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James R. Simpson,
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U.S. Air Force, Eglin AFB, Eglin,

Florida

ABSTRACT Since the design of experiments was first introduced by Fisher 90

years ago, this scientific and statistical approach to system interrogation for

acquiring knowledge has enjoyed success across industries and among pro-

ducts, processes, and services. In the last decade, military test organizations

have been promoting the use of design of experiments (DOE) as the preferred

method of constructing and analyzing test programs. Increasingly, design of

experiments is being used to greater effect and its impact is reaching groups

less experienced in the method. Stories of successful application continue to

have a common thread: detailed, effective planning. But not all organizations

have members experienced in DOE test planning. And although planning

papers and how-to case studies have appeared in the literature, the volume

of these contribution types is dwarfed by theory and methods papers. If an

experiment is planned and the planning process is documented, how would

one go about assessing that plan? If the desire is to gauge the probability of

experiment success as defined by a robust and truthful understanding of

the system revealed upon analysis of the data, can the plan be assessed prior

to test execution? This article proposes guidelines and evidence that span all

phases of the experiment cycle, which can inform assessment of experiment

planning soundness. The experiment cycle of plan, design, execute, and ana-

lyze (consistent with literature and texts) is used to structure the discussion,

geared toward an audience somewhat familiar with the DOE method. Check-

lists are provided for each experiment phase coupled with descriptions of

what would constitute fingerprints of successful implementation.

KEYWORDS design of experiments, design metrics, experiment checklists,

statistical power, test phase, test planning

To consult the statistician after an experiment is finished is often merely to ask him to
conduct a post mortem examination. He can perhaps say what the experiment died
of.—Ronald A. Fisher, Presidential Address to the First Indian Statistical Congress, 1938

INTRODUCTION

Those in the business of developing and applying statistical methods for

knowledge discovery understand that statistically designed experiments are

a series of purposed, systematic tests designed, conducted, and analyzed to
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learn about a process or system under study. The

statistically based experiment discipline is used

increasingly in product and process life cycle testing

to mitigate program risk by revealing problems early

in system design or operation. Clearly, testing

informs and guides the management of an acqui-

sition system so, fundamentally, testing must control

the risk of erroneous conclusions based on test

outcomes. Natural variability in outcomes and back-

ground lurking variables that corrupt the data con-

tribute to these erroneous conclusions of declaring

systems ready for the next programmatic stage. The

focus on correct conclusions not withstanding, in

the face of tighter budgets, testers should always

maximize system knowledge gained from efficient

testing. As such, knowledge only of whether to pass

or fail a system without insight into system capability

dynamics pales relative to drawing the right con-

clusion based on knowledge of the factors driving

performance. Statistical design of experiments

(DOE) is the method for managing random variation

uncertainty while learning the most from limited

resources in which factors influence performance

(Box and Draper 1987; Box et al. 2005; Mason et al.

2003; Montgomery 2012; Wu and Hamada 2000).

Kass (2006), in his book on war fighting experimen-

tation, underscores the need for knowing factor

influence in stating that the experiment must have

the ability to not only detect change but isolate the

reasons for change and relate the results to opera-

tions. Consider the following two diverse examples

of testing: (1) an industrial experiment to develop a

process to produce magnetically aligned carbon

nanotubes and (2) the military qualification of a

recent ‘‘strap-on’’ sensor and weapons kit for a

special operations cargo aircraft.

Example 1

Research into the development of carbon nano-

tube composites has shown huge potential for

composites superior in strength, weight, electrical

properties, and heat conduction. Applications are

widely diverse, including armor, sports, biotechnol-

ogy, sensors, capacitors, and solar technology. A

possible manufacturing process is to make nanotubes

into buckypaper form. An experiment was conducted

to study the contribution of fabricating parameters,

including suspension concentration, sonication

power and time, filtration vacuum pressure, and

surfactant types on nanotube bundle quality as

measured by surface quality, rope size, and pore size

(Figure 1). Statistical modeling was also used to esti-

mate the variability associated with manufacturing,

the image taken, and the measurement processes

(Yeh 2004).

Example 2

A cargo aircraft is equipped with roll-on pallets

containing a gun system, computer control system,

and operator control and display stations. The cargo

door is equipped with canisters holding guided mis-

siles, and additional rotatable sensors are attached

to the exterior of the aircraft. The purpose of the kit

is to convert a plain cargo aircraft into a gunship cap-

able of engaging ground targets while conducting

armed escort of ground parties. Such a system must

demonstrate the capability to (1) communicate with,

find, and orbit over friendly parties; (2) search for,

correctly identify, track, and destroy adversaries; (3)

defend oneself; (4) prepare the aircraft for flight

(maintenance, fueling, arming), and much more. No

single experiment can test all of these capabilities.

Instead, with a multidisciplinary team of operators,

maintenance workers, and engineers, the purpose is

to create a campaign over a dozen different experi-

ments, all with different design strategies, number

of test events, and criteria for success. Indeed, few

of these experiments require expending weapons;

FIGURE 1 Nanotube buckypaper manufacturing process

experiment to magnetically align nanotubes. (Color figure

available online.)
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they simply exercise communications or sensor

systems. For example, one of the experiments exam-

ines the system’s ability to automatically track a

maneuvering ground target and another studies the

system’s capability to simultaneously target a moving

target with both the gun and a missile. The checklists

in this article are useful to grade the many experi-

ments individually, as well as the collective set.

Though the designed experiments literature

contains many case studies and some excellent

planning sources (Atkinson and Cox 1974; Cox

1958; Shoemaker and Kacker 1988; Vanhatalo and

Bergquist 2007; Viles et al. 2008), missing are what

characterizes a well-planned experiment and how

that excellence can be assessed and captured in

indicators. Therefore, planning indicators associated

with the four phases of an experiment were pro-

posed. These criteria are particularly important in

the beginning stages of any organization’s conversion

from ‘‘best efforts’’ to true designed experiments. The

intent is to correctly explore a multidimensional test

space and correctly distinguish the systems that work

as desired from those that do not. The need for

adequate testing in acquisition is clear: without a set

of objective guidelines and indicators to assess a stat-

istically designed experiment plan, we risk producing

systems with an insufficient testing program to show

that they are fit for their intended uses, which, in the

military, has potential life or death implications. The

detailed criteria presented herein reveal whether the

design strategies contemplated are a well-considered

series of investigation for increasingly expensive

and technologically challenging operating environ-

ments; whether a thorough team approach process

decomposition adequately specifies proper test con-

ditions and measures the right success outcomes;

whether the designs truly span the factor space (the

region covering the range of factors) and have

enough trials to arrive at the correct answer while

minimizing risk; and, finally, whether the method of

analysis is suitable to the design class chosen and

is likely to correctly link changes in the factors to

associated changes in performance.

The purpose of this article is to propose a rigorous

experiment planning process useful for general

application (industry and government examples pro-

vided) that will allow both testers and managers to

improve and evaluate testing adequacy excellence.

