
IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 44 | P a g e

Exploring and Applying Browser Fingerprinting Methods

and Their Countermeasures
Ruhi Siddiqui1, Md Tabrez Nafis2

1,2Department of Computer Science & Engineering, Jamia Hamdard, New Delhi, India

(E-mail: ruhirsiddiqui@gmail.com, tabrez.nafis@gmail.com)

Abstract - Browser fingerprinting is a sophisticated device-

identification method utilized to monitor users' activity across

the web. While it offers advantages to website operators by

providing insights into user demographics and interaction

patterns, it simultaneously raises significant privacy concerns.

This paper investigates prevalent t browser fingerprinting

techniques, evaluates countermeasures adopted by modern

browsers, and presents the design and implementation of a

browser extension aimed at reducing user identifiability. The

extension’s effectiveness is assessed through analysis on real-

world websites.

I. INTRODUCTION

Internet tracking has long been associated with privacy issues,

many of which remain unnoticed by everyday users. As a result,

it is often unclear to the average person how to effectively

prevent such tracking. At its core, tracking involves gathering

details about user identity and their interactions on a single

website or across multiple platforms. This data collection is

crucial for numerous websites, as it enables administrators to

analyze visitor behaviour and engagement. Such insights

support better decision-making related to website design, user

experience, and business operations.

Services like Google Analytics assist website owners by

providing metrics on how users discover and navigate their site,

as well as demographic data such as user locations and visit

duration. These analytics play a significant role in improving

site performance, enhancing interface design, and enabling

targeted advertisements or personalized content delivery.

Initially, websites relied on cookies— small text-based files

stored in a user's browser—to retain information about user

sessions and identities. While users can delete these cookies to

limit tracking, more sophisticated tracking techniques have

emerged. These methods often involve placing tracking data in

obscure or less accessible storage locations, making it harder

for users to detect or remove them. As traditional tracking

methods became more transparent, efforts were initiated to limit

or eliminate the use of Cookies —especially by third-party

entities. Some browsers even introduced features to block or

automatically delete cookies in response to rising privacy

concerns.

As the effectiveness of cookies declined, browser fingerprinting

emerged as a more advanced and persistent form of user

identification. This technique functions independently of

cookies, relying instead on data passively collected from a

user’s browser. While this data—such as screen resolution,

graphics rendering capabilities, fonts, plugins, memory usage,

and browser version—is typically used to enhance site

performance, when aggregated, it can create a unique and

identifiable profile of the user. This fingerprint enables websites

to track users across single or multiple domains.

The practice of browser fingerprinting has become a major

privacy issue, as it allows for continuous monitoring of user

behavior, often without their knowledge or consent. Even when

users adopt privacy-enhancing practices like clearing cookies,

using incognito modes, or disabling trackers, fingerprinting can

still persist as a method of identification.

In this project, we conducted a thorough investigation of how

browser fingerprinting operates. We first explored the technical

foundations by developing a sample website that implements

several standard fingerprinting techniques. Following this,we

studied the defensive measures integrated into modern web

browsers to evaluate how well they prevent fingerprint-based

tracking. To further our understanding, we also designed and

developed a custom Google Chrome extension that applies

fingerprint-masking strategies with the aim of minimizing user

identifiability.

II. RELATEDWORKAND MOTIVATION

mailto:ruhirsiddiqui@gmail.com
mailto:tabrez.nafis@gmail.com

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 45 | P a g e

Device fingerprinting was initially introduced as a fraud-

prevention mechanism, especially by financial institutions.

These systems aimed to detect suspicious behaviour by

comparing it to patterns from known devices, without relying

on cookies or browser-stored data .Instead, they identified users

by correlating multiple device-specific attributes.

A comprehensive study by Englehardt and Narayanan [3]

revealed that among a sample of 100,000 devices, nearly 80%

of desktop and mobile browsers exhibited unique fingerprints.

