Fluid Shear Stress Regulates the Expression of TGF-β1 and Its Signaling Molecules in Mouse Embryo Mesenchymal Progenitor Cells

Hao Wang, Ph.D., Min Li, Ph.D., Peter H. Lin, M.D., Qizhi Yao, M.D., Ph.D., and Changyi Chen, M.D., Ph.D. 1

Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas

Submitted for publication September 10, 2007

Background. Recently we reported that fluid shear stress promotes endothelial cell differentiation from a mouse embryo mesenchymal progenitor cell line C3H10T1/2. However, it is not clear whether the transforming growth factor-beta 1 (TGF-β1) system is associated with shear-induced endothelial differentiation. The purpose of this study was to determine the effect of shear stress on the expression of TGF-β1 and its signaling molecules in C3H10T1/2 cells.

Methods. Murine C3H10T1/2 cells were incubated on collagen Type 1-coated dishes, and subjected to a steady fluid shear stress of 15 dyn/cm² for 6, 12, and 24 h. The mRNA levels for TGF-β1, TGF-β receptors (TGF-βR), and Smad molecules were determined with real-time PCR analysis and normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels.

Results. TGF-β1 mRNA expression was down-regulated by 60% and 66% in shear stress-treated cells at 12 and 24 h, respectively, compared with static control group (P < 0.01). In addition, shear stress significantly decreased TGF-βR1 mRNA levels by 30% and 50% in shear stress-treated cells at 12 and 24 h, respectively (P < 0.01). For TGF-βR2, shear stress at 6, 12, and 24 h significantly reduced its expression by 93%, 95% and 97%, respectively, compared with static controls (P < 0.01). Furthermore, shear stress significantly decreased mRNA levels of positive signaling molecules Smad2, Smad3, and Smad4 in a time-dependent manner (P < 0.01). However, shear stress significantly increased negative signaling molecule Smad7 mRNA levels by 100% at 24 h treatment compared with static control group (P < 0.01).

Conclusions. Fluid shear stress significantly suppresses TGF-β1 functions through down-regulation of TGF-β1, TGF-βR, positive signaling molecules Smad2, Smad3, Smad4, and up-regulation of negative signaling molecule Smad7 in a mouse embryo mesenchymal progenitor cell line C3H10T1/2. This study suggests that the negative regulation of the TGF-β1 system may be involved in shear-induced endothelial cell differentiation in C3H10T1/2.

Key Words: shear stress; TGF-β1; TGF-β receptor; Smad; C3H10T1/2; cell differentiation.

INTRODUCTION

The cell line C3H/10T1/2 is a murine embryonic mesenchymal progenitor cell line that has been extensively used for cell differentiation studies at different conditions. Indeed, C3H/10T1/2 has potential to differentiate into a variety of different specialized cell types, including adipocytes, chondrocytes, and osteocytes [1–3]. Recently, our group demonstrated that when C3H/10T1/2 cells are exposed to cyclic strain, this progenitor cell line differentiates into the vascular smooth muscle (SMC) lineage [4]. It is well known that transforming growth factor-beta (TGF-β) and Smad signal pathways play critical roles in C3H/10T1/2 differentiation into vascular SMCs. When C3H/10T1/2 cells are supplemented with TGF-β1 in culture, they possess the ability to differentiate along a SMC lineage [5, 6]. In our previous study [7], we showed that fluid shear stress promotes endothelial cell differentiation from C3H10T1/2. The underlying mechanisms are involved in that shear stress significantly up-regulates angiogenic growth factors while down-regulating growth factors associated with SMC differentiation including TGF-β1. However, it is not clear whether shear stress
regulates TGF-β1 related signaling molecules, including TGF-β1 receptors (TGF-βR1), positive signaling molecules Smad2, Smad3, Smad4, as well as negative signaling molecule Smad7. We hypothesized that shear stress may inhibit TGF-β1 signaling pathways by regulating their gene expression, thereby favoring endothelial cell differentiation in C3H10T1/2 cells. To test this hypothesis in the present study, we analyzed the expression levels of TGF-β1, TGF-βRs, and Smads in response to shear stress in C3H10T1/2.

