

Vectorbord[®] Backplanes

VME & VME64x

VME64x 160-pin

VME64E21P01 Front View

<1.5 ohm

1.6 A

25A

10A

Technical Information :

Ohm Resistance of signal lines **Basic Power consumption** (both ends terminated) Current loading per power bug Current loading for Faston Current loading per each slot

3.3V 12.5A (VME64x only) 5V 9.0A +12V 1.5A -12V 1.5A +5V Standby 1.5A +V1 (38-75V)48V Nom. 3.0A -V1 (38-75V)48V Nom. 3.0A Fully populated VME64x with J0, 200,000 hours, Ground @ +40°C -40° C to $+85^{\circ}$ C 90%, non-condensing 2-slot = 0.53 lbs; 3-slot = 0.6 lbs (add 0.11 per slot over 3 slots)

MTBF

Operating Temperature Range Relative Humidity Weight

VME J1/J2 & VME64x J1/J2/P0, Monolithic 6U Backplanes, 2 to 21-Slot

Vectorbord® VME & VME64x backplanes per ANSI/VITA 1-1994 (R2002) and ANSI/VITA 1.1-1997

Vector VME and VME64x monolithic backplanes are fully RoHS compliant and perform to ANSI/VITA 1.7-2003 (R2009). Increased current level for VME (96 pin) & VME64x (160 pin) DIN / IEC connectors. BothVector VME and VME64x backplanes are 6U (10.317") are an easy replacement or addition to any 6U rack system. PCB thickness 0.160" eliminates need for backplane stiffener.

General Backplane Specification for VME and VME64x

- · Slot Count : 2-21 slot options
- Size : "True" 6U, 10.317" X 0.160" thick
- 12-layer FR-4 construction, UL94V-0, RoHS compliant
- · Greater than 64MHz high speed design
- · Signal lines shielded, low crosstalk and controlled impedance
- EMI shielding
- · OR-logic electronic daisy-chaining* (EBG) with on-board passive termination. All termination and EBG components are surface mounted (SMT)
- · Screw terminal (power bug) and Faston input power connections
- · Conformal coating available
- · Fully assembled and tested

Connectors:

96-PIN. 3-ROW (VME)

The IEC 60603-2 standard defines the level 2 performance requirements and test sequences for the 3 row DIN connectors. All VME and VME64x systems require a minimum of level 2 performances. Vector uses Harting Type C, 96-pin, press-fit, thermoplastic with nickel plated copper alloy contacts tested to IEC 60512-3

160-PIN, 5-ROW (VME64x)

The IEC 61076-4-113 standard defines the level 2 performance requirements and test sequences for the 5 row DIN connector. All VME64x systems require a minimum of level 2 performance. Vector uses Harting Har-bus 160-pin, VME64x connectors manufactured to IEC 60512-3.

133-PIN, Type B, 19-ROW, 2mm HM (VME64x P0 only)

The IEC 61076-4-101 defines the level 2 performance requirements and test sequences for this 19-row, 2mm x 2mm pitch connector. All VME64x systems require a minimum of level 2 performance. Vector uses ERNI P0 connectors.

VME64E02P01

www.vectorelect.com

Specification subject to change without notice

800-423-5659

Vectorbord[®] Backplanes

VME & VME64x

VME J1/J2 & VME64x J1/J2/P0 Monolithic Backplanes

Ordering Options

Our standard configurations can be ordered using the table below, however Vector can custom configure any of our backplanes to suit your specific needs. Contact inquire@vectorelect.com for more information and specific part number assignment.

Standard backplane equipped with surface-mounted (SMT) caps, resistors, etc, Long-tail connectors with shrouds on P2 and (P0 if VME64x).

Standard backplanes include on-board termination and electronic daisy chaining(EBG) with OR-logic integrated into the backlane.

Order 'VMEBP' for 96-pin connectors (J1/J2) or 'VME64' for 160-pin J1/J2 and 133-pin P0.

Conformal coating available and is MIL-I-46058C and IPC-CC-830 qualified and U.L. recognized.

