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Abstract - Browser fingerprinting is a sophisticated device-

identification method utilized to monitor users' activity across 

the web. While it offers advantages to website operators by 

providing insights into user demographics and interaction 

patterns, it simultaneously raises significant privacy concerns. 

This paper investigates prevalent t browser fingerprinting 

techniques, evaluates countermeasures adopted by modern 

browsers, and presents the design and implementation of a 

browser extension aimed at reducing user identifiability. The 

extension’s effectiveness is assessed through analysis on real-

world websites. 

 

I. INTRODUCTION 

Internet tracking has long been associated with privacy issues, 

many of which remain unnoticed by everyday users. As a result, 

it is often unclear to the average person how to effectively 

prevent such tracking. At its core, tracking involves gathering 

details about user identity and their interactions on a single 

website or across multiple platforms. This data collection is 

crucial for numerous websites, as it enables administrators to 

analyze visitor behaviour and engagement. Such insights 

support better decision-making related to website design, user 

experience, and business operations. 

Services like Google Analytics assist website owners by 

providing metrics on how users discover and navigate their site, 

as well as demographic data such as user locations and visit 

duration. These analytics play a significant role in improving 

site performance, enhancing interface design, and enabling 

targeted advertisements or personalized content delivery. 

Initially, websites relied on cookies— small text-based files 

stored in a user's browser—to retain information about user 

sessions and identities. While users can delete these cookies to 

limit tracking, more sophisticated tracking techniques have 

emerged. These methods often involve placing tracking data in 

obscure or less accessible storage locations, making it harder 

for users to detect or remove them. As traditional tracking 

methods became more transparent, efforts were initiated to limit 

or eliminate the use of Cookies —especially by third-party 

entities. Some browsers even introduced features to block or 

automatically delete cookies in response to rising privacy 

concerns. 

As the effectiveness of cookies declined, browser fingerprinting 

emerged as a more advanced and persistent form of user 

identification. This technique functions independently of 

cookies, relying instead on data passively collected from a 

user’s browser. While this data—such as screen resolution, 

graphics rendering capabilities, fonts, plugins, memory usage, 

and browser version—is typically used to enhance site 

performance, when aggregated, it can create a unique and 

identifiable profile of the user. This fingerprint enables websites 

to track users across single or multiple domains. 

The practice of browser fingerprinting has become a major 

privacy issue, as it allows for continuous monitoring of user 

behavior, often without their knowledge or consent. Even when 

users adopt privacy-enhancing practices like clearing cookies, 

using incognito modes, or disabling trackers, fingerprinting can 

still persist as a method of identification. 

In this project, we conducted a thorough investigation of how 

browser fingerprinting operates. We first explored the technical 

foundations by developing a sample website that implements 

several standard fingerprinting techniques. Following this,we 

studied the defensive measures integrated into modern web 

browsers to evaluate how well they prevent fingerprint-based 

tracking. To further our understanding, we also designed and 

developed a custom Google Chrome extension that applies 

fingerprint-masking strategies with the aim of minimizing user 

identifiability. 

 

II. RELATEDWORKAND MOTIVATION 

 

mailto:ruhirsiddiqui@gmail.com
mailto:tabrez.nafis@gmail.com


IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025                   ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  45 | P a g e  

Device fingerprinting was initially introduced as a fraud-

prevention mechanism, especially by financial institutions. 

These systems aimed to detect suspicious behaviour by 

comparing it to patterns from known devices, without relying 

on cookies or browser-stored data .Instead, they identified users 

by correlating multiple device-specific attributes. 

A comprehensive study by Englehardt and Narayanan [3] 

revealed that among a sample of 100,000 devices, nearly 80% 

of desktop and mobile browsers exhibited unique fingerprints. 

Their research further highlighted the growing adoption of 

third-party tracking systems and HTTP-based fingerprinting 

across websites. 

In particular, their findings showed that companies like Google 

could monitor user activity on nearly 80% of websites via third-

party integrations and network requests [3]. Despite raising 

public awareness, these tracking methods remain prevalent. In 

response, major browsers have begun incorporating built-in 

protections aimed at limiting the data accessible to 

fingerprinting scripts. 

 

III. APPROACH 

This section outlines the methodology we followed to explore 

browser fingerprinting in depth, evaluate the features 

commonly exploited for identification, investigate possible 

countermeasures, and assess the effectiveness of our proposed 

solution. 