MATERIALS AND METHODS

Chemicals and Reagents

Trypsin/ethylenediamine tetraacetate acid and fetal bovine serum were purchased from Invitrogen (Grand Island, NY). Minimum essential medium Eagle in Earle’s BSS was purchased from American Type Culture Collection (Rockville, MD). RNAqueous-4PCR Kit was obtained from Ambion (Austin, TX). iScript cDNA synthesis kit and iQ SYBR Green Supermix kit were purchased from Bio-Rad (Hercules, CA). Collagen I was bought from Sigma-Aldrich (St. Louis, MO).

Cell Culture

Murine C3H10T1/2 cells (American Type Culture Collection) were incubated on collagen Type 1-coated tissue culture plates. Plates were cultured with minimum essential Eagle in Earle’s BSS and 10% fetal bovine serum at 37°C in humidified air with 5% CO₂. After the cells reached 80% of confluent density, they were exposed to laminar shear stress performed using a custom-made parallel plate flow chamber as previously described [7]. The medium was driven by a constant hydrostatic pressure roller pump, exposing the cells to a steady fluid shear stress of 15 dyn/cm² for 6, 12, and 24 h. During the experiment, the system was maintained at 37°C in humidified air with 5% CO₂. Static controls were also concurrently performed.

Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) Analysis

After 10T1/2 cells were exposed to shear stress, total cellular RNA was extracted using RNAqueous-4PCR kit. Total RNA (0.5 μg) was reverse-transcribed into cDNA using the iScript cDNA synthesis kit following the manufacturer’s instruction. The mRNA levels for TGF-β1, TGF-βR1, TGF-βR2, and Smads were analyzed by real-time RT-PCR. PCR primers were designed by Beacon Designer 2.1 software (Premier Biosoft International, Palo Alto, CA), and sequences are listed in Table 1. PCR reaction included the following components: 100 nM each primer, diluted cDNA templates, and iQ SYBR Green supermix, running for 40 cycles at 95°C for 20 s and at 60°C for 1 min. Each cDNA sample was run in triplicate and the corresponding no-RT mRNA sample was included as a negative control. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primer was included in every plate to avoid sample variations. The mRNA level of each sample for each gene was normalized to that of the GAPDH mRNA. The relative mRNA level was presented as unit values of 2^ΔCt (ΔCt=gene of interest-

Statistical Analysis

Results are shown as mean ± SD with at least three replicates unless otherwise noted. The differences of gene expression between shear stress and control groups were determined with Student’s t-test. P < 0.05 was considered statistically significant.

RESULTS

Shear Stress Decreases mRNA Levels of TGF-β1 in C3H10T1/2 Cells

TGF-β1 regulates the differentiation program of a variety of cell types, including mesenchymal cells. We first examined the effects of shear stress on the expression of TGF-β1 in C3H10T1/2 cells by real time RT-PCR. At basal levels, the expression of TGF-β1 was relatively low in murine C3H10T1/2 compared with its receptors and its signaling molecules Smads. When the cells were exposed to shear stress for periods of 6, 12, and 24 h, mRNA levels were measured and compared with the static control group. TGF-β1 mRNA expression had no change at 6 h, however, it was down-regulated by 60% and 66% at 12 and 24 h, respectively, compared with static controls (P < 0.01, Fig. 1).

