
IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023                   ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  47 | P a g e  

Reinforcement Deep Learning Approach for Multi-User 

Task Offloading in Edge-Cloud Joint Computing Systems 
1Kiran Kumar Patibandla, 2Rajesh Daruvuri 

1Visvesvaraya Technological University (VTU), India 
2Google Inc, USA 

Corresponding Author: 1 kirru.patibandla@gmail.com, 2venkatrajesh.d@gmail.com  

 

Abstract: To enhance system utility in multi-user task 

offloading, a reinforcement deep learning-based task 

offloading scheme within an edge-cloud joint computing 

framework is proposed. This scheme leverages deep 

reinforcement learning to optimize the collaborative allocation 

of resources between edge and cloud, improving decision-

making for task offloading modes. A reinforcement learning 

algorithm based on submodular theory is developed to fully 

utilize both computing and communication resources in edge 

and cloud environments. Simulation results show that the 

proposed scheme significantly reduces execution delays and 

energy consumption. Even under resource-constrained 

conditions with multiple users, the system maintains stable 

performance and high efficiency. 
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I. INTRODUCTION 

With the rapid advancement of artificial intelligence and 

Internet of Things (IoT) mobile applications, services that 

demand substantial computational power and communication 

resources—such as natural language processing, augmented 

reality, facial recognition, and behavior analysis—are 

increasingly prevalent on mobile devices. However, mobile 

devices face inherent limitations in battery life, computational 

capacity, and storage, making it challenging to meet the ultra-

low latency and low energy consumption requirements of these 

applications. This discrepancy between the demands of 

resource-intensive applications and the constraints of mobile 

devices presents significant challenges for the current and 

future development of IoT mobile applications [1-3]. To 

address these challenges, Mobile Cloud Computing (MCC) has 

emerged as a viable solution [4-5]. MCC allows mobile devices 

to offload computational tasks to cloud servers, which possess 

greater computational capabilities, thus alleviating the 

limitations of mobile devices and reducing energy 

consumption. However, the physical distance of cloud servers 

from mobile users often results in increased transmission times 

and energy consumption during data exchanges. For specific 

applications, such as voice recognition and smart 

environmental control, extended delays can adversely affect 

user experience and overall application performance. 

To overcome the limitations of MCC, the European 

Telecommunications Standards Institute (ETSI) introduced 

Mobile Edge Computing (MEC) [6-7]. MEC, a cornerstone 

technology of 5G, situates computing and storage services 

closer to users by deploying servers at edge locations, including 

nearby gateways and base stations. This approach effectively 

meets the demands for high computational power, storage, 

reliability, mobility support, and low latency [8-10]. By 

offloading computational tasks from mobile devices to 

resource-rich MEC servers, MEC accelerates task execution 

[11-12]. Nonetheless, MEC's limited communication 

capabilities and constrained server resources can lead to 

degraded user experiences if edge servers are overloaded [13-

14]. A hybrid edge-cloud computing model that leverages the 

strengths of both cloud and edge computing offers a promising 

approach to meeting contemporary application demands. 

However, balancing the load between cloud and edge 

computing while maintaining service quality presents a critical 

challenge [15-16]. In this paper, we propose a multi-user task 

offloading scheme based on edge-cloud joint computing. This 

scheme addresses user task offloading decisions and the 

allocation of communication and computational resources 

between the edge and cloud, with the objective of maximizing 

system utility.  

 
Figure 1: Multi-User Task Offloading Framework for Edge-

Cloud Joint Computing 
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The main contributions of this paper are as follows: 

1. We formulate the task offloading and resource 

allocation problem as a mixed-integer nonlinear 

programming (MINLP) problem focused on user 

quality of experience (QoE). The objective is to 

maximize system utility through the joint optimization 

of user task offloading decisions, transmission power, 

edge node computing resource allocation, and 

backhaul communication resource allocation. 

2. We decompose the original system utility 

maximization problem into two subproblems: 

resource allocation with fixed task offloading 

decisions and task offloading decisions with 

optimized resource allocation. The resource allocation 

subproblem is further divided into transmission power 

allocation for users, computing resource allocation at 

the edge, and transmission bandwidth allocation in the 

core network, which are addressed using quasi-convex 

and convex optimization techniques. 

3. By analyzing the system utility function, we 

demonstrate that the function is submodular 

concerning offloading decisions. Leveraging 

submodular theory, we develop a greedy offloading 

strategy algorithm to resolve the task offloading 

decision problem. Simulation results reveal that the 

proposed edge-cloud joint computing scheme 

effectively reduces task execution delays and energy 

consumption while maintaining stable system utility 

under resource-constrained conditions. 