A. Understanding Fingerprinting Mechanisms 

To gain practical insights into how fingerprinting works, we 

built a demonstration website that collects a range of browser 

and device attributes. 

This setup allowed us to simulate common fingerprinting 

methods and analyze which features are most frequently used 

to build a unique user profile. 

To capture a range of data points from users' browsers, we 

designed a website capable of extracting multiple identifying 

features. 

Before proceeding with the implementation, it was essential to 

first identify the specific attributes that websites typically use 

to create browser fingerprints. To do this, we examined several 

fingerprinting- focused platforms: 

 CoverYourTracks (coveryourtracks.eff.org) 

 BrowserLeaks (browserleaks.com) 

 FingerprintJS(fingerprintjs.com) 

 

While there was noticeable overlap in the types of 

fingerprinting data these tools collected, each service offered 

distinct insights. FingerprintJS, for instance, does not directly 

show the exact browser attributes it gathers, instead presenting 

users with a unique identifier. However, since it is open- source, 

we were able to examine its codebase to better understand the 

fingerprinting techniques it employs. 

Among these, CoverYourTracksproved to be the most 

informative. It provides a comprehensive assessment of how 

resistant a browser is to fingerprinting and outlines the specific 

data points used to construct a fingerprint profile. 

  

Using the information from these tools, we sought to replicate 

the fingerprinting methods on our own test site. To keep our 

project focused and manageable, we limited our 

implementation to only those features identified by 

CoverYourTracks. The status of each implemented feature is 

illustrated in Figure 3. 

This implementation phase gave us practical experience with 

fingerprinting methods that are actively used on the web today. 

The insights gained from this phase laid the foundation for 

developing our anti-fingerprinting browser extension, as 

discussed in subsequent sections. 

 

B. Defences against Browser Fingerprinting 

After examining various fingerprinting methods, we evaluated 

how some of the widely-used web browsers attempt to mitigate 

these techniques. Our analysis focused on data provided by 

CoverYourTracks, along with the available documentation and 

source code for Chrome, Firefox, Brave, and Tor Browser. 

Based on our findings, we identified three primary strategies 

that browsers use to resist fingerprinting. These approaches are 

outlined below: 

1) Anonymization: This technique modifies certain browser 

attributes to reflect the most statistically common values 

among users. For instance, since Windows is the most 

prevalent desktop operating system, a browser employing 

anonymization may set the user-agent string to report 

Windows, even if the actual system is macOS or Linux. 

This method is notably used by the Tor Browser. 

The advantage of anonymization is that it prevents 

websites from collecting enough distinctive data to 

uniquely identify individual users. However, its 

effectiveness depends on accurate knowledge of the 

distribution of user traits, which often requires gathering 

data from the browser’s user base. Furthermore, if only 

certain properties are altered while others remain unique, 

the resulting fingerprint could paradoxically stand out 

more. For example, a browser might claim to run on 

Windows, but simultaneously reveal the presence of fonts 

that are exclusive to another operating system. 
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For instance, if a browser identifies itself as running on 

Windows but reports fonts specific to macOS, the 

inconsistency may increase its uniqueness, making the user 

more trackable. 

2) Randomization: In this method, browser-exposed features 

are assigned random—but plausible— values, which may 

not reflect the user’s actual configuration. For example, the 

browser may report a random value for available device 

memory. The Brave browser adopts this technique in 

certain areas, such as randomizing the number of logical 

processors (hardware concurrency). 

One of the key advantages of randomization is that it does 

not rely on statistical profiling of the user base. Instead, it 

disrupts long-term tracking by altering fingerprintable 

features between sessions. While a user may still appear 

unique during a specific visit, their fingerprint changes 

with subsequent visits, preventing persistent identification. 

However, improper implementation of randomization can 

be counterproductive. The use of implausible or 

inconsistent values may itself become a distinguishing 

trait. Additionally, random values can impact 

functionality—such as when a browser misreports its 

platform, leading tolayout or rendering issues on websites 

designed for different device types. 

3) Disabling Feature Access: Another mitigation strategy is 

to block access to browser APIs that expose fingerprintable 

attributes. By disabling these interfaces, the browser 

prevents websites from retrieving sensitive information 

altogether. Firefox, for example, restricts access to certain 

APIs such as those related to browser plugins. 

