Comprehensive CareerProgram

Educational Training Equipment for the 21st Century

Bulletin 285D

Purpose

The Hampden Comprehensive Career Program is designed to provide students planning careers in electronics with a solid foundation in the practical applications of electrical and electronic circuits and devices. Topics include everything from Ohm's law, motors, and vacuum tubes through latest state-of-the-art devices such as MOSFETs, digital logic gates and operational amplifiers.

A total of 189 topics are contained in five experiment manuals, providing maximum flexibility in establishing the electronic curriculum to meet a variety of career objectives. The hardware consists of discrete components integrated circuits, and printed circuit boards, utilizing Velcro work surfaces and snap connectors.

Description

The Hampden Comprehensive Career Program consists of five segments which may be sequenced in a dozen different ways to produce the type and extent of electronics career preparation desired. Individual segments may be purchased separately or in any combination. The five segments are as follows:

- H-CCP-B: Basic Electricity/Electronics, including Ohm's law, magnetism, motors, diodes, transistors, etc.
- (2) H-CCP-C: Fundamental Consumer Electronics, including transformers, capacitors, inductors, filters, amplifiers, etc.
- (3) H-CCP-C2: Advanced Consumer Electronics, including vacuum tubes, JFETs, MOSFETs, super heterodyne radio, etc.
- (4) H-CCP-I: Fundamental Industrial Electronics, including power factor, multivibrators, UJTs, photocells, etc.
- (5) H-CCP-12: Advanced Industrial Electronics, including SCRs, Diacs, Triacs, digital logic gates, operational amplifiers, etc.

H-CCP-B: Basic Program Topics

- 1. Introduction to Laboratory Experimentation
- 2. Techniques of Preparing Laboratory Reports
- 3. Switching Devices and Circuits
- 4. Measuring Electrical Phenomena
- 5. Solid State Volt-Ohm-Milliammeter
- 6. Creation of Electrical Energy
- 7. Practical Uses of Electricity 8. Voltage, Current, Resistance - Ohm's Law
- 9. Series Circuits
- 10. Parallel Circuits
- 11. Series- Parallel Circuits
- 12. Kirchhoff's Voltage Law
- 13 Kirchhoff's Voltage Law Two Sources
- 14. Kirchhoff's Current Law
- 15. Kirchhoff's Current Law Two Sources
- 16. Potentiometers
- 17. Rheostats
- 18. Voltage Dividers Unloaded
- 19. Voltage Dividers Loaded
- 20. DC Ammeter Shunts
- 21. DC Voltmeter Multipliers
- 22. Ohmmeters
- 23. Balanced Bridge Circuits
- 24. Superposition Thoerem
- 25. Thevenin's Theorem
- 26. Norton's Theorem
- 27. Power Transformer
- 28. Magnetism and Magnets
- 29. Electromechanical Relays
- 30. Permanent Magnet DC Motors and Generators
- 31. Introduction to the Oscilloscope
- 32. Comparison of Alternating and Direct Current
- 33. Semiconductor Diodes
- 34. Full-Wave and Half-Wave Rectifiers
- 35. Bipolar Transistors
- 36. Transistor Testing
- 37. Transistor Control Circuits

H-CCP-C: Fundamental Consumer Program Topics

- 1. Triggered Oscilloscope / AF Generator
- 2. Oscilloscope Voltage Measurements
- 3. Lissajous Patterns
- 4. Inductance and Inductance Reactance
- 5. Measuring Phase Angle by Lissajous
- 6. Transformers
- 7. Capacitors and Capacitance
- 8. RC time Constants
- 9. Capacitive Reactance
- 10. Phase Shift Caused by Capacitance
- 11. Capacitances in Series and Parallel
- 12. Capacitive Voltage Dividers
- 13. Impedance of a Series RL Circuit
- 14. Volt. Relationships/Series RL Circuit
- 15. Impedance of a Series RC Circuit
- 16. Voltage Relationships/Series RC Circuit
- 17. Frequency Response Reactive Circuit
- 18. Impedance of a Series RLC Circuit
- 19. Effect of Frequency Series RLC Circuit
- 20. Impedance of a Parallel RL/RC Circuit
- 21. Series Resonant Circuit
- 22. Parallel Resonant Circuit
- 23. High-Pass and Low-Pass Filters
- 24. Phase Shifting Networks
- 25. Diode Clippers
- 26. Zener Diodes
- 27. Zener Diode Clipper and Wave Shaper
- 28. Diode Limiter and Clamper
- 29. Half Wave and Full Wave Rectifiers
- 30. Transformer Power Supply and Filter
- 31. Power Supply Troubleshooting
- 32. The Voltage Doubler
- 33. Transistor Familiarization
- 34. Current Gain Common Emitter Amplifier
- 35. Characteristic Curves for CE Circuit
- 36. CE Amplifier Biasing and Gain
- 37. CE Impedance Power and Phase Relationships
- 38. Troubleshooting a CE Amplifier
- 39. Emitter Follower
- 40. Cascaded Transistor Amplifier