Numerous studies, both domestic and international, have 

explored task offloading in mobile cloud computing (MCC) 

and mobile edge computing (MEC). For instance, some 

research examined multi-user task offloading in dynamic 

environments, modeling it as an evolutionary game due to 

channel interference when multiple IoT devices offload tasks 

simultaneously. They proposed a reinforcement learning-based 

evolutionary game algorithm to tackle the offloading decision 

problem. Another study addressed task offloading in vehicular 

edge computing networks, investigating how vehicles 

determine offloading strategies in real-time in dynamic 

environments through a non-cooperative game while 

considering the distance to edge access points. A distributed 

best response algorithm was devised to maximize utility for 

each vehicle. Additional literature explored user offloading in 

a three-tier architecture for mobile and ubiquitous computing 

scenarios, proposing a distributed equilibrium algorithm for 

making offloading decisions. Other studies modeled multi-user 

task offloading in MCC as a stochastic game, considering users' 

self-interested behavior in dynamic environments to resolve 

their offloading decisions. Research also investigated joint 

optimization of offloading in MEC and cloud environments 

using game-theoretic approaches; however, these studies 

primarily optimized user offloading decisions within a layered 

framework without addressing resource allocation between 

edge and cloud computing. 

While these studies provide solutions for user offloading 

decisions, many primarily focus on offloading strategies and 

overlook the allocation of limited communication and 

computing resources. Some literature has begun addressing this 

gap by studying task offloading in multi-channel, multi-user 

environments under wireless interference, proposing 

distributed offloading algorithms that also consider edge cloud 

resource allocation. Other research has proposed joint 

optimization strategies to minimize energy consumption by 

combining offloading, subcarrier allocation, and computing 

resource distribution. Additional studies have offered solutions 

that jointly optimize partial task offloading and resource 

allocation to reduce overall task execution latency. Further, 

some research introduced three-step algorithms that combine 

semi-definite relaxation, alternating optimization, and 

continuous tuning to jointly optimize task offloading and 

resource allocation, thus minimizing both energy consumption 

and latency. Other studies have focused on cost and delay 

reduction in task offloading within MEC, proposing multi-

objective algorithms for offloading and resource allocation. 

In summary, prior research can be categorized into two 

main aspects: (1) optimizing offloading decisions without 

considering resource allocation and (2) jointly optimizing 

offloading decisions and resource allocation for either cloud or 

edge computing. However, in practical applications, as the 

number of users offloading tasks increases, the limited 

computing capacity of edge nodes and constrained bandwidth 

of remote clouds can lead to significant delays [1]. Therefore, 

this study focuses on task offloading within an edge-cloud joint 

computing environment, optimizing user offloading decisions, 

edge and cloud resource allocation, and core network 

bandwidth distribution. Our proposed method addresses 

challenges in both edge and cloud computing, offering broader 

applicability. 

II. SYSTEM MODEL 

As shown in Figure 1, this paper presents the system model of 

a task offloading framework based on edge-cloud joint 

computing. The system model consists of a macro eNode B 

(MeNB) and multiple terminal device users within its coverage 

area. The MeNB is equipped with an edge computing server 

and is connected to a remote cloud server via the core network. 

The set of users covered by the MeNB is defined as 𝑈 =
 {1, 2, … , |𝑈|}, where 𝑢 ∈  𝑈 represents a specific user in the 

set. 
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Each user 𝑢 has a computational task 𝑇𝑢 = {𝑑𝑢, 𝑐𝑢 }, which is 

indivisible. Here, 𝑑𝑢 is the amount of data required for task 

execution (such as system settings, parameters, and program 

codes), and 𝑐𝑢 represents the computing resources required to 

complete the task (e.g., the total number of CPU cycles 

needed). Each user can choose among three task execution 

modes: 

1. Local computation: The task is processed on the user's local 

device. 

2. Edge computation: The task is offloaded to the MeNB and 

processed by the edge computing server. 

3. Cloud computation: The task is first offloaded to the MeNB, 

then transmitted via the core network to the remote cloud server 

for processing. 

The offloading decision for each user is defined by the variable 

𝑥{𝑢,𝑗} ∈  {0, 1}, where  𝑥{𝑢,𝑗} = 1 indicates that user 𝑢 chooses 

mode 𝑗 for computation, and 𝑥{𝑢,𝑗} = 0 indicates otherwise. The 

modes are defined as: 𝑗 = 0 for local computation, 𝑗 = 1 for 

edge computation, and 𝑗 = 2 for cloud computation. 

II.1. Local Computation 

Let 𝑓𝑢 denote the computing capability of user 𝑢's local device, 

and 𝑡𝑢
𝑙  represent the time required for the user to complete the 

task locally. The time for local task execution is therefore given 

by: 

𝑡𝑢
𝑙 =

𝑐𝑢

𝑓𝑢
𝑙
 

According to the literature [20,28], the energy consumption for 

user 𝑢 to execute task  𝑇𝑢 locally can be expressed as: 

𝐸𝑢
𝑙 =  𝑃𝑢

𝑙 ⋅  𝑡𝑢
𝑙   

where 𝐸𝑢
𝑙  is the energy consumption for local computation, and 

𝑃𝑢
𝑙  is the power consumption of user 𝑢′𝑠 local device during 

task execution[28-29]. The value of 𝑃𝑢
𝑙  depends on the chip 

architecture and CPU frequency of the local device and can be 

determined through experiments [31-32]. 