Their research further highlighted the growing adoption of

third-party tracking systems and HTTP-based fingerprinting

across websites.

In particular, their findings showed that companies like Google

could monitor user activity on nearly 80% of websites via third-

party integrations and network requests [3]. Despite raising

public awareness, these tracking methods remain prevalent. In

response, major browsers have begun incorporating built-in

protections aimed at limiting the data accessible to

fingerprinting scripts.

III. APPROACH

This section outlines the methodology we followed to explore

browser fingerprinting in depth, evaluate the features

commonly exploited for identification, investigate possible

countermeasures, and assess the effectiveness of our proposed

solution.

A. Understanding Fingerprinting Mechanisms

To gain practical insights into how fingerprinting works, we

built a demonstration website that collects a range of browser

and device attributes.

This setup allowed us to simulate common fingerprinting

methods and analyze which features are most frequently used

to build a unique user profile.

To capture a range of data points from users' browsers, we

designed a website capable of extracting multiple identifying

features.

Before proceeding with the implementation, it was essential to

first identify the specific attributes that websites typically use

to create browser fingerprints. To do this, we examined several

fingerprinting- focused platforms:

 CoverYourTracks (coveryourtracks.eff.org)

 BrowserLeaks (browserleaks.com)

 FingerprintJS(fingerprintjs.com)

While there was noticeable overlap in the types of

fingerprinting data these tools collected, each service offered

distinct insights. FingerprintJS, for instance, does not directly

show the exact browser attributes it gathers, instead presenting

users with a unique identifier. However, since it is open- source,

we were able to examine its codebase to better understand the

fingerprinting techniques it employs.

Among these, CoverYourTracksproved to be the most

informative. It provides a comprehensive assessment of how

resistant a browser is to fingerprinting and outlines the specific

data points used to construct a fingerprint profile.

Using the information from these tools, we sought to replicate

the fingerprinting methods on our own test site. To keep our

project focused and manageable, we limited our

implementation to only those features identified by

CoverYourTracks. The status of each implemented feature is

illustrated in Figure 3.

This implementation phase gave us practical experience with

fingerprinting methods that are actively used on the web today.

The insights gained from this phase laid the foundation for

developing our anti-fingerprinting browser extension, as

discussed in subsequent sections.

B. Defences against Browser Fingerprinting

After examining various fingerprinting methods, we evaluated

how some of the widely-used web browsers attempt to mitigate

these techniques. Our analysis focused on data provided by

CoverYourTracks, along with the available documentation and

source code for Chrome, Firefox, Brave, and Tor Browser.

Based on our findings, we identified three primary strategies

that browsers use to resist fingerprinting. These approaches are

outlined below:

1) Anonymization: This technique modifies certain browser

attributes to reflect the most statistically common values

among users. For instance, since Windows is the most

prevalent desktop operating system, a browser employing

anonymization may set the user-agent string to report

Windows, even if the actual system is macOS or Linux.

This method is notably used by the Tor Browser.

The advantage of anonymization is that it prevents

websites from collecting enough distinctive data to

uniquely identify individual users. However, its

effectiveness depends on accurate knowledge of the

distribution of user traits, which often requires gathering

data from the browser’s user base. Furthermore, if only

certain properties are altered while others remain unique,

the resulting fingerprint could paradoxically stand out

more. For example, a browser might claim to run on

Windows, but simultaneously reveal the presence of fonts

that are exclusive to another operating system.

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 46 | P a g e

For instance, if a browser identifies itself as running on

Windows but reports fonts specific to macOS, the

inconsistency may increase its uniqueness, making the user

more trackable.

2) Randomization: In this method, browser-exposed features

are assigned random—but plausible— values, which may

not reflect the user’s actual configuration. For example, the

browser may report a random value for available device

memory. The Brave browser adopts this technique in

certain areas, such as randomizing the number of logical

processors (hardware concurrency).