Fortunately, the probability of testing success can

usually be well gauged immediately following the

planning phase. Planning is critical because it not

only requires a unified test team and a well-

formulated series of objectives but the design of

the test points, as well as test execution and expecta-

tions for analysis. The four phases of testing can be

described as plan, design, execute, and analyze.

The experimental design should be developed based

on the needs of the analysis, and the analysis is only

as capable as the experimental design allows. Proper

execution will enable making sense of the data col-

lected, and improper execution can completely inva-

lidate an otherwise excellent design. As such, a test

can be effectively vetted for planning, design,

execution, and analysis goodness with indicators or

evidence at the conclusion of the planning stage.

The article is organized according to the testing

cycle phases and provides guidelines and indicators

associated with each phase as evidence of success

while stressing the interdependence of steps in one

phase to elsewhere in the test cycle. For example,

while one of the design (Phase II) guidelines

addresses statistical power, higher power values also

result in better empirical modeling precision in analy-

sis (Phase IV). The guidelines and evidence can be

effectively applied at the individual test entry level

or to a series of tests required for complex systems

with disparate objectives or even for single system

evaluation across several phases of development

and production. The four broad phases (Figure 2) with

corresponding guidelines reflecting planning quality

for testing are to (I) plan a series of experiments to

FIGURE 2 Four phases of the test cycle using statistical design

of experiments. (Color figure available online.)
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accelerate discovery, (II) design to control risks and

to span the factor space, (III) execute to control

uncertainty, and (IV) analyze statistically to model

performance. Proposing these guidelines and evi-

dence for assessment will hopefully encourage their

use in DOE-based test plan development.

Phase I. Plan a Series of Experiments
to Accelerate Discovery

The activities in the planning phase are straight

forward and require no special statistical skills, just

a collection of best practices and many hours of care-

ful thought and effort by an assembled team of

experts on the process under test. These planning

and process decomposition activities usually occur

over a period of several days, with our experience

indicating 4–16 hours required for most tests. The

team is usually led by a facilitator with experience

in experimental design, with the most important

contributions coming from the team of experts. Thor-

ough process decomposition and understanding is

the foundation of successful testing and is the most

important aspect of systematic test planning (Barton

1997; Coleman and Montgomery 1993; Goh 2001;

Hahn 1984). By examining the test planning docu-

mentation, it is usually obvious whether this step

was done superficially or not at all.

A number of easy-to-use graphical tools may be

employed to assist in the process decomposition,

but the key is a positive attitude of commitment from

all team members to participate fully in the process,

foregoing criticism and pessimism during the activi-

ties. Tools used in other process-oriented strategies

such as Lean and Six Sigma may contribute to this

phase’s success, including supplier–input–process–

output–customer, process flowcharts, measures cate-

gory charts, cause-and-effect (fishbone diagrams),

and affinity diagrams. It should also be understood

that, though the steps below are described sequen-

tially, it is a rare test program that can complete this

phase in one pass; two to three passes through the

steps are more typical.

It cannot be overemphasized that successful tests

are designed with all of the important stakeholders

having a voice in the scope and outcome of the test-

ing, as well as having contributions from design engi-

neers, program office engineers, user representatives

(operators), maintenance personnel, test facility

experts, and anyone else with important information

and views on the subject testing. The assembled team

must balance sufficient expertise with a proper num-

ber of members to make progress. Groups of 5–10

have historically worked well, whereas groups of 20

or more are less effective. The team must commit

the time to finish each stage of planning (Figure 3),

discussed in detail here.

Problem Description

A concise description of the overall test problem,

roles of each test organization, desired outcomes,

and a draft of potential factors affecting performance

are required. Significant budget constraints, physical

limiting factors, overall comments on measurement

limitations, and schedule expectations should be

outlined for planning purposes in the problem

description. Finally, the team should consider the

acceptable level of risk for the current system under

test; that is, what are the consequences of arriving at

an incorrect conclusion as a result of the test program.

The team should also identify the level of technical

risk of the system. For instance, integrating a proven

commercial jet engine on a large cargo aircraft carries

much lower technical risk than an unproven sensor

technology in a concept technology demonstration.

Technically risky programs may suggest a more

robust and powerful test design strategy than the test

strategy for programs of much lower technical risk.

Relevant Background Research

The team should commission members to collect

information that might shape the test program, such

as previous testing of the system or analogous ver-

sions of the system. Previous data can be analyzed

FIGURE 3 Stages of the planning phase.
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to help predict probable performance or be used as

a baseline for departure. History might suggest

expected noise levels, suitable response variables

(and ranges of values), active factors, and whether

outlier runs might be expected. Historical research

should be documented in the plan references and

annotated in appropriate places of the test plan.

Objective(s) of the Test

Following the problem description and research,

the team must determine the specific objectives of

the test. Correctly specified test objectives, agreed

to by all team members, are critical to progress. As

a method of discovering objectives, it is often useful

to explore questions along the following lines:

. How does one measure success (targets or stan-

dards) in the system under test?

. What constitutes failure in the system and how will

we know the system has failed?

. Is the emphasis on making the process better or

describing its current state?

. Is comparing performance to analogous systems or

processes of interest?

Another useful approach is to ask what numerical

answers are sought as a result of the test program—

how fast, how far, how well? What knowledge is

sought as a result of this test? Multiple objectives are

routine and the following list describes commonly

used objective categories for testing:

. Screening to find important factors affecting

response performance and variability.

. Comparing results to a written baseline, standard,

or goal (specification or requirement).

. Fitting a function of the factors to the response

via modeling for prediction or interpretation as a

concise explanation of the system in operation

(metamodeling).

. Finding settings of controlled and uncontrolled

variables that optimize performance.

. Finding factors that affect process variation in

addition to the average response.

. Characterizing how the process works to reveal

which and how factors matter.

. Troubleshooting the system to find conditions that

lead to failure or poor performance.

. Explore factor variations in the presence of

environmental noise that yield superior, stable

performance (robust product or process design).

. Finding acceptable tradeoffs among conflicting

objectives such as weight, cost, reliability, and

performance (multiple response optimization).

Because discovering the appropriate outcomes of the

test program is a vital step, this phase is best revis-

ited, sometimes more than once, to clearly agree

on the proper test program objectives.

Responses (Measures of Performance or

Measures of Effectiveness)

Once the problem objectives are developed, the

team must determine measures of system perfor-

mance that constitutes ‘‘adequacy’’ while providing

guidelines for measurement accuracy and precision.

As an aid to discovering responses, a process flow

diagram is often used by planning teams to specify

each step in executing the system under test, includ-

ing setup for the run, test event execution, and reco-

vering from the run to nominal conditions. Figure 4

shows a simple process flow diagram depicting locat-

ing a ground party and establishing a protective orbit

for the aforementioned strap-on sensor weapon kit.