In the context of Deep Reinforcement Learning (DRL) 

implementation, we can represent the offloading decision-

making process as an agent learning to maximize utility through 

interactions with the environment. The objective function can 

be formalized as: 

𝑅 =  𝐸{𝑙 𝑢} −  𝜆 ⋅  𝑡{𝑙 𝑢} 

where 𝑅 is the reward obtained from the offloading decision, 

and 𝜆 is a penalty factor for the latency associated with local 

computation. The agent will learn to adjust 𝑥{𝑢𝑗} based on the 

rewards obtained through this equation, enabling it to optimize 

task execution across different modes efficiently. 

II.2. Edge Computing with Deep Reinforcement 

Learning Implementation 

When users choose to offload tasks to the edge or the cloud, the 

total completion time for a task includes several components. 

For edge computing, the total time consists of: 1) the time 

required for the user to upload the computing task to the MeNB, 

denoted as 𝑡{𝑢𝑝}
𝑒 ; 2) the execution time of the user’s task at the 

MEC, denoted as 𝑡{𝑒𝑥𝑒}
𝑒 ; and 3) the time taken to transmit the 

completed task results from the MEC back to the user's device. 

If the task is offloaded to the cloud for execution, the total 

completion time includes: 1) the time to upload the computing 

task from the MeNB to the cloud, denoted as 𝑡{𝑢𝑝}
𝑐 ; 2) the 

execution time of the user’s task in the cloud, 𝑡{𝑒𝑥𝑒}
𝑐 ; and 3) the 

time to transmit the completed results from the cloud back to 

the MeNB. Generally, the size of the output results from a 

completed task is much smaller than that of the task's input, and 

since the downlink transmission speed is typically much greater 

than the uplink speed, we will ignore the transmission time 

from the cloud to the MEC and from the MEC to the user 

device[29, 33-34]. 

In this context, we consider a multi-user Orthogonal 

Frequency Division Multiple Access (OFDMA) system for 

uploading tasks. In this system, each channel is orthogonal, 

which allows us to neglect interference within the cell. Let 𝐵 

denote the uplink bandwidth of the wireless link in the system; 

the uplink bandwidth available to each user can be represented 

as  =  𝐵/𝑁 , where 𝑁 is the number of users in the cell. 

Consequently, the uplink transmission rate for user 𝑢 with task 

𝑇𝑢 is given by: 

𝑅𝑢
𝑢𝑝

=
𝑝𝑢ℎ𝑢

𝜎0  +  1
  

where 𝑝𝑢 represents the transmission power of user 𝑢 when 

uploading a task with input 𝑑𝑢, with 0 <  𝑝𝑢 ≤  𝑃𝑢 (the 

maximum allowed transmission power); ℎ𝑢 denotes the uplink 

channel gain between user 𝑢 and the base station; and 𝜎0
2 

represents the background noise power. 

From equation (3), the uplink transmission time 𝑡{𝑢𝑝}
𝑒  for user 

𝑢 offloading task 𝑇𝑢 to the MeNB is: 

𝑡{𝑢𝑝}
𝑒 =

𝑑𝑢

𝑅𝑢
{𝑢𝑝}

  



IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023                   ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  4 | P a g e  

Next, we examine the execution time of user 𝑢′𝑠 task 𝑇𝑢 at the 

MEC. Let 𝑓𝑒 denote the upper limit of computing resources 

available at the MEC server, which indicates the total number 

of CPU cycles available. All users offloading tasks to the MEC 

server share the computing resources. We define the amount of 

computing resources allocated to user 𝑢 as 𝑓𝑢
𝑒, ensuring 𝑓𝑢

𝑒 >
0. Due to the limited computing resources of the MEC server, 

the total computing resources allocated to all users offloading 

tasks must not exceed 𝑓𝑒. Thus, the following constraint must 

hold: 

∑

{𝑢∈ 𝑈𝑒}

𝑓𝑢
𝑒 ≤  𝑓𝑒  

where 𝑈𝑒 is the set of users who have chosen to offload their 

tasks to the edge for execution. Given the allocated computing 

resources 𝑓𝑢
𝑒, the computation time 𝑡𝑒𝑥𝑒

𝑒  for task 𝑇𝑢 at the MEC 

server can be expressed as: 

𝑡𝑒𝑥𝑒
𝑒 =

𝑐𝑢

𝑓𝑢
𝑒

 

Combining equations (4) and (6), we can determine the total 

delay 𝑡𝑢
𝑒 for user 𝑢 when selecting edge computing for task 

offloading, given the transmission power 𝑝𝑢: 

𝑡𝑢
𝑒  =  𝑡𝑢𝑝

𝑒  +  𝑡𝑒𝑥𝑒
𝑒   

The energy consumed 𝐸𝑢
𝑒 by the user during the edge 

computing process can be expressed as: 

𝐸𝑢
𝑒 =  𝑝𝑢 ⋅  𝑡𝑢𝑝

𝑒  

 

Deep Reinforcement Learning Implementation 

In order to optimize the task offloading decisions and resource 

allocation, we can employ a Deep Reinforcement Learning 

(DRL) framework. The state 𝑠𝑡 at time 𝑡 can represent the 

current system conditions, including the number of users, their 

resource demands, and the current state of resources available 

at the edge and cloud. The action 𝑎𝑡 can denote the decisions 

made regarding task offloading (to either edge or cloud), and 

the reward 𝑟𝑡 can be defined based on the total time delay and 

energy consumption.  