One of the key advantages of randomization is that it does

not rely on statistical profiling of the user base. Instead, it

disrupts long-term tracking by altering fingerprintable

features between sessions. While a user may still appear

unique during a specific visit, their fingerprint changes

with subsequent visits, preventing persistent identification.

However, improper implementation of randomization can

be counterproductive. The use of implausible or

inconsistent values may itself become a distinguishing

trait. Additionally, random values can impact

functionality—such as when a browser misreports its

platform, leading tolayout or rendering issues on websites

designed for different device types.

3) Disabling Feature Access: Another mitigation strategy is

to block access to browser APIs that expose fingerprintable

attributes. By disabling these interfaces, the browser

prevents websites from retrieving sensitive information

altogether. Firefox, for example, restricts access to certain

APIs such as those related to browser plugins.

Although effective in limiting fingerprinting vectors, this

approach has its trade-offs. Some information, like the user-

agent string or screen resolution, is often necessary for

optimizing user experience across diverse devices. In our

testing, we observed that omitting the user-agent string led

certain websites to assume a default configuration, such as

serving content formatted for Android browsers on desktop

systems.

In the browser extension developed as part of this work, we

incorporated the principles behind all three strategies discussed

above. However, for this project, we chose to focus on

implementing the randomization technique due to its balance of

privacy protection and adaptability.

C. Anti-Fingerprinting Chrome Extension

This section details the design and implementation of a custom

Chrome browser extension created to introduce controlled

randomness into fingerprintable attributes. The goal was to

minimize consistent fingerprinting while preserving usability

during typical browsing sessions.

Object.defineProperty(window, "screen", {

value:{

width: randInt, height: randInt

D. Techniques Used in Extension Development

1) JavaScript Property Modification: A majority of

fingerprinting techniques rely on JavaScript to extract

information from the browser environment. For instance, a

website may use the following script to access the

dimensions of the user's screen:

javascript CopyEdit

var width = window.screen.width; var height =

window.screen.height;

To counter this, we override certain JavaScript properties with

randomized values before the site scripts can execute.

JavaScript's Object.defineProperty method enables such

manipulation by redefining built-in object properties. The

following code snippet demonstrates how

window.screen can be assigned randomized width and height

values:

javascript CopyEdit

}

});

A critical challenge is ensuring that these modifications take

effect before the website's own scripts are executed.

Fortunately, Chrome extensions allow for early script injection

using the "run_at":"document_start" configuration [4], which

executes the script before the page begins loading.

2) Canvas Fingerprinting Defence: Canvas fingerprinting is

a common tracking technique that involves rendering text

or shapes on an off- screen HTML5 <canvas> element.

JavaScript is used to draw complex content on this canvas,

and the rendered image is converted into a pixel-based

hash. Due to hardware and driver variations, the same

content will yield different hash values across different

systems [5].

To mitigate this, one effective strategy is to subtly alter the

canvas content before it is processed—introducing controlled

noise to modify the resulting hash. By doing so, we ensure that

the fingerprint value varies between sessions or page loads,

thereby disrupting consistent tracking.

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 47 | P a g e

3) Canvas Fingerprinting Countermeasures:

One method to disrupt canvas fingerprinting is by introducing

random visual noise—such as altering individual pixels—

during the rendering process. This creates variation in the

resulting canvas hash across sessions or devices. The primary

benefit of this technique is that it allows the existing hash

function to remain mostly untouched. However, its drawback is

that the visual noise may be noticeable to users, potentially

affecting the appearance of web content.

To avoid visual disruption, we adopted an alternative solution

that involves directly modifying the function responsible for

generating canvas data. Typically, canvas fingerprinting relies

on the to Data URL method, which belongs to the

HTML Canvas Element Prototype. Since all canvas elements

inherit this method, overriding it at the prototype level ensures

the change is applied universally.

By redefining to Data URL, we can B introduce controlled

randomness or distortions into the canvas output before it is

converted into a hash, effectively preventing consistent tracking

across sessions.