 

Although effective in limiting fingerprinting vectors, this 

approach has its trade-offs. Some information, like the user-

agent string or screen resolution, is often necessary for 

optimizing user experience across diverse devices. In our 

testing, we observed that omitting the user-agent string led 

certain websites to assume a default configuration, such as 

serving content formatted for Android browsers on desktop 

systems. 

In the browser extension developed as part of this work, we 

incorporated the principles behind all three strategies discussed 

above. However, for this project, we chose to focus on 

implementing the randomization technique due to its balance of 

privacy protection and adaptability. 

 

C. Anti-Fingerprinting Chrome Extension 

This section details the design and implementation of a custom 

Chrome browser extension created to introduce controlled 

randomness into fingerprintable attributes. The goal was to 

minimize consistent fingerprinting while preserving usability 

during typical browsing sessions. 

 
Object.defineProperty(window, "screen", { 

value:{ 

width: randInt, height: randInt 

  

D. Techniques Used in Extension Development 

1) JavaScript Property Modification: A majority of 

fingerprinting techniques rely on JavaScript to extract 

information from the browser environment. For instance, a 

website may use the following script to access the 

dimensions of the user's screen: 

javascript CopyEdit 

var width = window.screen.width; var height = 

window.screen.height; 

 

To counter this, we override certain JavaScript properties with 

randomized values before the site scripts can execute. 

JavaScript's Object.defineProperty method enables such 

manipulation by redefining built-in object properties. The 

following code snippet demonstrates how 

window.screen can be assigned randomized width and height 

values: 

javascript CopyEdit 

} 

}); 

 

A critical challenge is ensuring that these modifications take 

effect before the website's own scripts are executed. 

Fortunately, Chrome extensions allow for early script injection 

using the "run_at":"document_start" configuration [4], which 

executes the script before the page begins loading. 

 

2) Canvas Fingerprinting Defence: Canvas fingerprinting is 

a common tracking technique that involves rendering text 

or shapes on an off- screen HTML5 <canvas> element. 

JavaScript is used to draw complex content on this canvas, 

and the rendered image is converted into a pixel-based 

hash. Due to hardware and driver variations, the same 

content will yield different hash values across different 

systems [5]. 

 

To mitigate this, one effective strategy is to subtly alter the 

canvas content before it is processed—introducing controlled 

noise to modify the resulting hash. By doing so, we ensure that 

the fingerprint value varies between sessions or page loads, 

thereby disrupting consistent tracking. 
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3) Canvas Fingerprinting Countermeasures: 

One method to disrupt canvas fingerprinting is by introducing 

random visual noise—such as altering individual pixels—

during the rendering process. This creates variation in the 

resulting canvas hash across sessions or devices. The primary 

benefit of this technique is that it allows the existing hash 

function to remain mostly untouched. However, its drawback is 

that the visual noise may be noticeable to users, potentially 

affecting the appearance of web content. 

To avoid visual disruption, we adopted an alternative solution 

that involves directly modifying the function responsible for 

generating canvas data. Typically, canvas fingerprinting relies 

on the to Data URL method, which belongs to the 

HTML Canvas Element Prototype. Since all canvas elements 

inherit this method, overriding it at the prototype level ensures 

the change is applied universally. 

By redefining to Data URL, we can B introduce controlled 

randomness or distortions into the canvas output before it is 

converted into a hash, effectively preventing consistent tracking 

across sessions. 

4) Real-Time User Alerts on Fingerprinting Access: 

To enhance transparency, our extension also includes a 

mechanism to notify users whenever a website attempts to 

access finger printable properties that have been randomized. 

This is implemented by intercepting the access through getter 

functions, which trigger alerts while returning randomized 

values.  

For example, we override the window.Screen object so that any 

attempt to access screen.width or screen.height prompts an 

alert.The approach is illustrated in the code below: 

javascript CopyEdit 

Object.defineProperty(window, "screen", { 

value:{ 

get width() { alert("Attempt toaccess 

screen.width"); returnrandInt; 

}, 

get height() { alert("Attempt toaccess 

screen.height"); returnrandInt; 

} 

} 

}); 

This functionality allows users to be immediately informed 

whenever a site attempts to gather information that could 

contribute to a unique browser fingerprint. 

For functions, integrating user notifications is relatively 

straightforward, as alert messages can be directly inserted into 

the function body. However, handling property accesses 

requires a more advanced approach since properties are 

typically treated as simple values. To address this, we utilize 

JavaScript's getter pattern [6], which allows property access to 

behave normally while internally invoking a function that can 

execute custom code—such as alerting the user—during access. 