The Q-learning update rule can be defined as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠_𝑡, 𝑎_𝑡)  
+ 𝛼 [ 𝑟𝑡  + 𝛾 𝑚𝑎𝑥𝑎

′  𝑄(𝑠𝑡+1, 𝑎′)  
−  𝑄(𝑠𝑡 , 𝑎𝑡)] 

where 𝛼 is the learning rate, 𝛾 is the discount factor, and 𝑠𝑡+1 

is the next state after taking action 𝑎𝑡. This framework allows 

for the continuous adaptation of task offloading strategies based 

on dynamic changes in user requirements and resource 

availability, ultimately optimizing both delay and energy 

consumption in edge computing scenarios. 

II.3. Cloud Computing 

When users opt for cloud computing to offload tasks, let 𝑐𝑢𝑓 

denote the computational resources allocated by the cloud for 

the offloaded task 𝑇𝑢. Although the cloud possesses substantial 

computational resources, the volume of task requests 

necessitating cloud computing is considerable. Consequently, 

the cloud allocates fixed and limited computational resources 

to each user. In this study, 𝑐𝑢𝑓 is defined as a fixed size equal 

to the maximum computational resources the cloud can allocate 

to the user. Thus, similar to Equation (6), the execution time of 

the user task in the cloud, denoted as 𝑒𝑥𝑒(𝑐𝑢𝑡), can be 

expressed as: 

𝑒𝑥𝑒(𝑐𝑢𝑡)  =  𝑇𝑢/𝑐𝑢𝑓 

Given that executing user tasks in the cloud requires data to be 

transmitted through the core network to the remote cloud 

server, the total upload delay when selecting the cloud 

execution mode can be formulated as: 

𝑢𝑝(𝑐𝑢)  =  𝑢𝑝(𝑒𝑢𝑡)  +  𝑢𝑝(𝑒𝑐𝑢𝑡)  

Here, 𝑢𝑝(𝑒𝑢𝑡) represents the time taken for the task to be 

offloaded from the user device to the MeNB (Macro eNodeB), 

while 𝑢𝑝(𝑒𝑐𝑢𝑡) denotes the time required to transmit the task 

from the MeNB to the cloud. The variable 𝑐𝑅𝑢 signifies the 

transmission rate allocated to user 𝑢 by the core network. 

Considering the total transmission bandwidth of the core 

network is limited, the constraint on 𝑐𝑅𝑢 can be expressed as 

follows: 

∑

{𝑢∈𝑈}

𝑐𝑅𝑢 ≤  𝐶𝑅   

where 𝑈 =  {𝑢 |𝑥𝑢 ∈  {0,1}} denotes the set of users choosing 

to offload tasks to the cloud, and 𝐶𝑅 represents the total 

transmission bandwidth of the core network. Based on 

Equations (9) and (10), the total delay for users choosing the 

cloud computing mode for task offloading is given by: 

𝑡𝑐 = 𝑡𝑢𝑝(𝑢)  +  𝑒𝑥𝑒(𝑐𝑢𝑡)  

Since energy consumption occurs only when users upload tasks 

to the MeNB, the energy consumption incurred by users 

employing the cloud computing mode is represented as: 
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𝐸𝑐 =  𝑃𝑢 ⋅  𝑑𝑢  

 

II.4. System Utility Maximization Problem Based on 

Edge-Cloud Joint Computing 

In the edge-cloud joint computing framework, users' Quality of 

Experience (QoE) is primarily reflected by the latency and 

energy consumption associated with task completion. Based on 

the computational offloading models and user preferences 

discussed in Sections 3.1 to 3.3, we define the utility function 

for user 𝑢 as follows[29-30]: 

𝑉𝑢  =  (1 − 𝛽𝑡𝑢
) ⋅ (𝑡𝑢 − 𝑡𝑒 )  + 𝛽𝑡𝑢

⋅ 𝐸𝑢 

In this equation, 𝛽𝑡𝑢
 and 𝛽𝑒𝑢

 represent the user’s preference 

weights for the latency and energy consumption incurred in 

completing the task, with 𝛽𝑡𝑢
, 𝛽𝑒𝑢

∈  [0,1] and 𝛽𝑡𝑢
 + 𝛽𝑒𝑢 

=  1 

\) for all 𝑢 ∈  𝑈. For instance, when user 𝑢 has a short battery 

life, they may prefer to increase 𝛽𝑒𝑢
 at the expense of latency 

to conserve energy. Based on the utility function for user 𝑢, the 

system utility function is defined as: 

𝑉 = ∑

{𝑈}

{𝑢=1}

𝑉𝑢   

The aforementioned system utility function model involves the 

allocation of communication resources, edge server 

computational resources, and cloud transmission resources. It 

considers both user utility and the resource allocation concerns 

of providers. Consequently, the system utility maximization 

problem based on edge-cloud joint computing can be 

represented as: 