Shear Stress Reduces the mRNA Levels of TGF-βR1 and TGF-βR2 in C3H10T1/2 Cells

Two major TFG-β receptors, TGF-βR1 and TGF-βR2, play a critical role in cellular responses to TGF-β1 in many cell types. However, it is not clear whether C3H10T1/2 cells could express there receptors and whether shear stress could regulate their expression. In this study, we found C3H10T1/2 expressed relatively high levels of both TGF-βR1 and TGF-βR2 compared with TGF-β1, and shear stress significantly de-

<table>
<thead>
<tr>
<th>Genes</th>
<th>Accession no.</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>M32599</td>
<td>CGTGCCGCCCTGGAAGAACCC</td>
<td>TGGAGAAGTGGGAGTTGCTTGTG</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>BC013738</td>
<td>ACCAACTATTTGCTTCCAGCTCACC</td>
<td>GGTGTTCCCAGGGTCTCAATAAGG</td>
</tr>
<tr>
<td>TGFR1</td>
<td>NM_009370</td>
<td>GGCTAAGCCGACTGTCACTCAC</td>
<td>ACCCTGACCCAGCTCCTTGG</td>
</tr>
<tr>
<td>TGFR2</td>
<td>BC016262</td>
<td>GCTTTTGGATGCGGACTGTAACC</td>
<td>ACAAGGCTCAGATCAAGGCC</td>
</tr>
<tr>
<td>Smad2</td>
<td>NM_010754</td>
<td>GCTCTGATCCATCCATCTTCCTCTG</td>
<td>TACTGAGGCGACAAACCTTCC</td>
</tr>
<tr>
<td>Smad3</td>
<td>NM_016769</td>
<td>CGTGCCGCCAGACACCTTCTCC</td>
<td>GCGGACCAGGGACTGAC</td>
</tr>
<tr>
<td>Smad4</td>
<td>NM_008540</td>
<td>CATCCATCTCCATCTCCATAC</td>
<td>CACATAGCAGGCAAGGACACTTACAC</td>
</tr>
<tr>
<td>Smad7</td>
<td>NM_008543</td>
<td>CCCCTCTCTCTACTCCAGATACC</td>
<td>CCCCGCCCTCCAGAAAGTGG</td>
</tr>
</tbody>
</table>
creased their levels. At 12 and 24 h, shear stress significantly decreased TGF-β1 mRNA levels by 30% and 50%, respectively, compared with static controls (*P < 0.01, Fig. 2A). However, shear stress had no effect on TGF-β1 mRNA levels at 6 h. For TGF-βR2, shear stress at 6, 12, and 24 h significantly reduced its expression by 93%, 95%, and 97%, respectively, compared with static controls (*P < 0.01, Fig. 2B).

Shear Stress Regulates the mRNA Levels of Smad2, Smad3, Smad4, and Smad7 in C3H10T1/2 Cells

Smads are major signaling molecules of TGF-β1 that play a key role in cell differentiation in several cell types and organ systems. We investigated the possible involvement of Smad molecules in shear stress-treated C3H10T1/2 cells by real time PCR analysis. Indeed, shear stress significantly decreased mRNA levels of Smad2, Smad3, and Smad4 at all time points compared with the static control cells (*P < 0.01, Fig. 3). However, shear stress significantly increased Smad7 mRNA levels by 100% at 24 h compared with static control cells (*P < 0.01, Fig. 4).

DISCUSSION

In the current study, we investigated the expression of endogenous TGF-β1, TGF-βRs, and Smads in response to shear stress in a mouse embryo mesenchymal progenitor cell line C3H10T1/2. Our data clearly demonstrate that fluid shear stress significantly suppresses TGF-β1 mediated cell function through down-regulation of TGF-β1, TGF-βR1, TGF-βR2, Smad2, Smad3, and Smad4 and up-regulation of Smad7 in C3H10T1/2. This study suggests that the negative regulation of the TGF-β1 system may be involved in shear-induced endothelial cell differentiation in C3H10T1/2.