The process flow diagram serves the twin purposes

of defining the start (S) and end (E) of a test event

while offering the opportunity to consider intermedi-

ate states of the process for possible response vari-

ables. In the current case, the test event consists of a

searcher with specified initial conditions beginning

a search pattern for a ground party. The event con-

cludes when the ground party is identified and an

orbit is established. Multiple intermediate system

states can be measured as responses, including times,

locations, and ranges to identify and locate the

ground party; time to search; number of ground par-

ties initially acquired then lost; false ground parties

acquired; degree of correctness of the ground party

identification; tracking errors on the ground party

while it was being located; operator judgment of the

ease of use of the human interface; operator work-

load; and the clarity=readability of the information

displayed. In general, for any process it is useful to

measure how long (time), how possible (success=

failure), and how well (deviation from ideal).

To document the discussions on response

measures, a table of response variables is useful for

337 Guidelines for Well-Designed Experiments
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the team to compile (Table 1). Such a table forms a

basis for team review of whether responses cover all

objectives, whether the responses are largely objective

and unbiased, and what data elements must be recov-

ered (and how) in order to compute the response.

Such a table can also serve to initiate creating detailed

test procedures and a data collection plan.

A hallmark of a well-planned experiment is mul-

tiple, objective numeric responses listed for each

set of test events and that the measurements have

the precision and accuracy required of the experi-

ment’s objectives. Less useful outcomes are indicated

by one or two responses, primarily consisting of ‘‘test

team judgment,’’ ‘‘operator opinion,’’ ‘‘mission suc-

cess,’’ or other such subjective measures. Table 2

shows shaded example measures, with the most

reliable being dark, less reliable measures colored

medium, and the least informative light.

Well-designed, precise tests can answer their

objectives most efficiently with fewer trials when

the responses are repeatable, accurate, and measured

on a continuous scale. As a rule of thumb, binary

responses, though popular among defense testers,

often require more than 10 times as many test events

as objective measures for the same degree of statisti-

cal precision (Bisgaard and Fuller 1995; Montgomery

2009). Count or categorical responses fall somewhere

between these extremes in terms of accuracy and

reliability. Subjective judgments are an important part

of both developmental and operational testing but

should not be given undue influence on test

decisions. The lack of information presented by

binary responses has long been recognized in the

statistical community (Bisgaard and Fuller 1995; Cook

1996, 1998). If possible, experimenters should try

to develop alternative quality measures, including

subjective grading if necessary. Experience has

shown that many responses originally thought of

as binary or categorical may be converted into con-

tinuous variables after thoughtful consideration of

the physics behind the response.

Factors Considered and Chosen

With the responses documented for the test objec-

tives, the team turns to considering the factors and

conditions, both controlled and uncontrolled, that

can affect the responses. In this step, the team brain-

storms as many factors as possible and then considers

how to treat them as part of the experiment. Con-

siderable focus is important since undocumented fac-

tors with real effects on the responses can misguide

an otherwise well-designed test program. Leaving a

factor out of the factor list at this stage is equivalent

to assuming that it has no effect on the response.

Brainstorming factors, typically using a cause-and-

effect diagram, usually takes the longest clock time of

all steps in this phase and should not be rushed by the

team. In fact, it is good practice to revisit the list of

factors after additional research into historical test

findings. Once the cause-and-effect diagram has been

TABLE 1 Table of Response Variables

N Variable Units Range Priority Accuracy Data element Source

1 Acquire time Seconds 0–10 M �1 Start, event time Instrumentation

2 Acquire range Meters 10–30 K H �50 Event time, position Instrumentation

3 Track time Seconds 10–15 M �1 Start, event time Instrumentation

FIGURE 4 Process flow diagram. (Color figure available online.)
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populated, the results can be recorded in a summary

table of potential factors and levels. Table 3 shows an

example for an airborne searcher problem.

The ‘‘units’’ column contains information about the

unit of measurement for the factor. Lengths in feet or

miles or temperatures in degrees Celsius are continu-

ous variables and variables containing scenarios or

labels are ‘‘categorical.’’ For the ‘‘range’’ column,

one should record the physically operating range of

the factor; the design range chosen for the experi-

ment will be recorded in the last column. The column

labeled ‘‘change’’ refers to how readily the factor level

can be changed in test execution. Some control

factors, termed hard-to-change (HTC) factors, cannot

be easily or practically changed as often as a com-

pletely randomized scheme requires. So for effi-

ciency’s sake, HTC factors are changed less often,

affecting the benefits of randomization. Though

HTC factors are fairly common in practice, the team

should understand that complete randomization is

preferred and the design with HTC factors alters the

nature of the method into what is referred to as a

split-plot design and analysis, with attendant chal-

lenges that should not be lightly undertaken (more

in Phase III). The ‘‘experimental control’’ column

marks how each factor will be treated in the test

program: varied as control factors (C); held constant

(H); and nuisance (N). Some nuisance variables

may be measured and recorded and used in the

analysis phase as covariates. When in doubt, con-

scious effort should be made to include factors as

experimental.

After a first pass through this table, the team

should make every effort to discover and record

the physical variable(s) underlying any variable

labeled ‘‘categorical’’ in the units column. This prac-

tice is, again, not suggested lightly. Not only does

this process of physical understanding increase

insights into the process under test, but real-valued,

physically based variables offer a much richer and

more statistically powerful set of design and analysis

options than those of categorical variables. With suf-

ficient expertise, thought, and effort, many variables

formerly labeled categorical can be relabeled in

different units, at least approximating real-valued

continuous or broad-ranging discrete factors.

Checklists are displayed at the end each section

(Figure 5) to provide both the guidelines (first-order

bullets) and the material solution evidences (second-

order bullets). A collapsed first-order checklist could

be used for planning, whereas the expanded version,

including second-order, is intended for use by both

the test team for internal assessment and for outside

entities for evaluation of a test plan.

TABLE 3 Airborne Searcher Problem Factors/Levels

Number Variable Units Range Change:ETC, HTC Exp. Control: C, H, N Design range

1 Sensor Categ. Old–new ETC C Old–new

2 Searcher Alt Kft 0–45 HTC C 15–30

3 Searcher Vel kts 300–540 ETC H 480

4 Tgt Loc Error m2 0–10,000 ETC C 1,000–5,000

5 Tgt Backgnd Ratio 0–100 ETC H 25

6 Tgt Speed m=s 0–30 ETC C 0–20

7 Tgt Length m 4–20 ETC C 4–20

8 Visibility m 100–10,000 HTC N Covariate

TABLE 2 Color-coded Example Measures

Objective (fact-based measures) Subjective (opinion-based measures)

Quantitative (numeric) Range to target (nm) Likert rating scale choice (�2 to þ2)

Tracking errors (m) Agree to disagree

Target location error (m) Better to worse than standard

Weapon miss distance (m) Cooper-Harper scale (1–10)

Qualitative (descriptive) Correctly identify target (binary) Open-end prose describing event

False alarms per period (count) Mission success–failure judgment (binary)

Words correctly heard (count) Opinion of fitness for use
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Phase II. Design with Power and
Confidence to Span the Factor Space

System planning is understandably only Phase I of

test science, but that process requires complete team

attention and commitment so that it lays the foun-

dation for success in the three subsequent phases.