{𝑉  𝑠. 𝑡 𝐶1  𝑥𝑢 ∈ {0, 1}; ∀ 𝑢 ∈ 𝑈 𝐶2 ; 0 ≤ 𝐸𝑢 𝐶3;  0 ≤ 𝐸𝑢 𝐶4; 0

≤ 𝑓𝑢 𝐶5; 𝑅𝑢 > 0 𝐶6; ∑ 𝐸𝑢 ≤ 𝐸𝑚𝑎𝑥  𝑢

∈ 𝑈 ∑ 𝑐𝑢𝑣𝑢 ≤ 𝐶𝑅  𝑢 ∈ 𝑈  

 

In the above system utility maximization problem, the 

offloading decision 𝑥 is combined with the optimization of 

communication and computational resources. Since the 

offloading decision 𝑥 is a binary vector and 𝑓, 𝑝, 𝑅 are 

continuous vectors, the optimization problem represented in 

Equation (15) is a Mixed-Integer Nonlinear Programming 

(MINLP) problem[35]. Given the structure of the optimization 

problem, when the values of the offloading decision 𝑥 are fixed, 

the complex original optimization problem can be decomposed 

into a primary problem and a series of subproblems with lower 

complexity[36]. Therefore, the problem shown in Equation 

(15) can be transformed into: 

𝑚𝑎𝑥 𝑉𝑢 𝑠. 𝑡.  𝐶1, 𝐶2 ∼ 𝐶6 

As the constraints 𝐶1 for the offloading decision and constraints 

𝐶2 ∼ 𝐶6 for resource allocation strategies are separable, the 

optimization problem shown in Equation (16) can be divided 

into a primary problem and subproblems, represented in 

Equations (17) and (18): 

{𝑉𝑥   𝑠. 𝑡. 𝐶1  

𝑣𝑢   𝑠. 𝑡. 𝐶2  ∼ 𝐶6 

Decomposing the optimization problem in Equation (15) into 

the optimization problems in Equations (17) and (18) does not 

alter the optimal solution[36]. Next, we will provide solution 

methods for the optimization problems in Equations (17) and 

(18) to ultimately solve the problem in Equation (15). 

II.5. Joint Optimization of Edge-Cloud Resources with 

Deep Reinforcement Learning Implementation 

In this section, we reformulate the optimization problem based 

on the given offloading decision 𝑥. According to Equation (14), 

the optimization problem in Equation (18) can be transformed 

into: 

𝑚𝑎𝑥{𝑢∈ 𝑈} 𝑚𝑎𝑥{𝛽∈ 𝑅,𝑓∈ 𝑅,𝑝∈ 𝑅} 𝑉(𝐼(𝑥, 𝑝, 𝑓, 𝑅, 𝛽))  

− ∑

{𝑢∈ 𝑈}

𝛽𝑢 𝐼(𝑥, 𝑝, 𝑓, 𝑅)  

Where 𝐼(𝑥, 𝑝, 𝑓, 𝑅) is defined as: 

𝐼(𝑥, 𝑝, 𝑓, 𝑅)  = ∑

{𝑢∈ 𝑈}

𝐸𝑒,𝑢  +  𝐸𝑐,𝑢

𝑡𝑒,𝑢  +  𝑡𝑐,𝑢

 

Given the offloading decision 𝑥, the term ∑{𝑢∈ 𝑈} 𝛽𝑢  is 

constant. Thus, we can reformulate the problem as a 

minimization of 𝐼(𝑥, 𝑝, 𝑓, 𝑅): 

𝑚𝑖𝑛{𝑝,𝑓,𝑅} 𝐼(𝑥, 𝑝, 𝑓, 𝑅)𝑠. 𝑡.  𝐶2 ∼ 𝐶6 

From Equations (1) to (13), we can derive the following: 
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𝐼(𝑥, 𝑝, 𝑓, 𝑅)  +  𝑙𝑏(1)  

= ∑

{𝑢∈ 𝑈}

(𝑝𝑢  +  𝑓𝑒,𝑢)

𝑐𝑢

   + ∑

{𝑢∈ 𝑈}

𝑑𝑢 𝑓𝑢   

+ ∑

{𝑢∈ 𝑈}

𝑅𝑢  

Where 𝑑𝑢  =  𝑊 ⋅ 𝛽𝑢,𝑒𝑢  =  𝑊 ⋅ 𝜓𝑢 , 𝛾𝑢  =  0 

From the form of Equation (22), we observe that when a 

specific offloading strategy 𝑥 is given, the third term on the 

right side of Equation (22) is a constant. The allocation of 

upload transmission power 𝑝𝑢, edge computing resources 𝑓𝑒,𝑢, 

and core network transmission bandwidth 𝑅𝑢 can be decoupled 

in the objective function and constraints. Thus, the optimization 

problem in Equation (21) can be transformed into three 

independent optimization problems: 

1. Upload transmission power allocation. 

2. Edge computing resource allocation. 

3. Core network transmission bandwidth allocation. 

 