4) Real-Time User Alerts on Fingerprinting Access:

To enhance transparency, our extension also includes a

mechanism to notify users whenever a website attempts to

access finger printable properties that have been randomized.

This is implemented by intercepting the access through getter

functions, which trigger alerts while returning randomized

values.

For example, we override the window.Screen object so that any

attempt to access screen.width or screen.height prompts an

alert.The approach is illustrated in the code below:

javascript CopyEdit

Object.defineProperty(window, "screen", {

value:{

get width() { alert("Attempt toaccess

screen.width"); returnrandInt;

},

get height() { alert("Attempt toaccess

screen.height"); returnrandInt;

}

}

});

This functionality allows users to be immediately informed

whenever a site attempts to gather information that could

contribute to a unique browser fingerprint.

For functions, integrating user notifications is relatively

straightforward, as alert messages can be directly inserted into

the function body. However, handling property accesses

requires a more advanced approach since properties are

typically treated as simple values. To address this, we utilize

JavaScript's getter pattern [6], which allows property access to

behave normally while internally invoking a function that can

execute custom code—such as alerting the user—during access.

E. Data Logging for Analysis

Another key component of our extension is its ability to log

fingerprinting-related activity for post- analysis. This feature is

implemented using three components:

1. An AJAX request embedded within the Chrome extension

2. cA backend server to receive incoming data

3. A MongoDB database for persistent data storage

F. AJAX Integration in the Chrome Extension

AJAX, which stands for Asynchronous JavaScript and XML, is

employed to send data to the server without interrupting other

browser processes [7]. Within the overwritten functions, we

include a fetch call that transmits relevant information to the

backend. Below is an example of the code that performs this

asynchronous request:

javascript CopyEdit

fetch('http://127.0.0.1:3000/analysis', { method: "POST",

headers:{

'Content-Type':'application/json'

},

body:JSON.stringify({

"site":window.location.origin, "fnCall": fnName

})

})

.then(data=>console.log(data));

This request sends the origin of the site and the name of the

function being accessed to a local server running on port 3000.

G. Backend Server Setup and CORS Configuration

CORS (Cross-Origin Resource Sharing) is an HTTP-based

protocol that enables a server to permit resources to be

requested from domains other than its own [8]. Since the

extension collects data from multiple websites, it is essential

that the backend server supports requests from all origins. To

achieve this, the server must explicitly set appropriate CORS

headers to avoid the browser blocking the request due to cross-

origin policies.

Once data is successfully received from the browser extension,

the backend server processes and stores it in a MongoDB

database. This storage enables further analysis of finger printing

attempts and the effectiveness of the extension's interventions.

H. Automated Data Collection

With the necessary setup complete, we proceeded to gather

statistical data. To automate the process of loading websites, we

utilized a Python-based Selenium Chrome driver. Selenium is a

widely-used web automation tool designed for testing web

applications .It offers a comprehensive API that can mimic user

interactions with a browser.

In our case, we used Selenium solely to automate the task of

opening a designated webpage and activating the browser

extension we developed .Once the extension is loaded, it

monitors specific JavaScript function calls. If any of the

targeted fingerprinting functions are triggered, the extension

sends the relevant data to the backend server for logging. The

overall architecture of our data collection system is illustrated

in Figure 4.

IV. EXPERIMENTAL FINDINGS

A. Website Fingerprinting Techniques

This section outlines the fingerprinting methods we

implemented for various browser features, along with a brief

evaluation of their effectiveness:

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 48 | P a g e

1) User-Agent String:

The browser’s user-agent can be retrieved through the navigator

object using navigator.userAgent. This method is straight

forward and consistently reliable for identifying the browser

and operating system.

2) Browser Plugins:

Plugin details can also be accessed through the navigator object

via Navigator.plugins. While effective, it should be noted that

some modern browsers limitor obfuscate this data for privacy

reasons.