All Hampden units are available for operation at any voltage or frequency

Comprehensive Career Program

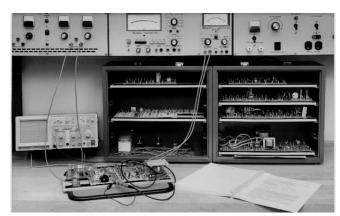
Educational Training Equipment for the 21st Century

Bulletin 285-1D

H-CCP-C2: Advanced Consumer Program

- 1. Vacuum Tube Diodes
- 2. Vacuum Tube Triodes
- 3. Vacuum Tube Class A Amplifier
- 4. Vacuum Tube Cathode Bias
- 5. Transistor Hartley Oscilliator
- 6. Transistor Phase Shift Oscillator
- 7. Transistor Class A Audio Power Amplifier
- 8. Push-Pull Power Amplifier
- 9. Complementary-Symmetry Push-Pull Amplifier
- 10. Frequency Response of an Audio Amplifier
- 11. Troubleshooting an Audio Amplifier
- 12. Integrated Circuit Audio Amplifier
- 13. Junction Field Effect Transistor (JFET)
- 14. JFET DC Characteristics and Load Lines
- 15. JFET Biasing and AC Signal Amplification
- 16. JFET Voltage Amplifier
- 17. JFET Common-Source Amplifier
- 18. JFET Common-Drain Amplifier
- 19. JFET Common-Gate Amplifier
- 20. Feedback Principles
- 21. MOSFET Common-Source Amplifier
- 22. Dual-Gate MOSFET
- 23. MOSFET Armstrong Oscillator
- 24. MOSFET Hartley Oscillator
- 25. MOSFET Colpitts Oscillator
- 26. MOSFET Phase Shift Oscillator
- 27. RF Signal Generator
- 28. RF Amplifier
- 29. Amplitude Modulation
- 30. Transmitting Antenna
- 31. Superheterodyne Detector and AVC Stage
- 32. Superheterodyne IF Stage
- 33. Superheterodyne Detection and IF Amplification
- 34. Superheterodyne Converter Stage
- 35. Superheterodyne Receiver Alignment
- 36. Superheterodyne Receiver Troubleshooting

H-CCP-I: Basic Industrial Program


- 1. Inductors and Inductance
- 2. Transformers
- 3. Inductive Reactance and Impedance
- 4. Power Factor
- 5. Capacitors and Capacitance
- 6. Capacitors in Series and Parallel
- 7. Capacitive Reactance and Impedance
- 8. Impedance of Series RLC Circuits
- 9. Impedance of Parallel RL and RC Circuits
- 10. Impedance of Parallel RLC Circuits
- 11. R/L and RC Time Constants

- 12. Measurement of RC Time Constants
- 13. Neon Glow Lamps
- 14. Thermistors
- 15. Varistors
- 16. Superimposing AC on DC
- 17. Steering Diodes and Diode Clippers
- 18. Diode Limiters and Clampers
- 19. Zener Diodes
- 20. Zener Diode Regulators
- 21. Transistors
- 22. Common Emitter Amplifier
- 23. Transistor Time Delay
- 24. Transistor Squaring Circuits
- 25. Transistor Shunt Voltage Regulator
- 26. Transistor Series Voltage Regulator
- 27. Astable (Free Running) Multivibrator
- 28. Bistable Multivibrator (Flip-Flop)
- 29. Monostable (One Shot) Multivibrator
- 30. Common Base Amplifier
- 31. Emitter Follower (Common Collector)
 Amplifier
- 32. Darlington Pair
- 33. Differential Amplifier
- 34. Unijunction Transistor (UJT)
- 35. UJT Relaxation Oscillator
- 36. Photoconductive Cell

H-CCP-I2: Advanced Industrial Program

- 1. Silicon Controlled Rectifier (SCR)
- 2. The SCR As a Static Switch
- 3. SCR Triggering Methods
- 4. SCR Control Circuits
- 5. UJT-Triggered SCR
- 6. Triac Static Switch
- 7. Diac Operation
- 8. Diac-Triac Phase Control
- 9. UJT-SCR Heat Control

- 10. UJT Timer
- 11. Integrated Circuit Timer
- 12. Light-Emitting Diodes
- 13. Diode Digital Logic Gates
- 14. Transistor Logic Gates
- 15. IC Quad Two-Input NAND
- 16. IC Logic Gates
- 17. J-K Flip-Flop
- 18. Binary Counter
- 19. Decade Counter
- 20. Operational Amplifier (Op-Amp)
- 21. Inverting Amplifier
- 22. Noninverting Amplifier
- 23. Summing Amplifier
- 24. Differential Amplifier
- 25. Variable Gain Amplifier
- 26. Buffer/Follower
- 27. Sign Changer
- 28. Current Source
- 29. Integrator
- 30. Practical Differentiator
- 31. Zero-Crossing Detector
- 32. Limiting Amplifier
- 33. Comparator
- 34. Absolute Value Circuit
- 35. Astable Multivibrator
- 36. Monostable Multivibrator
- 37. Bistable Multivibrator
- 38. Sawtooth Generator
- 39. Staircase Generator
- 40. Pulse Width Modulator

Typical CCP Experiment utilizing components from the **H-CCP-2 Program**.

All Hampden units are available for operation at any voltage or frequency