The second phase, design, involves the task of devis-

ing the test point strategy to determine howmany test

points, what factor combinations, and in which

experimental groupings. It cannot be overstated that

the plan phase, combined with test science expertise,

is the primary driver of success in the design phase.

The work of the design phase must be done using

sound statistical practices and knowledge of classical

experimental design and involves comparing alterna-

tive testing schemes. Here, the success indicators are

more abundant and reflect not only how well the test

is designed but how well it has been planned. The

abundant fruits of exemplary planning are on display

in the evidence of this phase.

DOE IIa. Span the Factor Space

Determining the test events that will effectively

cover the entire region of the factor space is critical

to system understanding. For example, in investigating

multipurpose military systems, a large factor space is

the norm. That is, the system should work across a

number of ship, vehicle, or aircraft types; in diverse

environmental and weather conditions; against many

types of enemy systems and deceptions; and from a

variety of geometric engagement conditions. In prac-

tice using experimental design, 10 or more factors

are commonly encountered (Johnson et al. 2012;

Simpson and Wisnowski 2001). Clearly, testing

all combinations of even eight variables is often pro-

hibitive. The problem, nonetheless, remains: a high-

dimension factor space that must be fully explored,

but testing all possible combinations may not be feas-

ible. Fortunately, alternative experimental designs for

large factor spaces are available. The experimental

design guidelines and evidence described here

address evaluating the breadth of coverage of the

design space and the selection of test points, including

the number of factors, the levels chosen for each

factor, and the experimental design strategy to pur-

posefully spread test points across the factor space.

Brainstorming Potential Designs

Once the team prioritizes the list of factors using

the best available knowledge, it is time to address

test points. The experimentalist considers alternate

FIGURE 5 Phase I—Planning evidence checklist. (Color figure available online.)
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design strategies to span the desired space in a

sequential campaign of test matrices. Many experi-

mental design classes can be considered, suitable

for a wide range of objectives and circumstances,

including comparative two-level designs, general fac-

torial designs, fractional-factorial designs, response

surface designs for nonlinear processes, several var-

iants of algorithmic single-criterion optimal designs,

and extended capability classes such as split-plot,

robust, space-filling, and mixture designs. Often

there are several good choices that can be made for

a project emphasizing different strategies. In the con-

text of the design phase discussion, the focus will be

on efficiently and effectively spanning the factor

space, but the test matrices must also be designed

for practical execution (considered in Phase III),

sequential discovery, and, ultimately, insightful

analysis and reporting (covered in Phase IV).

Experimental design is undertaken to uncover the

true input–output relationship. Empirical statistical

modeling using least squares estimation of some

low-order polynomial of the inputs is routine. Con-

sider two design strategies, both involving two input

factors (scalable to higher dimension without loss of

generality). One strategy (Figure 6a) involves a

two-level full-factorial. Clearly, replication is required

to estimate noise, but these four unique design points

are capable of a linear plus interaction response

surface, illustrated by the adjacent response surface.

This response surface just graphically displays an

underlying estimating equation, capable of predicting

responses for any input conditions within the factor

ranges tested. The second design (Figure 6b) is a

nested face-centered design (Landman et al. 2007),

which calls for increased coverage of the test space,

enabling a model of at least cubic order. The data col-

lected in this example resulted in the nonlinear sur-

face shown. An efficient approach for fitting this

surface would usually entail several test–analyze itera-

tions, perhaps starting with the two-level design.

The decision for determining test points in matrices

depends on the assumed polynomial order of the

statistical model to be fit. The design and analysis

phases are intimately bound together such that the

analysis and reporting capability is directly related

to the location (factor settings) of test points chosen

and executed. The desired polynomial order for the

general model can be determined using historical test

findings or can be reasoned by expert (engineer,

scientist, or operator) knowledge of the underlying

physics. Regardless of the assumed general model,

it is always prudent to add (lack of fit) test points to

ascertain whether a higher order model is warranted.

If so, an additional set of points should be added to

the original to support the higher order model.

This sequential strategy avoids waste by leveraging

new knowledge to choose the points needed to

adequately model the response surface.

Classical Experimental Design

Among the choices for populating the factor space

with test points are classical experimental design stra-

tegies including the general factorial design (all factor

combinations), the two-level full- and fractional-

factorial designs, and response surface designs for

quadratic models (Box and Draper 2007; Myers et al.

2009). These choices have been used for over 50

years with astounding success and are commended

for their ability to adequately and efficiently model,

sequentially build via test–analyze–test, predict new

test events, and provide robustness when problems

arise in test execution. Figure 7 shows representative

designs in three factors, displaying example locations

of the points in the factor space. The red interior

points are center point runs often replicated to

estimate noise and test for possible curvature.

Optimal Designs

Optimal designs can take on many forms (e.g., A-,

D-, G-, or I-optimality) and are constructed via com-

puter algorithms intended to optimize some scalar
FIGURE 6 Connection between experimental design selected

and model complexity capability. (Color figure available online.)
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representation of the model matrix (X) in quadratic

form (X0X). A- and D-optimality are designed to mini-

mize statistics associated with regression coefficient

variances, whereas G- and I-optimal designs address

prediction variance properties. Although the com-

puter-generated optimal designs can be excellent for

their intended criterion, they do not directly address

many of the other design properties of interest (e.g.,

replication, number of factor levels, robustness to a

misspecified general model, aliasing, etc.). However,

optimal designs certainly have a role in situations

when no classical design well suits the needs of the

problem. In situations involving constraints on the

input space, nonstandard polynomial models,

unusual sample size requirements, mixed-level frac-

tional factorials, or small run design augmentation

schemes, optimal designs offer a flexible alternative

(Goos and Jones 2012; Johnson et al. 2011).

Figure 8 provides a checklist to assess success in

test design planning after completion of the process

planning. The emphasis in this phase is on sound

and efficient experimental designs that can consider

all relevant influences, uncover factor effects truly

influencing performance, and estimate system noise.

DOE IIb. Design Controls Risk of Wrong

Conclusions

The practical limitations on time and resources

together with the presence of system noise affects

outcomes and the ability to effectively measure factor

influence, presenting us with inescapable risks of

making wrong inferences based on the events

observed in testing. When shifts in performance are

observed via data analysis, one must decide whether

the shift is potentially due to a casual effect based on

purposed changes in factor(s) or whether the shift

instead is merely a product of the underlying noise

present.

Type I and II Errors

Designed experiments are unique in statistically

based studies in that it is possible to quantify and

manage the probabilities of incorrect conclusions

associated with hypotheses to test factor significance.

Convention states that the probability of wrongly

declaring a response shift due to factor changes when

the factor is not influential is the a, or Type I, error.

Conversely, the probability of failing to detect a shift

due to a factor when it truly exists is the b, or Type II,
error. Making correct decisions in the face of noise is

a hallmark of a well-designed experiment: the key is

setting a low a risk and then providing adequate test

resources to achieve high statistical power (1� b)
(Lenth 2001).