E. Data Logging for Analysis 

Another key component of our extension is its ability to log 

fingerprinting-related activity for post- analysis. This feature is 

implemented using three components: 

1. An AJAX request embedded within the Chrome extension 

2. cA backend server to receive incoming data 

3. A MongoDB database for persistent data storage 

 

F. AJAX Integration in the Chrome Extension 

AJAX, which stands for Asynchronous JavaScript and XML, is 

employed to send data to the server without interrupting other 

browser processes [7]. Within the overwritten functions, we 

include a fetch call that transmits relevant information to the 

backend. Below is an example of the code that performs this 

asynchronous request: 

javascript CopyEdit 

fetch('http://127.0.0.1:3000/analysis', { method: "POST", 

headers:{ 

'Content-Type':'application/json' 

}, 

body:JSON.stringify({ 

  

"site":window.location.origin, "fnCall": fnName 

}) 

}) 

.then(data=>console.log(data)); 

This request sends the origin of the site and the name of the 

function being accessed to a local server running on port 3000. 

G. Backend Server Setup and CORS Configuration 

CORS (Cross-Origin Resource Sharing) is an HTTP-based 

protocol that enables a server to permit resources to be 

requested from domains other than its own [8]. Since the 

extension collects data from multiple websites, it is essential 

that the backend server supports requests from all origins. To 

achieve this, the server must explicitly set appropriate CORS 

headers to avoid the browser blocking the request due to cross-

origin policies. 

Once data is successfully received from the browser extension, 

the backend server processes and stores it in a MongoDB 

database. This storage enables further analysis of finger printing 

attempts and the effectiveness of the extension's interventions. 

H. Automated Data Collection 

With the necessary setup complete, we proceeded to gather 

statistical data. To automate the process of loading websites, we 

utilized a Python-based Selenium Chrome driver. Selenium is a 

widely-used web automation tool designed for testing web 

applications .It offers a comprehensive API that can mimic user 

interactions with a browser. 

In our case, we used Selenium solely to automate the task of 

opening a designated webpage and activating the browser 

extension we developed .Once the extension is loaded, it 

monitors specific JavaScript function calls. If any of the 

targeted fingerprinting functions are triggered, the extension 

sends the relevant data to the backend server for logging. The 

overall architecture of our data collection system is illustrated 

in Figure 4. 

 

IV. EXPERIMENTAL FINDINGS 

A. Website Fingerprinting Techniques 

This section outlines the fingerprinting methods we 

implemented for various browser features, along with a brief 

evaluation of their effectiveness: 
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1) User-Agent String: 

The browser’s user-agent can be retrieved through the navigator 

object using navigator.userAgent. This method is straight 

forward and consistently reliable for identifying the browser 

and operating system. 

2) Browser Plugins: 

Plugin details can also be accessed through the navigator object 

via Navigator.plugins. While effective, it should be noted that 

some modern browsers limitor obfuscate this data for privacy 

reasons. 

3) Time Zone Detection: 

The user’s time zone is obtained using JavaScript’s Intl API. 

Specifically, Intl.DateTimeFormat().resolvedOptions 

().timeZone provides an accurate and consistent result across 

major browsers. 

4) Screen Dimensions and Color Depth: 
The screen object provides information about the user's screen 

resolution and color depth. Properties such as screen.width, 

screen.height, and screen.colorDepth allow us to collect these 

metrics effectively. 

5) System Font Enumeration: 
To detect available system fonts, we dynamically create a 

<span> element and populate it with sample text. We then loop 

through a predefined list of fonts—sourced from Windows 10 

and macOS font libraries [9], [10]—and apply each one to the 

element. If the dimensions of the text change from a baseline 

value, the font is assumed to be installed on the system. This 

approach allowed us to successfully identify most fonts also 

detected by CoverYourTracks. 

6) Cookie Availability: 
Whether cookies are enabled in the browser can be determined 

using the navigator.cookieEnabled property, making this a 

simple yet informative fingerprinting attribute. 

7)  WebGL Vendor and Renderer:  
To obtain details about the GPU vendor and renderer, we first 

insert a canvas element into the DOM using JavaScript. Then, 

by invoking the getContext("webgl") method, we access the 

WebGLRenderingContext, from which vendor and renderer 

strings can be extracted using specific extensions. 