II.5.1. Upload Transmission Power Allocation 

Problem 

 

The optimization problem for upload transmission power 

allocation is expressed as: 

𝑚𝑖𝑛{𝑝𝑢} 𝐼(𝑝𝑢) 𝑠. 𝑡.  𝐶2: 0 ≤  𝑝𝑢  <  𝑃𝑢 ∀ 𝑢 ∈ 𝑈 

Where: 

𝐼(𝑝𝑢)  = ∑

{𝑢∈ 𝑈}

𝑝𝑢 +  𝑙𝑏(1)

𝜙 + 𝜓
  

For quasi-convex problems like this, a bisection method can 

typically be employed for solving[37]. The local optima found 

at the decreasing points of the first derivative of a quasi-convex 

function are global optima[38]. Based on Lemma 1, we can 

determine that the optimal upload transmission power 𝑝𝑢
∗  must 

either be at the constraint boundary, i.e., 𝑝𝑢
∗ =  𝑃𝑢, or satisfy the 

condition 𝐼′(𝑝𝑢) = 0. When 𝐼′(𝑝𝑢)  =  0, we can deduce that: 

𝐼(𝑝𝑢) =  𝑙𝑏(1)  +
(1 − 𝛾𝑢)(1 −  𝑙𝑛(2))

𝑝𝑢

 

Considering the first derivative of 𝐼(𝑝𝑢): 

𝐼′′(𝑝𝑢)  >  0 

Thus, 𝐼(𝑝𝑢) is a monotonically increasing function with an 

initial value of 𝐼(0)  <  0. Therefore, we design a low-

complexity bisection method to compute 𝐼(𝑝𝑢) iteratively to 

find the optimal solution 𝑝𝑢
∗ . 

Algorithm 1: Bisection Algorithm for User Transmission 

Power Allocation 

Input: User maximum transmission power limit 𝑃𝑢   

Output: User transmission power 𝑝𝑢
∗   

1. Calculate 𝐼(𝑃𝑢) 

2. If 𝐼(𝑃𝑢) ≤  0 then 

  𝑝𝑢
∗  =  𝑃𝑢  

3. Else 

     Initialize 𝑝𝑏 = 0 and 𝑝𝑡  =  𝑃𝑢 

4. Loop 

      𝑝∗ =
{𝑝𝑏 + 𝑝𝑡}

{2}
 

5. If 𝐼(𝑝∗) ≤  0  then  

     𝑝𝑡  =  𝑝∗ 

6. Else  

     𝑝𝑏  =  𝑝∗ 

7. End Loop until |𝑝𝑡 − 𝑝𝑏| ≤  𝜖 

 

II.5.2.  Edge Computing Resource Allocation 

Problem 

The optimization problem for edge computing resource 

allocation is expressed as: 

𝑚𝑖𝑛{𝑓𝑒,𝑢} 𝐼(𝑓𝑒,𝑢)  𝑠. 𝑡.  𝐶3: ∑

{𝑢∈ 𝑈}

 𝑓𝑒,𝑢 ≤  𝐹 𝐶4: 𝑓𝑒,𝑢  >  0  ∀ 𝑢

∈ 𝑈 

Where: 

𝐼(𝑓𝑒,𝑢)  = ∑

{𝑢∈ 𝑈}

𝑓𝑒,𝑢

𝑓𝑢

 



IJRECE VOL. 11 ISSUE 3 JULY-SEPT 2023                   ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  7 | P a g e  

 

II.5.3.  Core Network Transmission Bandwidth 

Allocation Problem 

The optimization problem for core network transmission 

bandwidth allocation is expressed as: 

𝑚𝑖𝑛𝑅𝑢
 𝐼(𝑅𝑢)𝑠. 𝑡.  𝐶5: ∑

{𝑢∈ 𝑈}

𝑅𝑢 ≤  𝑅  𝐶6: 𝑅𝑢  >  0  ∀ 𝑢 ∈  𝑈 

Where: 

𝐼(𝑅𝑢)  = ∑

{𝑢∈ 𝑈}

𝑑𝑢𝑓𝑢

𝑅𝑢

 

When given an offloading decision vector 𝑥, the optimization 

problem in Equation (29) is convex, and the optimal resource 

allocation 𝑅𝑢
∗  along with the optimal objective function value 

𝛷∗(𝑅𝑢) is given by: 

𝑅𝑢
∗  =  𝑑{𝑡,𝑙} ⋅  𝑓𝑢 { ∑

{𝑢∈ 𝑈}

𝑑𝑢 } 

𝛷∗(𝑅𝑢)  = ∑

{𝑢∈ 𝑈}

𝑑𝑢𝑓𝑢

𝑅𝑢

 

II.6. Task Offloading Strategy Algorithm for Joint 

Resource Allocation with Deep Reinforcement 

Learning Implementation 

In Section 2.5, given an offloading strategy x, we can determine 

the optimal allocation of upload transmission power 𝑢𝑝, edge 

computing resources 𝑒𝑢𝑓, and core network transmission 

bandwidth 𝑐𝑅𝑢. Based on equations (17) to (32), we can derive: 