3) Time Zone Detection:

The user’s time zone is obtained using JavaScript’s Intl API.

Specifically, Intl.DateTimeFormat().resolvedOptions

().timeZone provides an accurate and consistent result across

major browsers.

4) Screen Dimensions and Color Depth:
The screen object provides information about the user's screen

resolution and color depth. Properties such as screen.width,

screen.height, and screen.colorDepth allow us to collect these

metrics effectively.

5) System Font Enumeration:
To detect available system fonts, we dynamically create a

 element and populate it with sample text. We then loop

through a predefined list of fonts—sourced from Windows 10

and macOS font libraries [9], [10]—and apply each one to the

element. If the dimensions of the text change from a baseline

value, the font is assumed to be installed on the system. This

approach allowed us to successfully identify most fonts also

detected by CoverYourTracks.

6) Cookie Availability:
Whether cookies are enabled in the browser can be determined

using the navigator.cookieEnabled property, making this a

simple yet informative fingerprinting attribute.

7) WebGL Vendor and Renderer:
To obtain details about the GPU vendor and renderer, we first

insert a canvas element into the DOM using JavaScript. Then,

by invoking the getContext("webgl") method, we access the

WebGLRenderingContext, from which vendor and renderer

strings can be extracted using specific extensions.

The "webgl" context, when obtained using the

getContext("webgl") method, allows access to GPU-specific

information. This is achieved through functions like

getParameter() and getExtension(), which return values such as

the GPU vendor and renderer.

8) Do-Not-Track Header:

The browser’s support for user tracking preferences can be

determined using navigator.doNotTrack, which reveals

whether the "Do Not Track" header is enabled.

9) Language Settings:

User language preferences are accessible through

navigator.languages, which returns an array of supported

languages in order of preference.

10) Platform Detection:

Although navigator.appVersion does not explicitly state the

platform, parsing the returned string can often reveal the

underlying operating system.

11) Touch Capability:

To detect whether a device supports touch input, multiple

indicators within the window, navigator, and window.navigator

objects can be queried.

12) Processor Thread Count (Hardware Concurrency):

The number of logical processor threads available to the

browser can be identified using

navigator.hardwareConcurrency.

13) Device Memory:

Approximate available device memory can be accessed via

navigator.deviceMemory.

14) Network Information (Not Reported by

CoverYourTracks):
Network-related metrics, such as connection type and estimated

bandwidth, are accessible through the navigator.connection

interface.

Most of these attributes can be obtained using straightforward

JavaScript queries, making them relatively easy to exploit for

fingerprinting purposes.

B. Built-In Browser Protections

Table I summarizes the defensive mechanisms implemented by

various browsers to counteract fingerprinting. Our evaluation

revealed substantial variation in the scope of protections

provided by different browsers. Notably, Google Chrome,

which has the largest market share, exposes nearly all the

fingerprinting-related attributes by default—including fonts,

language preferences, WebGL details, and audio

configurations.

In contrast, Brave and Tor Browser demonstrate comprehensive

protections across the majority of fingerprintable vectors. This

suggests that browsers designed with privacy in mind offer

significantly better resistance to tracking techniques.

Ultimately, the browser choice can have profound implications

on user privacy.

C. Evaluation of the Anti- Fingerprinting Extension

We deployed our Chrome extension on several high-traffic

websites, as ranked by Tranco [11], to evaluate its practical

usability and identify commonly accessed fingerprinting APIs.

Additionally, we tested the extension on the CoverYourTracks

platform. The results indicated that the extension successfully

randomized the browser fingerprint—an outcome typically not

observed with the default settings of Chrome.

Interestingly, the fingerprint obfuscation achieved through our

extension matched the behavior of privacy-centric browsers

like Brave, confirming that JavaScript-level intervention can

meaningfully reduce trackability evenon mainstream browsers.

