules 

 

• Good description of exchange effects 

 

• Excitation energies too large 

 

•  Fails to reproduce metallic state in solids 

Further reading on HF and related methods: 

 

• Ostlund and Szabo: Modern quantum chemistry: introduction to advanced 

electronic structure calculations. (rigorous maths)  

 

• Levine: Quantum Chemistry (more intuitive introduction to topics) 



Density Functional Theory 



Multi-electronic wavefunction      contains too much irrelevant information: 
 
Example: How many variables does the multielectron wavefunction have in a 
methane molecule, CH4?  



Motivation behind the Density Functional Theory (DFT) 

DFT focuses on the electronic density, rather than on the wavefunction.  
 
Ignoring spin, the electron density is a function of only three variables, 
regardless of the number of electrons: 
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

… and in gets much worse for bigger molecules! 

 Answer: There are 6+4=10 electrons. Each electron has three spatial coordinate  
and one spin coordinate, therefore the wavefunction is a function of 40 variables! 
 



• Theorem by Hohenberg and Kohn (1964): All the properties of the system 
are determined by the electronic density ρ(r). 

 

• There is a universal functional  F[ρ(r)]  that allows calculation of the  energy 
of a system of electrons from its electronic density. For a given potential V(r) 
the energy of the fundamental state is written as: 

[ ( )] ( ) ( )   [ ( )]E V d F   r r r r r

• Unfortunately, we don’t know the form of this functional! 
 

Hohenberg-Kohn theorems 



Kohn-Sham method 

Real system replaced by a fictitious system of non-interacting electrons 
that has the same density 
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Minimisation of the energy functional leads to the one-electron problem: 

KS
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with 

Kohn-Sham Hamiltonian 

Kinetic energy  
of one electron 

Coulomb interaction  
of  the electron with  
the nuclei 

Coulomb (classical)  
interaction of  
the electron with all the 
other electrons 

Non-classical interactions  
with  other electrons:  
exchange and correlation.  
Also kinetic energy corrections. 



• Although Kohn-Sham DFT uses a Hamiltonian similar to the one in HF 
theory, no claim is made here about the form of the wavefunction. The 
method would be exact if we knew the exact form of Exc (we don’t!) 

 
 
 

Comparison between Hartree-Fock and Kohn-Sham DFT 

• The KS equation should be solved iteratively like the HF equation, since 
the KS operator itself depends on the orbitals of the solution  

 

•  While the HF method gives exact exchange and no correlation (by 
definition), the KS-DFT method gives approximate values for both exchange 
and correlation contribution to the energy.  

 



The local density approximation (LDA) 

LDA 3

xc [ ( )] ( ) ( ( ))LDA

xcE d    r r r r

Considers the general inhomogeneous electronic system as locally 
homogeneous: 

LDA

xc ( )    exchange – correlation energy per particle of a 
uniform electron gas (jellium).   

 

• Well known from accurate calculations (Quantum Monte Carlo)  
  [Ceperley and Alder (1980)] 
  
•  Has been fitted to analytic representations  
  [Vosko, Wilk and Nusair (1980); Perdew and Zunger (1981)]  
 
• In general, it should be a functional of the density, and not a function. 

 
 



The General Gradient Approximation (GGA) 

GGA 3 LDA

xc xc[ ( )] ( ) ( ( )) ( ( ), ( ))E d F      r r r r r r

Incorporates gradient corrections to    ( ( ))LDA

xc  r

Different expressions have been given for the gradient corrections, e.g: 

• BLYP: a combination of an exchange functional developed by Becke 
(1988) and a correlation functional by Lee, Yang and Parr (1988). Contains 
parameters fitted to experimental molecular data. 
 
• PBE: developed by Perdew, Burke and Ernzerhof in 1996. No fitting 
parameters! 
 
 
   

In the LDA the exchange-correlation energy per electron is a function of 
the electron density, while in the GGA it is a function of both the electron 
density and of its gradient.   
 



• Although Kohn-Sham DFT uses a Hamiltonian similar to the one in HF 
theory, no claim is made here about the form of the wavefunction. The 
method would be exact if we knew the exact form of Exc (we don’t!) 

 
 
 

Comparison between Hartree-Fock and Kohn-Sham DFT 

• The KS equation should be solved iteratively like the HF equation, since 
the KS operator itself depends on the orbitals of the solution  

 

•  While the HF method gives exact exchange and no correlation (by 
definition), the KS-DFT method gives approximate values for both exchange 
and correlation contribution to the energy.  
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Hartree-Fock DFT (Kohn-Sham) 

Total energy ˆ| |E H  
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Electron self-interaction problem 
 

• In local and semi-local DFT each density region of one electron 

interacts with other density regions of the same electron – this is 

incorrect. 

 

• Origin: The exchange contribution is given by a density functional, and 

does not cancel the Coulomb interaction of the electron with itself. 