𝑉∗  = ∑

{𝑢∈ 𝑈}

∑

{𝛽∈𝛬}

𝑓(𝑢, 𝛽)    − ∑

{𝑒∈ 𝐸}

∑

{𝑐∈ 𝐶}

( 𝑒𝑐  +  𝑢𝑢  

+  𝑐𝑢)   ⋯  

Substituting equation (33) into equation (17), the problem of 

maximizing the system utility for equation (17) can be 

expressed as: 

According to Theorem 1, the above system utility 

maximization problem represented in equation (34) can be 

proven to be NP-hard[39-40]. To address this problem, we 

propose a greedy offloading strategy algorithm based on 

submodular theory to find an approximate solution for problem 

(34)[41-42]. 

Algorithm 2: Greedy Offloading Strategy Algorithm Based on 

Submodular Theory 

Input: Each user's transmission power 𝑢𝑝
∗  , local computing 

device parameters 𝑙{𝑃𝑢}, 𝑙{𝑢𝑓}, user task parameters 𝑢𝑑 , 𝑢𝑐, 

allocated computing resources 𝑐{𝑢𝑓} for users, total 

transmission bandwidth 𝑐𝑅, and MEC server computing 

resources 𝑒𝑓. 

Output: Offloading decision sets 𝑒𝑋 and 𝑐𝑋  

1. Initialization: Set 𝑒𝑋  = ∅ and 𝑐𝑋  = ∅ 

2. Loop 

3. For all users  𝑖 ∈  𝑈 

4. Calculate 𝛥𝑉(𝑋𝑒 ∪  𝑋𝑐) \) 

5. Set 𝑖∗ =  𝑎𝑟𝑔 𝑚𝑎𝑥 𝛥𝑉(𝑋𝑒 ∪  𝑋𝑐) 

6. If 𝛥𝑉(𝑥𝑖  | 1)  > 𝛥 𝑉(𝑥𝑖  | 2) 

7. Set 𝑒𝑋 = 𝑒𝑋 ∪  𝑖∗ 𝑎𝑛𝑑 𝑈 =  𝑈 ∖ 𝑖∗ 

8. Else 

9. Set 𝑐𝑋 = 𝑐𝑋 ∪  𝑖∗ 𝑎𝑛𝑑  𝑈 =  𝑈 ∖ 𝑖∗  

This implementation using Deep Reinforcement Learning 

allows for adaptive learning and decision-making in the context 

of task offloading, considering dynamic changes in the system. 

The equations can be integrated within a reinforcement learning 

framework to optimize resource allocation further. 

 

II.7. Algorithm Time Complexity Analysis 

For Algorithm 1, which is the binary search method for user 

transmission power distribution, when 𝛺(𝑃𝑢) ≥ 0, the 

computation of 𝑝𝑢
∗  requires 𝑂 (

𝑙𝑜𝑔 𝑃𝑢

𝜀
) iterations for 

convergence, where 𝜀is the convergence threshold. Thus, the 
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time complexity of the user transmission power distribution 

algorithm is 𝑂 (
𝑙𝑜𝑔𝑃𝑢

𝜀
). 

For Algorithm 2, the greedy offloading strategy algorithm 

requires 𝑂(𝑛) iterations to compute the utility functions for all 

users. In each iteration of this step, finding the maximum 

𝛥𝑒𝑐(𝑉𝑋 ∪  𝑋) while ensuring  𝛥 𝑒𝑐 > 0 and 𝑈 ≠ ∅ has a time 

complexity of 𝑂(𝑛). Therefore, the overall time complexity of 

Algorithm 2 is 𝑂(𝑛2). 

 

Figure 2: System Utility of Different Schemes Under Varying 

Total Number of Users 

 

III. SIMULATION RESULTS 

This section evaluates the system utility of the proposed edge-

cloud joint computing scheme through simulation experiments 

that focus on optimizing resource allocation and multi-user task 

offloading decision algorithms using Deep Reinforcement 

Learning (DRL). The simulation environment is set up as 

follows: assume 𝑈 users are uniformly distributed within a 200 

m × 200 m cell, with the base station located at the center. Let 

𝑁 represent the number of users covered in the cell. The input 

data size for user computing tasks, denoted as 𝑑𝑢, is randomly 

distributed between 200 KB and 1,200 KB, while the required 

computational resources 𝑐𝑢 (total CPU cycles) are uniformly 

distributed in the range of [0.3, 1.5] Gcycles. To account for the 

heterogeneous computational capabilities of user devices, 𝑓𝑙𝑢 is 

drawn from the set {0.6 𝐺𝐻𝑧, 0.9𝐺𝐻𝑧, 1.2𝐺𝐻𝑧} with equal 

probability. Based on prior research regarding user device 

power parameters and current empirical data, the selected user 

device computing capabilities correspond to 𝑃𝑢
𝑙 =

{0.6 𝑊, 0.8𝑊, 1.0𝑊}. The maximum transmission power for 

users is set at 𝑃𝑢 = 120𝑚𝑊, and the total uplink transmission 

rate from the MeNB to the cloud is 𝑅𝑐 = 120 𝑀𝑏𝑖𝑡𝑠/𝑠. 