Complementary hypotheses are established to

quantify a and b risks. As an example, suppose a fac-

tor of interest in infrared air-to-air missile (AIM-9X)

performance is an operating environment concern,

background clutter (Figure 9). Suppose that clutter

can be controlled in a high-fidelity missile fly-out

simulation and one of the goals of the test is to deter-

mine whether clutter matters. A default hypothesis is

set (clutter does not matter), together with an alterna-

tive (clutter matters). So a is the probability of declar-

ing that clutter matters when it does not—it would

occur if clutter truly does not matter but a relatively

large change in performance (say miss distance) is

observed when clutter is purposefully changed. b is

determined by the probability, represented by an

area associated with the alternate hypothesis world

(clutter matters) of observing a small change in miss

distance when the true average change is actually

relatively large.

Relationship of a, b, r, d, and N

In order to compute b, the test team must

agree upon a minimally acceptable difference in

FIGURE 7 Classical experimental designs. (Color figure available online.)
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FIGURE 8 Phase IIa—Design evidence checklist. (Color figure available online.)

FIGURE 9 Hypothesis testing and statistical errors, a and b. (Color figure available online.)
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performance to be detected (d). In Figure 9, suppose

that the test team determined that it was important to

see a change in miss distance of at least 5 feet; b is

the area under the alternative world (clutter matters,

on average by d¼ 5), associated with average small

changes in miss distance. The a and b risks will

always be nonzero and are influenced not only by

d but by a number of other parameters.

Certainly the most important other parameter

influencing test risk associated with incorrect conclu-

sions is the total number of runs (N) contemplated

for a design. As a general rule, increasing well-placed

trials leads to higher power. More trials can result in

simultaneous reductions of a and b. Clearly d, the
change in performance that matters, also affects risk.

In that situation, a is usually set so power can be cal-

culated for increasing values of d (Lenth 2001). The

relationship between power and sample size is one

of marginal decreasing returns. Power grows drasti-

cally initially, but as the number of trials continues

to increase, power improvement slows. Assuming a

stable system under test and little chance of missing

data, trials to obtain power values above 95% are

usually not necessary.

Power Analysis

Determining the risk-controlled test size per objec-

tive is often referred to as a power analysis. Power

analysis involves mainly information gathering, a

series of decisions, and an iterative evaluation of

alternative experimental designs, primarily involving

test size and power, until a final test matrix is

developed (Lenth 2001). Power analysis requires

input from all four phases of the science of test:

the number of factors from planning; estimates of

r, a, and d from design; restrictions on randomiza-

tion from execution; and the complexity of the

assumed model from analysis. Power analysis begins

in process decomposition with identifying the factors

of interest, the levels of each factor, and the antici-

pated order of the model. Then system noise level

must be estimated, the a risk should be set, and the

sensitivity to changes in the response magnitude

(d) should be decided. Multiple sequential experi-

mental designs can then be developed and assessed

for statistical power. The final experimental design

evaluation will assess the evidence of a successful

design, including power. A summary description of

the parameters involved in a power analysis is

provided in Table 4.

The checklist shown in Figure 10 provides the

checklist for developing the final, multicriteria test

design along with the evidence table to use in asses-

sing the quality and level of effort of this phase of the

process.

Phase III. Execute Sequentially with
Randomization and Blocking to

Control Uncertainty

An often neglected aspect of planning for designed

experiments is managing the fashion in which the

design will be executed. Execution order and what

happens between tests can greatly influence the

purity of the data, the level of noise contributing to

experimental error, and the average time per test

event. Other concerns associated with execution

include replicating identical factor conditions, control-

ling measurement error, and ensuring independence

of data collected sequentially. Important execution

principles including randomization, blocking, covari-

ates, split-plot experiments, replication, and sequen-

tial experimentation are explained in this section.

Randomization

Background variability causes the responses to

have different outcomes for identical input settings.

Some known sources of variability are controlled via

planning by choosing to set them held constant for

the entire experiment, such as system operator. Typi-

cally unbeknownst to the experimenter, though, are

nuisance or lurking variables changing while the test

is being conducted. These influences can include

lot-to-lot variations in raw material and experimental

units, changes in the design or operation of the sys-

tem, learning, warm-up, wear-out, fatigue, boredom,

changes in environmental conditions, etc. Within a

homogeneous unit of experimental trials, the solution

to background changes is randomization. That is, the

order of the trials is randomized to ensure that factor

setting changes do not line up with, or become

influenced by, the background changes (Fisher 1935).

Blocking

Another important principle of experimentation

from Fisher (1935) is the concept of blocking, also
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known as local control of error. Sometimes the nuis-

ance sources of variability are not only known but

controllable for the purposes of testing. A standard

approach to execution is to break the total test

design into sets of trials that can be accommodated

by the experimental setup: number of tests per-

mission or field exercise, number of formulations

that batches of raw materials can accommodate, the

number of troop evolutions that can be run during

an exercise shift, etc. It has been noted that factors

serving as blocks are not usually factors of interest

but blocks also restrict complete randomization of

the design, a characteristic shared by HTC factors

of interest to be introduced momentarily.

Covariates

More complex patterns of experimental execution

can be implemented as well. Nuisance factors

thought to influence the response that are uncontrol-

lable but can be measured are treated as covariates.

TABLE 4 Power Analysis Parameters Description

Parameter Description How obtained Relevance in planning

k: factors Number of factors in the

experiment

Determined in planning Key finding from planning

dferror: model

error

Amount of data reserved for

estimating system noise

Desired model order (e.g.,

linear, quadratic)

Estimate of complexity of

input–output relation

a: alpha Probability of declaring factor

matters when it doesnot

Set by test team Fix and leave alone

d: delta Size of response change expert

wants to detect

Experts and management

determine

Some ability to vary

r: sigma System noise—run-to-run

variability or repeatability

Historical data; pilot tests;

expert judgment

System driven but can be

reduced by scripting

1� b: power Probability of declaring a factor

matters when it does

Lower bound set by test team Primary goal is to set N to

achieve high power

N: test size Number of samples or runs Based on other parameters Direct, should modify to satisfy

power

FIGURE 10 Phase IIb—Power analysis and design strategy evidence checklist. (Color figure available online.)
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Examples include environmental factors (wind,

temperature, humidity, sea state), system operator

characteristics (training, experience, skills), or

experimental unit condition (age, wear). Statistical

modeling involves the analysis of covariance that

essentially extracts the variation due to the covariates

prior to modeling the relationship between the fac-

tors of interest and the response. Like blocking,

analysis of covariance correctly deals with known

sources of nuisance variability separating them from

the model and from experimental error.

Split Plot Experiments

Hard-to-change factors that would otherwise argue

against complete randomization can be changed

according to an experimental design called a split-plot

design (see Jones andNachtsheim2009; Kowalski et al.

