
IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 118 | P a g e

Conjunctive Keyword Search with Designated Tester

and Kjerhyretiming Enabled Proxy Re-Encryption
B.Sravanthi

PG Scholar

K.N.MadhaviLatha

Assitant Professor

Dept of CSE, Sir C RReddy College of Engineering, Eluru, Andhrapradesh, India.

Abstract-Instant search is an emerging information-retrieval

paradigm in which a system finds answers to a query instantly

while a user types in keywords character-by-character. Fuzzy

search further improves user search experiences by finding

relevant answers with keywords similar to query keywords. A
main computational challenge in this paradigm is the high

speed requirement, i.e., each query needs to be answered

within milliseconds to achieve an instant response and a high

query throughput. At the same time, we also need good

ranking functions that consider the proximity of keywords to

compute relevance scores. In this paper, we study how to

integrate proximity information into ranking in instant-fuzzy

search while achieving efficient time and space complexities.

We study how to index these phrases and develop an

incremental-computation algorithm for efficiently segmenting

a query into phrases and computing relevant answers. We
conducted a thorough experimental study on real data sets to

show the tradeoffs between time, space, and quality of these

solutions. Our results indicate that many existing search

techniques do not provide acceptable performance for realistic

retrieval tasks. In particular, memory consumption precludes

many search techniques from scaling beyond small data sets

with tens of thousands of vertices. We also explore the

relationship between execution time and factors varied in

previous evaluations; our analysis indicates that most of these

factors have relatively little impact on performance. In

summary, our work confirms previous claims regarding the

unacceptable performance of these search techniques and
underscores the need for standardization in evaluations—

standardization exemplified by the IR communit

Index Terms—Keyword search, relational database,

information retrieval, empirical evaluation

I. INTRODUCTION

In previous work we proposed the first benchmark to evaluate

relational keyword search techniques and evaluated them with

regard to their search effectiveness. However, our previous

work did not consider the runtime performance of these search
techniques, which is our focus in this paper. Unlike many

evaluations that appear in the literature, our benchmark uses

realistic data sets and realistic queries to investigate the

numerous tradeoffs made in the design of these search

techniques. Our benchmark is the only one to date in the

literature that satisfies the minimum criteria established by the

IR community for the evaluation of retrieval systems. The
major contributions of this paper are as follows: We conduct

an independent, empirical evaluation of the runtime

performance of seven relational keyword search techniques.

Our evaluation is the most extensive and thorough one to

appear to date in the literature. Our results do not substantiate

previous claims regarding the scalability and performance of

relational keyword search techniques. Existing search

techniques perform poorly on databases exceeding tens of

thousands of tuples or require an inordinate amount of

memory. We show that many parameters varied in existing

evaluations are at best loosely correlated with runtime
performance. The lack of a meaningful relationship gives

merit to previous claims of unpredictable performance for

existing search techniques.Our work is the first to combine

performance and search effectiveness in the evaluation of such

a large number of search techniques. Considering these two

issues in conjunction provides better understanding of these

two critical tradeoffs among competing approaches. The

remainder of this paper is organized as follows: Section 2

formally defines the problem of keyword search in relational

data graphs and describes the search techniques included in

our evaluation. Section 3 describes our experimental setup,

including our evaluation benchmark and metrics. In Section 4,
we present our experimental results, and we discuss them in

Section 5. We review related work in Section 6 and provide

our conclusions in Section 7. Online appendices provide

greater detail about our evaluation benchmark and summarize

implementation details of the search techniques. We use two

metrics to measure runtime performance. The first is

execution time, which is the time elapsed from issuing a query

until an algorithm terminates. Because there are a large

number of potential results for each query, search techniques

typically return only the top-k results where k specifies the

desired retrieval depth. Our second metric is response time,
which we define as the timeelapsed from issuing the query