The "webgl" context, when obtained using the 

getContext("webgl") method, allows access to GPU-specific 

information. This is achieved through functions like 

getParameter() and getExtension(), which return values such as 

the GPU vendor and renderer. 

8) Do-Not-Track Header: 

The browser’s support for user tracking preferences can be 

determined using navigator.doNotTrack, which reveals 

whether the "Do Not Track" header is enabled. 

9) Language Settings: 

User language preferences are accessible through 

navigator.languages, which returns an array of supported 

languages in order of preference. 

10) Platform Detection: 

Although navigator.appVersion does not explicitly state the 

platform, parsing the returned string can often reveal the 

underlying operating system. 

 

11) Touch Capability: 

To detect whether a device supports touch input, multiple 

indicators within the window, navigator, and window.navigator 

objects can be queried. 

12) Processor Thread Count (Hardware Concurrency): 

The number of logical processor threads available to the 

browser can be identified using 

navigator.hardwareConcurrency. 

13) Device Memory: 

Approximate available device memory can be accessed via 

navigator.deviceMemory. 

14) Network Information (Not Reported by 

CoverYourTracks): 
Network-related metrics, such as connection type and estimated 

bandwidth, are accessible through the navigator.connection 

interface. 

Most of these attributes can be obtained using straightforward 

JavaScript queries, making them relatively easy to exploit for 

fingerprinting purposes. 

 

B. Built-In Browser Protections 

Table I summarizes the defensive mechanisms implemented by 

various browsers to counteract fingerprinting. Our evaluation 

revealed substantial variation in the scope of protections 

provided by different browsers. Notably, Google Chrome, 

which has the largest market share, exposes nearly all the 

fingerprinting-related attributes by default—including fonts, 

language preferences, WebGL details, and audio 

configurations. 

In contrast, Brave and Tor Browser demonstrate comprehensive 

protections across the majority of fingerprintable vectors. This 

suggests that browsers designed with privacy in mind offer 

significantly better resistance to tracking techniques. 

Ultimately, the browser choice can have profound implications 

on user privacy. 

 

C. Evaluation of the Anti- Fingerprinting Extension 

We deployed our Chrome extension on several high-traffic 

websites, as ranked by Tranco [11], to evaluate its practical 

usability and identify commonly accessed fingerprinting APIs. 

Additionally, we tested the extension on the CoverYourTracks 

platform. The results indicated that the extension successfully 

randomized the browser fingerprint—an outcome typically not 

observed with the default settings of Chrome. 

Interestingly, the fingerprint obfuscation achieved through our 

extension matched the behavior of privacy-centric browsers 

like Brave, confirming that JavaScript-level intervention can 

meaningfully reduce trackability evenon mainstream browsers. 

 

D. Usability Assessment 

By leveraging our database to store data collected through the 

Selenium- driven automation setup, we analyzed the impact of 

our browser extension on browsing stability. Specifically, we 

compared the frequency of errors encountered while navigating 

websites with and without the extension enabled. 

Our observations revealed that, in over 50% of the cases, the 

extension had no noticeable effect on the number of errors 
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generated. Interestingly, around 9% of websites exhibited a 

reduction in errors when the extension was active. However, we 

attribute this to natural fluctuations during page loading or the 

possibility that an early error may have suppressed subsequent 

ones. 

Although tracking error types was feasible, correlating specific 

errors with the extension’s randomized data proved 

challenging. This is primarily because the observed errors 

typically originated in parts of the code base unrelated to the 

fingerprinting modifications. 

 

E. Case Study: Impact on Video Conferencing Platforms 

While our general usability study provided insight into error 

occurrence rates, it did not reflect the severity or functional 

implications of those errors. To investigate this further, we used 

the extension during regular, day-to-day browsing activities. 

For most sites, even when minor errors were logged, the overall 

functionality remained intact. However, significant issues arose 

with platforms that support video communication—such as 

Google Meet and Blue Jeans. When the extension was active, 

video conferencing features often failed to operate as expected. 

Although we attempted to trace the root causes, the connection 

between the randomized fingerprinting properties and the video 

failures remained inconclusive. 

 

F. Case Study: Audio Buffer API Usage 

We also examined the prevalence of various fingerprinting-

related APIs among top-ranked websites. One such API, Audio 

Buffer. get Channel Data, appeared infrequently but is known 

to play a central role in audio fingerprinting. This method 

enables access to raw audio data prior to playback, allowing 

subtle hardware- driven differences in audio rendering to be 

measured. 