Additional relevant simulation parameters are listed in Table 1. 

 

Figure 3: System Utility of Different Schemes Under Varying 

Total Number of Users for a Specific Task 

The system utility of the user offloading strategy based on the 

edge-cloud joint computing scheme is compared against the 

following approaches: 

1. Local Computation: All users complete tasks using 

local computation. 

2. Full Offloading Strategy Based on Edge Computing 

with Joint Resource Optimization: All users offload 

tasks to the edge for execution, following the 

optimization resource allocation scheme outlined in 

Section 2.4. 

3. Full Offloading Strategy Based on Cloud Computing 

with Joint Resource Optimization: All users offload 

tasks to the cloud for execution, also employing the 

optimization resource allocation scheme from Section 

2.4. 

For consistency, the simulation results are averaged over 1,000 

repetitions of each experiment. As the number of users varies, 

the changes in system utility values for each approach are 

shown in Figure 2. It is evident from the figure that as the 

number of users increases, the proposed scheme (hereinafter 

referred to as the "proposed scheme") significantly improves 

system utility compared to other approaches. When the number 

of users is low, the system utility values of the non-local 

computation approaches increase with the number of users, 

with the proposed scheme consistently outperforming the other 

two strategies. However, once the total number of users exceeds 
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a certain threshold, the system utility values for both the full 

offloading edge computing and cloud computing strategies 

begin to decline, eventually dropping below that of the local 

computation scheme. This decline occurs because an excessive 

number of offloading users lead to constrained uplink 

communication and edge computing resources, which cannot 

meet the resource demands of each user, resulting in increased 

computation time and transmission delays.  

 

Figure 4: Comparison of Average Task Offloading 

TimeUnder Different User Time Preference Weights 

Users sending and executing tasks through full offloading lead 

to competition for limited resources. When the number of 

offloading users is too high, the computational resources 

allocated to users under the edge computing scheme fall below 

those available through local computation, while lower uplink 

communication resources in the cloud computing scheme result 

in excessive transmission delays for task offloading, thereby 

reducing the system utility of these two approaches below that 

of local computation. Conversely, as user numbers increase, the 

proposed offloading strategy can maintain a high and stable 

system utility. This is due to its ability to effectively plan user 

task offloading patterns using DRL, ensuring optimal 

utilization of limited computational and communication 

resources. To assess the system utility performance of the 

proposed scheme for application tasks, we selected facial 

recognition as a specific application task: the input data size for 

this task is ∅∅ = 500∅∅ and the required computational 

resources are ∅∅ = 1,200 ∅∅∅∅∅∅∅, with relevant 

experimental results shown in Figure 3. From Figure 3, it can 

be seen that for the facial recognition task, the system utility of 

the proposed scheme consistently exceeds that of both the full 

offloading edge computing and full offloading cloud 

computing schemes. Additionally, as the total number of users 

increases, the system utility values of the full offloading edge 

computing and cloud computing schemes gradually decline, 

whereas the proposed scheme maintains a stable and high 

system utility. This is achieved by jointly utilizing all available 

computing and communication resources across the edge, 

cloud, and local devices, ensuring that the system utility 

remains superior even as the number of users increases. As the 

number of users increases, the choice to offload to edge and 

cloud gradually stabilizes, with users shifting primarily from 

edge and cloud computing modes to local computing. This shift 

occurs because, as user numbers rise, limitations in uplink 

communication and edge computing resources lead to 

insufficient computation and communication capabilities, 

prompting more users to opt for the stable local computing 

mode, which offers no transmission delays. Next, we analyze 

how the average time consumption for all users changes with 

varying weights of time preference 𝛽∅, ranging from 0.2 to 0.8, 

in the context of the facial recognition task. The results are 

depicted in Figure 4. As shown, with increasing weights of time 

preference, the average time consumption for task offloading 

gradually decreases. The average time consumption curves 

indicate that when there are more users in the system, the 

average time consumption increases. This is attributed to the 

increased competition for limited communication and 

computing resources as the user base grows, leading to a 

decrease in the resources allocated to each user and 

subsequently increasing the average time required to complete 

tasks through offloading. 

IV. CONCLUSION 

This paper presents a multi-user task offloading scheme based 

on edge-cloud joint computing, incorporating deep 

reinforcement learning (DRL). The proposed approach 

addresses the offloading selection problem for heterogeneous 

tasks across multiple users by leveraging the complementary 

strengths of both edge and cloud computing. DRL is used to 

optimize the allocation of resources, ensuring efficient 

utilization of computational and communication resources at 

both the edge and cloud levels. By modeling the system utility 

function and optimizing it through DRL algorithms, we devised 

a dynamic user offloading strategy that adapts to real-time 

conditions. Simulation results demonstrate that the proposed 

scheme maintains stable and high system utility, even as the 

number of offloading users increases and resources become 

constrained. This showcases the scheme’s ability to effectively 

manage resource limitations while optimizing task 

performance. 
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