until i results have been returned (where i < k). Because this

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 119 | P a g e

definition is not welldefined when fewer than k results are

retrieved, we define it for j, where i < j < k and i is the number

of resultsretrieved and k is the desired retrieval depth, as the

algorithm’s execution time. Effectiveness metrics are also

critical to the evaluation of retrieval systems because not
every result is actually relevant to the query’s underlying

information need. Recallis the ratio of relevant results

retrieved to the total number of relevant results. Precision is

the ratio of relevant results retrieved to the total number of

retrieved results. Precision @ k (P@k) is the mean precision

across multiple querieswhere the retrieval depth is limited to k

results. If fewer than k results are retrieved by a system, we

calculate the precision value at the last result. We also use

MAP to measure retrieval effectiveness at greater retrieval

depths. Measuring the completeness of the set of of search

results returned by a particular search technique is tempting,

but only Golenberg et al.’s algorithm is proven to becomplete
(i.e., return all possible results) for the given search terms.

Furthermore, it is not clear what effect omitting some results

may have on a search technique. Unlike recall, which is

measured against the set of relevant results, omitting a few

results may have practically no impact on the effectivenessof

the search technique, particularly if the omitted results are

highly redundant with others that are enumerated. More

importantly, there is no precedent from the IR community to

evaluate retrieval systems using a purelyobjective metric

because retrieval systems explicitly answer subjective

information needs. We implemented BANKS, DISCOVER,
DISCOVER-II, and DPBF and obtained implementations of

BANKS-II (i.e., the bidirectional search algorithm), BLINKS,

and STAR. All the search techniques are implemented in Java.

For some search techniques, we also had access to others’

implementations. Among the implementations, we found that

our reimplementations generally outperform the

implementations provided by others. Exceptions to this trend

were the result of correcting significant implementation

defects. Our experiments do not compare against traditional

IR systems (e.g., Apache Lucene5) because more traditional

systems do not consider the relationships among database

tuples, which is an important aspect of relational keyword
search. Our implementation of BANKS adheres to its original

description although it queries the database dynamically to

identify nodes (tuples) that contain query keywords. Our

implementation of DISCOVER borrows its successor’s query

processing techniques. Both DISCOVER and DISCOVER- II

are executed with the sparse algorithm, whichprovides the

best performance for queries with AND semantics [17].

BLINKS’s block index was created using breadth-first

partitioning and contains 50 nodes per block.6 STAR uses the

edge weighting scheme proposed by Dinget al. [12] for

undirected graphs.
INTERNET forums (also called web forums) are important

services where users can request and exchange information

with others. For example, the Trip Advisor Travel Board is a

place where people can ask and share travel tips. Due to the

richness of information in forums, researchers are increasingly

interested in mining knowledge from them. Zhai and Liu [28],

Yang et al. [27], and Song et al. [23] extracted structured data
from forums. Gao et al. [15] identified question and answer

pairs in forum threads. Zhang et al. [30] proposed methods to

extract and rank product features for opinion mining from

forum posts. Glance et al. [16] tried to mine business

intelligence from forum data. Zhang et al. [29] proposed

algorithms to extract expertise network in forums. To harvest

knowledge from forums, their content must be downloaded

first. However, forum crawling is not a trivial problem.

Generic crawlers [12], which adopt a breadth-first traversal

strategy, are usually ineffective and inefficient for forum

crawling. This is mainly due to two non crawler friendly

characteristics of forums [13], [26]: 1) duplicate links and
uninformative pages and 2) page-flipping links. A forum

typically has many duplicate links that point to a common

page but with different URLs [7], e.g., shortcut links pointing

to the latest posts or URLs for user experience functions such

as “view by date” or “view by title.” A generic crawler that

blindly follows these links will crawl many duplicate pages,

making it inefficient. A forum also has many uninformative

pages such as login control to protect user privacy or forum

software specific FAQs. Following these links, a crawler will

crawl many uninformative pages. Though there are standard-

based methods such as specifying the “rel” attribute with the
“no follow” value (i.e., “rel ