

Lesson 8:

Multiply two-and three-digit numbers by two-digit numbers by using the distributive property. CCSS Standard –5.OA.A.1 / 5.NBT.B.5 Whiteboard Exchange: Word Form to Standard Form

Word Form	Standard Form	Expanded Form 1,000,000 + 200,000 + 20,000 + 3,000 + 9 40,000 + 3,000 + 900 + 70 + 1
One million, two hundred twenty-three thousand, nine	1,223,009	
Forty-three thousand, nine hundred seventy- one	43,971	
Sixty-three thousand, five hundred eighty- nine	63,589	60,000 + 3,000 + 500 + 80 + 9

Whiteboard Exchange: Word Form to Standard Form

three hundred twenty-five thousand, sixty-four =

six hundred thirty thousand, forty =

seven hundred eight thousand, nine =

 $two\ million,\ four\ hundred\ fifty-three\ thousand,\ one\ hundred\ eighty-six =$

five million, one hundred thousand, twelve =

=

eight million, fifty thousand, fifty =

Whiteboard Exchange: Estimate Products

What is 19,352 rounded to the nearest <u>ten thousand</u>?

This statement reads "19,352 x 3" is **about** "20,000 x 3". Repeat this statement.

Now solve for 20,000 x 3

 $22,710 \times 4 \approx _ _ _ \times 4$ $22,710 \times 4 \approx _ _ _$

What is 22,710 rounded to the nearest <u>ten thousand</u>?

This statement reads "22,710 x 4" is **about** "20,000 x 4". Repeat this statement.

Now solve for 20,000 x 4

Whiteboard Exchange: Estimate Products

 $6 \times 57,043 \approx 6 \times$

 $6 \times 57,043 \approx$

What is 34,602 rounded to the nearest <u>ten thousand</u>?

This statement reads "5 x 34,602" is **about** "5 x 30,000". Repeat this statement.

Now solve for 5 x 30,000.

What is 57,043 rounded to the nearest <u>ten thousand</u>?

This statement reads "6 x 57,043" is **about** "6 x 60,000". Repeat this statement.

Now solve for 6 x 60,000.

Whiteboard Exchange: Estimate Products

 $8 imes 85,\!004pprox 8 imes$

 $8 imes 85,\!004pprox$

What is 50,862 rounded to the nearest <u>ten thousand</u>?

This statement reads "50,862 x 7" is **about** "50,000 x 7". Repeat this statement.

Now solve for 50,000 x 7

What is 85,004 rounded to the nearest <u>ten thousand</u>?

This statement reads "8 x 85,004" is **about** "8 x 90,000". Repeat this statement.

Now solve for 8 x 90,000

LAUNCH (10-min)

Students solve a word problem involving two-digit by three-digit multiplication.

There are **122 cities** competing in a math relay race. Each city sends **41 grade 5 students** to compete. How many students compete?

I would like you to model this problem using a tape diagram before you solve it.

LAUNCH (10-min)

There are **122 cities** competing in a math relay race. Each city sends **41 grade 5 students** to compete. How many students compete?

This is one possible model for the problem.

- Looking at this model, what is the value of one part?
- What does the 122 represent?
- What does the 41 represent?

LAUNCH (10-min)

There are **122 cities** competing in a math relay race. Each city sends **41 grade 5 students** to compete. How many students compete?

Here are some possible solutions to this problem:

 $24 \times 40 =$

Let's find the product of 24 x 40 by using the distributive property. We can interpret this expression as **24 groups of 40** OR **40 groups of 24**. We will use **24 groups of 40**.

800 + 160 = 960

$24 \times 40 = (20 + 4) \times 40$ = (20 × 40) + (4 × 40) = 20 × 40 + 4 × 40 = 800 + 160 = 960

LEARN (30-min) Relate Vertical Form and the Break Apart and Distribute Method to the Area Model			
Area Mode	I	Vertical Form	Break Apart & Distribute
24 × 40 = 4 40 4 160 20 800 =	960	40 <u>x24</u> 160 <u>+800</u> 960	$40 \times 24 = 40 \times (20 + 4)$ = (40 × 20) + (40 × 4) = 40 × 20 + 40 × 4 = 800 + 160 = 960

Area Model -vs- Vertical Form

 $22 \times 41 =$

Area Model -vs- Vertical Form

21 × 343 =

LAND (10-min)

8

Consider the expression shown.

Exit Ticket

 31×213

a. Complete the area model.

Small Group Time:

Problem Set Page 69

Homework:

Page 51