D. Usability Assessment

By leveraging our database to store data collected through the

Selenium- driven automation setup, we analyzed the impact of

our browser extension on browsing stability. Specifically, we

compared the frequency of errors encountered while navigating

websites with and without the extension enabled.

Our observations revealed that, in over 50% of the cases, the

extension had no noticeable effect on the number of errors

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 49 | P a g e

generated. Interestingly, around 9% of websites exhibited a

reduction in errors when the extension was active. However, we

attribute this to natural fluctuations during page loading or the

possibility that an early error may have suppressed subsequent

ones.

Although tracking error types was feasible, correlating specific

errors with the extension’s randomized data proved

challenging. This is primarily because the observed errors

typically originated in parts of the code base unrelated to the

fingerprinting modifications.

E. Case Study: Impact on Video Conferencing Platforms

While our general usability study provided insight into error

occurrence rates, it did not reflect the severity or functional

implications of those errors. To investigate this further, we used

the extension during regular, day-to-day browsing activities.

For most sites, even when minor errors were logged, the overall

functionality remained intact. However, significant issues arose

with platforms that support video communication—such as

Google Meet and Blue Jeans. When the extension was active,

video conferencing features often failed to operate as expected.

Although we attempted to trace the root causes, the connection

between the randomized fingerprinting properties and the video

failures remained inconclusive.

F. Case Study: Audio Buffer API Usage

We also examined the prevalence of various fingerprinting-

related APIs among top-ranked websites. One such API, Audio

Buffer. get Channel Data, appeared infrequently but is known

to play a central role in audio fingerprinting. This method

enables access to raw audio data prior to playback, allowing

subtle hardware- driven differences in audio rendering to be

measured.

Despite its fingerprinting potential, this API serves legitimate

use cases— particularly in multimedia applications. Its

presence on video-heavy websites suggests that its usage may

be aligned with its intended audio processing functionality,

rather than explicitly for tracking purposes. As with many

browser APIs, distinguishing between privacy-invasive and

benign use remains context-dependent.

V. DISCUSSION

One of the most striking insights from our research was the

relative simplicity involved in implementing browser

fingerprinting techniques

Through our experimentation, we discovered that JavaScript-

based fingerprinting scripts are readily accessible and easy to

integrate into a webpage. Tools such as FingerprintJS provide

streamlined APIs that enable developers to effortlessly generate

and manage unique user identifiers. While the extent of

fingerprinting across the web remains uncertain, it is evident

that most websites face few technical barriers in collecting such

data— particularly those already familiar with using cookies for

user tracking.

During our evaluation, we also realized that privacy-enhancing

tools can negatively affect user experience. However,

measuring the precise impact of these usability issues remains

a complex challenge due to their subjective and context-

dependent nature.

In addition, even if current fingerprinting techniques are

successfully mitigated, the rapid evolution of tracking methods

raises concerns about the longevity of such protections. For

instance, a novel tracking method using favicons— which

leverages the browser’s rarely cleared favicon cache—was

recently introduced [12], demonstrating how seemingly

innocuous browser features can be exploited for persistent

tracking.

IJRECE VOL. 13 ISSUE 2 APR-JUNE 2025 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 50 | P a g e

This highlights the adversarial and ever-evolving nature of

digital privacy, where each Defence is often met with a new

offensive technique, forming an ongoing cycle between

trackers and privacy advocates.

a dynamic cycle of innovation between privacy advocates and

trackers, with both sides continuously developing new methods

to outpace the other.

Emerging advancements in advertising technologies may offer

a more privacy- conscious future. For instance, the Brave

browser has introduced its own advertising model that

leverages on- device machine learning to serve ads while

minimizing the amount of personal data shared with advertisers

[13]. Similarly, Google Chrome is advancing a concept known

as the Privacy Sandbox [14], which aims to reduce data

leakage by retaining more user information locally on the user’s

device. Additionally, Chrome is exploring the Federated

Learning of Cohorts (FLoC) framework [15], which enables

advertisers to target groups with shared characteristics rather

than individuals, thereby preserving user anonymity.

VI. FUTURE WORK

To enhance the reliability and practical usability of our browser

extension, further exploration is needed to understand the root

causes of the errors encountered during testing. However,

identifying the exact source of such errors is challenging, as

there is often a significant gap between the point where an error

occurs and where it is reported in the code.

 A more refined testing approach could involve toggling

individual randomization settings during multiple browsing

sessions. This would help isolate which randomized API calls

are responsible for specific errors, providing a clearer picture of

which fingerprinting Defences most affect functionality.

Moreover, improving user interaction with the extension could

significantly enhance its adoption. By enabling the extension to

intelligently infer whether a particular piece of data is likely

being used for fingerprinting, users could be alerted in real-

time. This would allow them to approve or deny access to

certain features—similar to permission prompts on mobile

platforms.

Incorporating a decision model that assesses both the rarity of

the API being called and the context in which it is used (e.g.,

the source of the JavaScript file) may enable the extension to

make smarter, context- aware decisions regarding

fingerprinting behaviour.

VII. CONCLUSION

In this study, we explored the current landscape of browser

fingerprinting techniques and actively deployed in real-world

scenarios. To better understand them, we developed a custom

website capable of collecting fingerprinting data and

demonstrated that the simplicity of these methods makes them

easily implementable across a wide range of platforms. We then

explored the defensive mechanisms modern browsers employ

to safeguard users against fingerprinting.

Building upon these insights, we created a Chrome browser

extension designed to randomize fingerprintable attributes. Our

evaluation showed that the extension effectively disrupted

fingerprinting attempts, as platforms like CoverYourTracks

were unable to generate a consistent identifier for our test

environment.

Lastly, we reflected on potential areas for enhancement in our

extension and offered insights into the future direction of

privacy-preserving technologies in the context of evolving

advertising models.

REFERENCES

[1]. B. Clifton, Advanced Web Metrics with Google

Analytics. John Wiley Sons, 2012.

[2]. G. Zhang, Gzhang315/cs6262,

https://github.gatech.edu/gzhang315/cs6262.

[3]. S. Englehardt and A. Narayanan, “Online tracking: A 1-

million-site measurement and analysis,” Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, Oct. 2016.

doi:10.1145/2976749.2978313. [Online]. Available:

https://www.cs.princeton.edu/~arvindn/publications/Ope

nWPM_1_million_site_tracking_measurement.pdf.

[4]. Google, Content scripts. [Online]. Available:

https://developer.chrome.com/docs/extensions/mv2/cont

ent_scripts/.

[5]. Wikipedia, Canvas fingerprinting. [Online]. Available:

https://en.wikipedia.org/wiki/Canvas_fingerprinting.

[6]. M. W. Docs, Getter. [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Functions/get.

[7]. Wikipedia, Ajax (programming). [Online]. Available:

https : / / en . wikipedia . org / wiki / Ajax_(programming).

[8]. M. W. Docs, Cross-origin resource sharing (cors).

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS.

[9]. Apple, System fonts. [Online]. Available:

https://developer.apple.com/fonts/system-fonts.

[10]. Microsoft, Windows 10 font list. [Online]. Available:

https://docs.microsoft.com/enus/typography/fonts/windo

ws_10_font_list.

https://github.gatech.edu/gzhang315/cs6262
https://www.cs.princeton.edu/~arvindn/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://www.cs.princeton.edu/~arvindn/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://developer.chrome.com/docs/extensions/mv2/content_scripts/
https://developer.chrome.com/docs/extensions/mv2/content_scripts/
https://en.wikipedia.org/wiki/Canvas_fingerprinting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/get
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.apple.com/fonts/system-fonts
https://docs.microsoft.com/enus/typography/fonts/windows_10_font_list
https://docs.microsoft.com/enus/typography/fonts/windows_10_font_list