Despite its fingerprinting potential, this API serves legitimate 

use cases— particularly in multimedia applications. Its 

presence on video-heavy websites suggests that its usage may 

be aligned with its intended audio processing functionality, 

rather than explicitly for tracking purposes. As with many 

browser APIs, distinguishing between privacy-invasive and 

benign use remains context-dependent. 

 

V. DISCUSSION 

One of the most striking insights from our research was the 

relative simplicity involved in implementing browser 

fingerprinting techniques 

 

 

 

 

Through our experimentation, we discovered that JavaScript-

based fingerprinting scripts are readily accessible and easy to 

integrate into a webpage. Tools such as FingerprintJS provide 

streamlined APIs that enable developers to effortlessly generate 

and manage unique user identifiers. While the extent of 

fingerprinting across the web remains uncertain, it is evident 

that most websites face few technical barriers in collecting such 

data— particularly those already familiar with using cookies for 

user tracking. 

During our evaluation, we also realized that privacy-enhancing 

tools can negatively affect user experience. However, 

measuring the precise impact of these usability issues remains 

a complex challenge due to their subjective and context-

dependent nature. 

In addition, even if current fingerprinting techniques are 

successfully mitigated, the rapid evolution of tracking methods 

raises concerns about the longevity of such protections. For 

instance, a novel tracking method using favicons— which 

leverages the browser’s rarely cleared favicon cache—was 

recently introduced [12], demonstrating how seemingly 

innocuous browser features can be exploited for persistent 

tracking. 
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This highlights the adversarial and ever-evolving nature of 

digital privacy, where each Defence is often met with a new 

offensive technique, forming an ongoing cycle between 

trackers and privacy advocates. 

a dynamic cycle of innovation between privacy advocates and 

trackers, with both sides continuously developing new methods 

to outpace the other. 

Emerging advancements in advertising technologies may offer 

a more privacy- conscious future. For instance, the Brave 

browser has introduced its own advertising model that 

leverages on- device machine learning to serve ads while 

minimizing the amount of personal data shared with advertisers 

[13]. Similarly, Google Chrome is advancing a concept known 

as the Privacy Sandbox [14], which aims to reduce data 

leakage by retaining more user information locally on the user’s 

device. Additionally, Chrome is exploring the Federated 

Learning of Cohorts (FLoC) framework [15], which enables 

advertisers to target groups with shared characteristics rather 

than individuals, thereby preserving user anonymity. 

 

VI. FUTURE WORK 

To enhance the reliability and practical usability of our browser 

extension, further exploration is needed to understand the root 

causes of the errors encountered during testing. However, 

identifying the exact source of such errors is challenging, as 

there is often a significant gap between the point where an error 

occurs and where it is reported in the code. 

 A more refined testing approach could involve toggling 

individual randomization settings during multiple browsing 

sessions. This would help isolate which randomized API calls 

are responsible for specific errors, providing a clearer picture of 

which fingerprinting Defences most affect functionality. 

Moreover, improving user interaction with the extension could 

significantly enhance its adoption. By enabling the extension to 

intelligently infer whether a particular piece of data is likely 

being used for fingerprinting, users could be alerted in real-

time. This would allow them to approve or deny access to 

certain features—similar to permission prompts on mobile 

platforms. 

Incorporating a decision model that assesses both the rarity of 

the API being called and the context in which it is used (e.g., 

the source of the JavaScript file) may enable the extension to 

make smarter, context- aware decisions regarding 

fingerprinting behaviour. 

 

VII. CONCLUSION 

In this study, we explored the current landscape of browser 

fingerprinting techniques and actively deployed in real-world 

scenarios. To better understand them, we developed a custom 

website capable of collecting fingerprinting data and 

demonstrated that the simplicity of these methods makes them 

easily implementable across a wide range of platforms. We then 

explored the defensive mechanisms modern browsers employ 

to safeguard users against fingerprinting. 

Building upon these insights, we created a Chrome browser 

extension designed to randomize fingerprintable attributes. Our 

evaluation showed that the extension effectively disrupted 

fingerprinting attempts, as platforms like CoverYourTracks 

were unable to generate a consistent identifier for our test 

environment. 

Lastly, we reflected on potential areas for enhancement in our 

extension and offered insights into the future direction of 

privacy-preserving technologies in the context of evolving 

advertising models. 
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