TGF-β1 is a primary differentiation factor for a variety of cell types. TGF-β1 is well known to induce differentiation of mesenchymal cells toward a SMC phenotype. The addition of TGF-β1 generally inhibits myoblast differentiation [8], but stimulates differentiation of embryonic myoblasts [9]. TGF-β1 was reported to block myogenic differentiation through inhibition of Type 2 TGF-β1 receptor signaling in C2C12 myoblasts [10]. It is also known that TGF-β1 inhibits adipose differentiation of preadipocyte cell lines and primary cultures [11, 12], and the effects of TGF-β1 on preadipocyte differentiation are mediated by Smad2 and Smad3, which have distinct functions in the adipogenic differentiation process. Differential expression of Smads occurs at different stages during maturation of chondrocytes [13].
In C3H10T1/2, TGF-β1 stimulates cell differentiation with the up-regulation of several vascular SMC differentiation markers, such as smooth muscle (SM) α-actin, SM myosin heavy chain, SM protein 22-α, and calponin [14–16]. TGF-β regulates gene expression via serine-threonine kinase receptors at the cell surface and a group of intracellular signaling molecules Smad proteins [17]. In vertebrates, eight members of the Smad family have been identified. TGF-β1 signaling starts by binding of the ligand with the TGF-βR2, followed by phosphorylation of the TGF-βR1. The activated TGF-βR1 activates Smad2 and Smad3, which then form a heteromeric complex with Smad4. The Smad4 complex is translocated into the nucleus to regulate the transcription of target genes [18]. However, Smad7 is an inhibitory Smad, which is able to antagonize TGF-β1 signaling by competing with active Smad complex [19].

Our data showed that shear stress significantly reduced the expression of TGF-β1, and its receptors TGF-βR1 and TGF-βR2. These effects could inhibit functional interaction between TGF-β1 and TGF-βR on C3H10T1/2 cells. In addition, the expression levels of Smad2, Smad3, and Smad4 were also reduced in shear stress-treated cells. These data demonstrated that shear stress could block TGF-β1 functions at positive signal transduction pathways. Furthermore, our experiments showed that the mRNA levels of Smad7 were significantly increased in response to shear stress stimulation, thereby enhancing negative signal transduction of TGF-β1 in C3H10T1/2 cells.

Although we showed that shear stress significantly decreased TGF-β1 mRNA levels in murine C3H10T1/2 cells in the current study, we did not perform addi-
tional experiments to detect TGF-β1 levels intracellularly, as well as its secretion. It could be a limitation of the study. This concern warrants further investigations, including Western blot analysis and immunofluorescence for intracellular TGF-β1, and enzyme-linked immunosorbent assay for secreted TGF-β1. In addition, we did not perform additional experiments to detect TGF-βR1 protein levels on the cell surface of these progenitor cells. Further investigations, including Western blot analysis, immunofluorescence staining, or flow cytometry analysis are warranted. Furthermore, current study as well as our previous study [7] showed shear stress significantly induces C3H10T1/2 differentiation into endothelial cells, while inhibiting TGF-β1-Smad pathways and SMC differentiation potential in C3H10T1/2 cells. Thus, TGF-β1 and Smad system may have negative effects on endothelial cell differentiation from C3H10T1/2 cells. To further investigate the negative effects of the TGF-β1-Smad system on shear stress-induced endothelial cell differentiation, it is warranted to design new experiments for C3H10T1/2 cells with shear stress and exogenous TGF-β1. TGF-β1 may be expected to inhibit shear stress-induced C3H10T1/2 differentiation into endothelial cells through activation of Smad signal transduction pathways.

In conclusion, shear stress-induced inhibition in TGF-β1 signaling pathway is one of the important mechanisms of endothelial differentiation in response to shear stress in a mouse embryo mesenchymal progenitor cell line C3H10T1/2. These findings advance our understanding of molecular mechanisms of shear stress-induced endothelial differentiation in C3H10T1/2. Further studies of shear stress-induced stem cell differentiation and its underlying molecular mechanisms are of clinical significance in areas of neointimal hyperplasia, atherosclerosis, and vascular tissue engineering.

ACKNOWLEDGMENTS

This work is partially supported by research grants from the National Institutes of Health (to Q.Y.: AI 49116 and DE15543; and to C.C.: HL65916, HL72716, and EB-002436) and by the Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.

REFERENCES