2007; Simpson et al. 2004). Split-plot designs are not

without drawbacks because the lack of complete ran-

domization weakens the cause-and-effect relationship

between the HTC factor and the response, but such

designs can maintain a well-defined relationship

between the easy-to-change (ETC) factors as well as

the HTC factor by ETC factor interactions. Examples

of HTC factors are hardware configurations, software

loads, product design settings, altitude, and oven tem-

perature. A key distinction between blocked experi-

ments and split-plot experiments is that, though both

restrict the randomization of runs, blocks are nuisance

sources of variation, whereas HTC factors are factors

whose effects are of interest.

Replication

As stressed in the design phase discussion, some

replication during the experiment is essential to esti-

mate pure error, the better form of experimental

error. Replicating design points requires that the fac-

tors be reinitiated or reset and typically replicates are

separated substantially in execution order under a

complete randomization scheme. By contrast, repeti-

tions consisting of collecting multiple data observa-

tions without resetting factor levels are not normally

recommended unless measurement error can be

mitigated by their use (e.g., surveys). If repetitions

are used incorrectly as replicates, the observations

are often correlated in time and experimental error

estimation from repetitions is biased downward.

Plan Using Sequential Experimentation

A series of tests conducted according to well-

understood principles is the best way to limit risk,

manage chaos, and maximize the likelihood of cor-

rect conclusions. The factor space for many systems

undergoing testing and evaluation is vast—dozens

of possible variables resulting in many thousands or

millions of possible unique test conditions. Testers

seldom know which of the variables will matter most

in driving system performance, though they may

have suspicions. Military testing shares this environ-

ment with many other domains, including product

design, basic research, and manufacturing or proces-

sing. Consequently, an experimental best practice is

to structure the overall test program in such a way

as to test in stages with appropriate objectives and

experimental designs for each stage, thereby provid-

ing periods for analysis, understanding, and redesign.

It is seldomwise to devote more than 25% of total test

resources to one experiment (Box et al. 2005;

Montgomery 2012). The information gained at each

stage of experimentation is invaluable in considering

how to continue the investigation. We can use the

output of early stages to accelerate our learning about

the process, validate (or improve) our various simula-

tions, and refine the active factor space for later stages

of testing. At the outset of the test, there is limited

knowledge of which factors are important, the appro-

priate factor level ranges, the degree of repeatability

or noise in the process, and many other facets.

Sequential experimentation helps build that knowl-

edge in stages so that the experimentation is increas-

ingly beneficial and in the end much more effective

than one-stage test.

Within each experimental environment, it is appro-

priate early on to outline a sequence of experiments.

Initially, the experiment objective is often to screen

many factors and identify the few that drive the pro-

cess outcome. Typically, just a few of many factors

considered to affect performance actually do so.

The testers may then wish to reduce the size of the

factor space explored in subsequent tests. Just as

important, we may discover unexpected features of

system performance such as nonlinear behavior,

unanticipated noise levels, isolated unusual runs that

do not conform to similar conditions, or aspects of the

factor space that are not well represented in this

early stage of experimentation (target backgrounds,
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natural environments, human reactions, etc.). An

example of sequential testing is given in Figure 11.

In the case of each of these test outcomes, we can

learn valuable lessons about process performance

that should be used to redesign and execute the next

stage of testing.

Some principles of sequential assembly include

the following:

. Screen with many factors, fewer levels, and simple

models—leverage efficiency

. Re-assess or improve test execution procedures to

better manage noise

. Revise factors (drop due to negligible effect or add

due to new area of interest), levels, or range based

on newfound knowledge

. Pause to assess noise, right-size testing to estimate

uncertainty, and adjust for identified lurking

variables

. Place next points where needed to better

model factors to responses or capture nonlinear

performance

. Validate or confirm predicted or unusual perfor-

mance with one or more confirmation runs

. Move in factor space to improve performance

. Allow for system repair and retest

. Experiment in natural groupings of test points and

employ blocking

. Make engineering or logic changes to simulations

because predicted performance was not validated

in live testing

A typical sequence of testing that should be outlined

at each stage may include screening, confirmation of

previous stage results, investigation, exploration,

and, lastly, prediction and confirmation. Each stage

should be appropriately budgeted and scheduled

in the test strategy up front. The checklist shown in

Figure 12 provides an assessment tool for the general

considerations of test execution.

Phase IV. Analyze Statistically to
Model Performance

Analysis of test data represents the fourth and final

step of the iterative cycle associated with design of

experiments. Most, if not all, of the analysis dis-

cussion is relevant to the process decomposition

and planning stages of testing. The steps for analyz-

ing test data are provided here so that it is clear not

only what should be emphasized post-data collection

during empirical modeling but also which seeds to

plant in the minds of the test team as the test is

planned and scoped. Analysis intent must be inte-

grated early in planninng or we suffer the conse-

quences of useless data and limited findings.

Justification for Statistical Modeling

A unique feature of tests constructed with statisti-

cally designed experiments methods is the ability

of the tester to link suspected causes to the observed

effects. That is, the test matrix is designed in such

a way as to effectively link changes in system

FIGURE 11 Sequential experimentation from screening, to decoupling, to second order and validation. (Color figure available online.)
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performance to the purposed changes in the input

factors. It is too strong to claim ‘‘cause-and-effect’’

relationships because statistical sampling precludes

such a statement, but verifiable association or corre-

lation can certainly be detected (Kutner et al. 2004).

Nonetheless, being able to link changes in perfor-

mance to factor effects is a powerful feature of

designed experiments and should be exercised rou-

tinely to maximize knowledge gained from testing.

The mechanism for characterizing and assessing this

relationship is the empirical statistical model. It turns

out that desirable properties of a statistical model

such as low uncertainty, the ability to correctly ident-

ify a factor as significant, and the ability to predict

performance within the factor space are heavily

dependent on the test points prescribed. So it is

essential to understand that the quality of the experi-

mental design and the strength of the analyses are

directly connected. As planning commences for a test

strategy, the design and model are properly pre-

sented in tandem to weigh strengths and weakness

of alternative designs and models (Figure 13).

The analysis process involves making sense of data

typically collected on a complex system in a foggy

environment. A fundamental challenge is to ascertain

the contributors to either dispersion or average of a

response in the presence of random noise. Analytical

tools provide a mechanism for determining likely

influential inputs, as determined by statistical signifi-

cance. System experts are relied upon to then decide

whether statistically significant factors have a corre-

spondingly sufficient practical significance. The steps

outlined below describe the analysis procedure for

assessing performance in the presence of purposed

or observed changes in inputs. Each step with the

exception of diagnostic verification (outside the

scope of this article) will be briefly discussed as they

relate to evidence of a well-designed test.

Analysis Steps

1. Exploratory data analysis

2. Iterative empirical modeling

3. Model diagnostic verification

4. Model prediction

5. Model validation

Exploratory Data Analysis.