 

 •  This problem is not present in HF: 

* 1 * 1( ) ( ) ( ) ( ) ( ) ( ) ( )
HF

i i j j ij i j i ij j
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* 1 * 1         ( ) ( ) ( ) ( ) ( ) ( )j j ij i j i ij j

j i j i
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j=i terms are the same but with opposite sign for Coulomb  

and exchange contribution, and cancel out!  
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Consequences of the self-interaction problem 

• DFT tends to favour delocalised solutions where electrons do not interact 

strongly with themselves. 

 

• This is a problem in the description of strongly localised d or f states in 

transition metal or rare earth compounds.  

 

•  The covalent character in the bonding of ionic and semi-ionic compounds 

is typically exaggerated within DFT, and band gaps are underestimated. 

 

•  Delocalised metallic states can be artificially preferred over the real 

localised state in semiconductors.  

 

• Two widely used approaches to correct self-interaction problems: hybrid 

functionals and DFT+U methods.  
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Correcting self-interaction in DFT: Hybrid functionals 

Exchange contribution is given partially by the HF expression and 

partially by the DFT functional, for example: 

(1 ) DFT HF DFT

xc x x cE a E aE E   

where 0 < a < 1 is the proportion of HF exchange  

Example: B3LYP 

Exchange: Becke(1988)/LDA + HF(20%)  

Correlation: LYP/LDA  

Values of parameters  fitted against binding energy of molecules. 
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Example: Band gap in FeSbO4 

DFT (too narrow) 

HF/DFT hybrid (correct) 

HF (too wide) 

(B3LYP, 20% HF) 

Grau-Crespo R et al. Phys. Rev. B (2006) 37 



- One of the consequences of the artificial delocalization in DFT is more overlapping 

between the orbitals. 

 

- Problem can be partially corrected by introducing a penalty energy against the 

hybridisation of the d or f orbitals: 

 

 

 

 

  

 

- Whenever the orbitals of one atom attempt to hybridise with those of the neighbouring 

atoms, a penalty applies with some positive energy (proportional to U). Therefore, 

DFT+U tends to avoid the wrong delocalized solution. 

 

- Typically, the U parameter is fitted to reproduce experimental data (e.g. band gaps), but 

there are ways to obtain the value ab initio.  

Correcting self-interaction in DFT: The DFT+U method 

HybridisationDFT U DFTE E U   

Penalty term proportional to overlap 

of d orbitals with ligands’ p orbitals.  
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Solving the Schrödinger equation in crystalline solids 

• Main idea: crystals are periodic, therefore the potential exerted by the 
nuclei on the electrons, and any observable property (e.g. electron density) 
must be periodic too. 
 
 
 
 
 
 
 
 
 
 
 
 

• In a periodic calculation, we focus on a unit cell of the crystal. Periodicity 
means that all other cells within the crystal will behave in the same way. 
 

• Mind: Some types of solids are non-crystalline (non-periodic), e.g. glasses. 
But non-periodic solids can be approximately described using a very large 
unit cell, and therefore calculated in the same way.  
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The simplest periodic potential: the zero potential 
 
 

Electron in a zero potential: wavefunction of the free electron: 

( ) exp[i ]A  k r k r

The condition  
 
 
defines a plane 

constant k rplane wave 

2 2

k

k

2m
 

It satisfies the equation: 

2
2

2m
   

Energy (kinetic): p kWell-defined momentum:  

(and completely uncertain position) 



Electron in a periodic potential (Bloch’s theorem, 1928):  

( ) ( )exp[i ]f  k kr r k r

periodic function: 

( ) ( )f f k kr T r

where T is a translation vector of the lattice 

The wavefunction of an electron in a periodic crystal can be written as a 
product of a periodic function and a planewave:  

Plane wave 

The continuous index  k  is called the wave vector.  
The one-electron Schrodinger equation (from HF or from DFT)  

has to be solved for each wave vector k. 



42 

Indexes for electronic levels: molecules vs solids 

, ,n n k kn n 

CH4 molecule 
(HF calculation) 

Valence bands in CH4 crystal 
(periodic HF calculation) 



Some molecular HF/DFT codes 

Program Licence Basis set 

Gaussian Commercial Gaussian  

Gamess US/ 

Gamess UK 

 

Free academic 

licences 

Gaussian 

NWChem Free educational 

licence 

 

Gaussian 

DMol Commercial Numerical atomic orbitals 



Some periodic DFT codes 

Program Licence Basis set 

VASP Commercial. Incorporated 

in MedeA. 

Plane waves 

Quantum Espresso Free Plane waves 

CASTEP Commercial, incorporated 

in Materials Studio 

(free for UK academics) 

Plane waves 

WIEN2k Commercial Plane waves + atomic 

local orbitals 

SIESTA Commercial 

(free for UK academics) 

Numerical atomic 

orbitals 

DMol Commercial Numerical atomic 

orbitals 

CRYSTAL Commercial 

(free for UK academics) 

Gaussian 