Prior to formally modeling the potential input–

output relationship from a statistically designed

FIGURE 12 Phase III—Execution evidence checklist. (Color figure available online.)
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experiment, the data should be assessed using

graphics and summary statistics, a method called

exploratory data analysis (Tukey 1977). Unusual

observations are typically present and often difficult

to identify without careful examination of the

data. Helpful graphs include scatter plots in small

multiples of inputs versus outputs, histograms, and

box-whisker plots. Summary statistics including the

mean, standard deviation, percentiles, as well as the

median and median absolute deviation are useful.

An important first step in data analysis, exploratory

data analysis outcomes include suspected influential

inputs or even interaction effects, outlier identifi-

cation, measures of response central tendency, as

well as a sense of the distributional characteristics

of the parent population.

Empirical Modeling.

The analysis of data from a designed experiment is

relatively straightforward compared to analysis of a

retrospective or even an observational study. Neverthe-

less, reality tends to invade and alter sound test designs

via nuisance lurking variation, unaccounted for factors,

outliers, missing observations, and measurement error.

Fortunately, the design strategies together with the

resulting analytical tools are quite robust to these

routine outside influences. The standard approach to

analysis for a designed experiment is to build an

empirical statistical model. Least squares regression is

the default modeling method due to its ability to effec-

tively capture the factor effects and interactions while

remaining insensitive to modest violations of model

error assumptions (normality, independence, constant

variance). Alternative modeling techniques (discussed

later) can be employed as needed.

To illustrate the value of statistical modeling, con-

sider the DOE conducted to characterize the terrain

following=terrain avoidance capability of a tilt-rotor

CV-22 aircraft (Figure 14).

Among the factors are ride mode, airspeed, and

turn rate on the response altitude deviations, where

the deviations are an absolute percentage, as too

high or too low are equally detrimental. Based on

execution of a two-level, replicated factorial design,

an empirical regression model is built consisting of

the statistically significant model terms, where xi rep-

resent the coded unit (�1¼ low and þ1¼high) fac-

tor settings. The regression model can be depicted

directly or graphically as a response surface over

the range of input settings. Figure 15 shows the influ-

ence of airspeed and turn rate on altitude deviation.

Model Prediction.

The factor main effect and interaction plots can

provide a simple means for communicating the

essence of the relation between inputs and responses.

FIGURE 13 Relationship between example experimental designs and supported models. (Color figure available online.)

FIGURE 14 CV-22 flight test input–process–output diagram.

(Color figure available online.)
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The model is also useful to estimate or predict

outcomes for test point conditions anywhere across

the response surface, enabling the user to determine

input regions of superior and inferior performance

relative to an expectation or specification. More

important than point predictions are uncertainty

intervals, either confidence intervals for the average

response or prediction intervals for a future obser-

vation. Tolerance intervals can also be constructed if

the goal is to capture some high percentage (e.g.,

90%) of future observations with some high confi-

dence level. For the CV-22 example, suppose that

an aircrew has planned a mission involving an

airspeed of 210 knots in airplane mode, using hard

ride mode, and a turn rate of 3.0 degrees=second.

The predicted deviation from set clearance plane is

9.2% with a confidence interval lower bound of 8%

and upper bound of 10.4% (Figure 15).

From the CV-22 example, it is evident that the pro-

cess of design and analysis of experiments can satisfy

several fundamental objectives in testing. Ultimately

the test provides valuable information for postpro-

cessing. It is helpful to know during planning the

general purpose or objective for the analysis. Obvi-

ously the analysis objective comes directly from the

test objectives laid out in Phase I. For example, early

in testing the CV-22 terrain following=terrain avoid-

ance system, the goal might be to determine among

the many possible factors, which ones are largely

influential—a test objective called screening. The

plan, design, execute, analyze cycle can also have

as its primary analysis objective to characterize the

nature of the relationship between the significant fac-

tors and performance. Here the intent is typically to

understand the magnitude and direction (or sign)

of the relationship, whether interactions play a role,

and whether the input–output function is possibly

nonlinear. Once nonlinear response surfaces are

developed, the objectives often lead to a desire to

map or optimize the system. The guidelines used

and evidence to assess the quality of a test plan are

different depending on the analysis objective.

Model Validation.

Models constructed from even a well-designed test

are of no use if they fail to capture the system stud-

ied, so a critical analysis step is to validate the model

to ensure that it reflects true system performance. In

all situations, a small number (three to eight) of vali-

dation runs at factor conditions not previously tested

is highly recommended. The validation runs are

compared to predictions from the statistical model

to assess prediction performance. The executed

points should fall within the limits of the prediction

intervals or there is reason to believe that there is

more to learn. Validation runs should be explicitly

budgeted and scheduled and can be used to improve

model fit (Box et al. 2005).

Modeling for Success—Multiple Analysis

Techniques

Empirical modeling success is dependent on every

phase of the designed experiment process. All of the

relevant factors and appropriate levels must be ident-

ified in the planning phase. For the design phase, the

statistical model capability depends largely on the test

point allocation and adequate coverage of the factor

space via the experimental design. In the third phase,

execution, steps taken to mitigate noise and control

FIGURE 15 CV-22 example general model, response surface, regression model, and prediction. (Color figure available online.)
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lurking variable contamination via randomization

allow the statistical model to clearly reveal potential

causal factors. Lastly, in the analysis phase, a host of

analytical tools for modeling are at the ready to apply

and then compare relative to one another to deter-

mine the best model to validate and report in fully

capturing system behavior.

In many tests, standard least squares regression

modeling is the better choice. Usually least squares

works when the test was well planned, a subset of

the factors and their interactions are statistically

significant, and the regression model assumptions

are not grossly violated. Sometimes, though, it is

not clear which modeling technique is best, so com-

paring different model forms can be valuable. The

analyst has modeling alternatives (Table 5) to handle

almost any peculiarity of a test.

Other Considerations: Modeling Diversity

Due to Design, Factor, and Data Type

Variations

Although the modeling details are beyond the

scope of this article, it is important to plan for the

proper error structure of the model. Consider the

factor types themselves. Often fixed effects (e.g.,

material type, chemical ingredient, hardware variant)

are accompanied by random effects (e.g., operator,

hardware serial number), plus covariates, or variables

that can be observed but not controlled (e.g., tem-

perature, pressure, humidity). Designs with fixed

effects, random effects, and covariates require a

model form that allows for the proper analysis (mixed

models). In addition, factor levels may be difficult to

change (e.g., chamber temperature), so restricting the

randomization in execution is required. The proper

design is called a split plot and its analysis requires

estimating two error terms. Factors can also be nested

within each other. For example, airspeed is nested

within the nacelle setting for the CV-22 (low airspeed

in helicopter mode is not the same as low airspeed in

airplane mode). Finally, constraints on the input

space can occur because some factor combinations

are not feasible. If the restrictions are prevalent, sig-

nificant correlation among factors can exist, requiring

careful analysis.

Responses can also take on various alternative

forms. Althoughwe desire all responses to be continu-

ous variables that vary over a wide range and can be

collected with perfect accuracy, this is not always the

case. Sometimes a single response is actually a

sequence of measurements over time or space (e.g.,

radar cross section measurement of a target rotated

in aspect 360 degrees), so the performance is now a

function or profile (Chicken et al. 2009). Other times,

surveys such as aircrew feedback on a helmet display

are the primary response instrument. Consider

responses known to behave such that extreme values

occur up to 20% of the time, resulting in valid outliers.

In this case, perhaps an exponential generalized linear

model is a better modeling construct. A final class of

testing involves software-intensive systems such as

TABLE 5 Alternative Statistical Modeling Techniques for Unusual Factor or Response Conditions

Factor and response conditions Method alternative Strengths

Fixed and random factors General linear model For random effects and split plots

Outliers, heavy-tail responses Generalized linear models, robust

regression

Alternatives to normal errors and can

fit multiple outliers

Correlated factors Ridge or partial least squares

regression

Helps identify the correct model

factor influences

Noisy responses, many

categorical factors

Classification=regression trees

(CART), bagging

Provides insight when analysis of

variance fails, groups multiple

levels

Highly nonlinear response

surfaces, many factors

Multivariate adaptive regression

splines (MARS)

Complex model without over fit so

often predicts well

Deterministic responses Kriging For computer experiments

Functional (profile) responses Wavelets Excellent fit, few parameters,

variable selection

Very few runs with informative

historical data

Bayesian methods Leverages prior knowledge to make

inference from sparse data
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communication or automated mission planning sys-

tems. If the purpose is to assess software functionality,

the response is deterministic and has no noise compo-

nent; therefore, running replications adds no value to

the test. Alternative designs such as space filling and

factor covering arrays are suggested.

For complex nonlinear factor–response relation-

ships, a host of statistical learning methods are

available (Hastie et al. 2001), both parametric and

nonparametric. As the number of influential factors

grows (k> 4), and assuming that the experimental

design is capable of estimating second- or higher

order polynomials, consider using multivariate adapt-

ive regression splines. For deterministic response

computer simulations, a common modeling strategy

called kriging offers the flexibility to fit closely to

the data. In each of the above examples, though,

some alternative modeling techniques are worth con-

sidering. As the control over the points in the test

space is diminished and the study becomes more

observational in nature, consider additional modeling

techniques including robust or ridge regression

(Montgomery et al. 2012; Ryan 1997), and general-

ized linear models (Myers et al. 2012).

Description of Advanced Model-Based

Measurements

The purpose of this phase of designing a test is to

not only try multiple modeling strategies on the

available data but, more important, to plan the test

to maximize the chances of success in the test data

analysis. It is worthwhile to understand that the capa-

bility to properly analyze data from a design is best

accomplished during planning. Ultimately the user

benefits the most by a design strategy that controls

risk and supports the ability to build a viable and

capable model of performance throughout the

region of interest. There are several model-based

options to be considered in this analysis phase of

the experimental design.

A relatively new development in DOE is the frac-

tion of the design space (FDS) plot (Zahran et al.

2003). Such a plot shows the scaled variance of the

predicted response value for a given model type

and noise level as a function of the volume of the

design space. An ideal FDS plot is low and flat across

the design volume. The FDS plot shows how a pro-

posed design performs against this standard and is

particularly useful to compare competing designs

for the same factor space.

Of interest regardless of the analysis objective cate-

gory is the ability to uniquely estimate the regression

coefficients, enabled by orthogonal experimental

designs. As the factor effects, represented by the

columns of the X matrix, become more dependent

or correlated, the regression coefficient estimates

become more unstable, increasing their variance.

The correlation of the factor effects is easily measured

using the variance inflation factor. A variance

FIGURE 16 Phase IV—Analysis evidence checklist. (Color figure available online.)
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inflation factor of 1 is ideal, reflecting orthogonal

columns (Montgomery et al. 2012).

Benefits of Modeling

The analysis phase is often the least time consum-

ing and often easiest of the four test phases. Worry-

free analyses reflect the culmination of careful,

deliberate, and diligent efforts that transpired in plan-

ning, design, and execution. Experienced analysts

focus on a myriad of indicators that ultimately ensure

success in testing, success measured by the amount of

knowledge gained about the system under test. The

statistical model is extremely powerful, so what are

the benefits? The terms in the model best characterize

system performance while performance is robust or

insensitive to terms or factors not in the model. The

model provides information about conditions when

the system works well and when it may not work as

well. Figure 16 provides a checklist of the primary

analysis guidelines that should be addressed to

ensure effective statistical analysis of experimentally

designed tests.

CONCLUSIONS

The focus of this article was stochastic outcome test-

ing planned using statistically based DOE, but the vast

majority of the indicators can be easily adapted for

deterministic systems such as software functionality

test. A well-designed and appropriately analyzed

test or experiment has desirable characteristics that

distinguish it from most any other test strategy.

Planning the test effort with a multidisciplinary team

of experts cannot be overemphasized. In total, the

recommended designed experiment should be crafted

by seasoned analysts in tandem with experts in opera-

tions and science, conserve resources, accurately mea-

sure all of the relevant performance quantities, and

culminate in an empirical statistical model that effec-

tively resolves the existing relationships between the

purposefully changed factors and the measures of per-

formance. Data control should be rigorous, databases

should be retrieved securely and rapidly, and data

reduction should limit transcription error rates. Asso-

ciated criteria presented in the evidence checklists

for each of the planning stages should be established,

understood, and practiced for organizations to master

testing.

Once analysis, the final phase of planning, is com-

plete, a thorough evaluation of design alternatives is

recommended. Assuming that a design strategy has

been developed that carefully considers the coverage

of the factor space, execution order details, the statisti-

cal model form together with the analysis method(s),

the alternatives should all be viable. Worry-free analy-

ses reflect the culmination of careful, deliberate, and

diligent efforts that transpired in planning, design,

and execution. Therefore, the team can develop a

comparative table to evaluate the design alternatives.

Figure 17 provides design- and analysis-related

criteria for consideration to compare strategies with

FIGURE 17 Expanded list of design and model-based measurements. (Color figure available online.)
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similar objectives. Aspects of design, execution, and

analysis are addressed, including design optimality

measures, factor coverage, precise noise estimation,

and practical execution issues.

The evidence checklists form a foundation for

careful, consistent planning deliberation, leveraging

the precepts of the scientific method for the success-

ful application of design of experiments. One way

the checklists could be employed is to use the pri-

mary bolded bullets for planning and the sub bullets

for assessing. As such, evidence provided for each

planning phase can serve not only test teams up front

as a roadmap or procedure but as indicators to assess

plans developed for science of test excellence. Due

to the scope and limitations of this article, only the

essentials are addressed that should apply to the vast

majority of testing situations. Recognizing that all

experiments are different in the challenges they

present, adaptations, exceptions, and emphases are

expected. Future papers are encouraged to provide

more specifics or address specialty areas of experi-

ment planning such as split plots, robust design,

mixtures, or deterministic (e.g., software) systems.
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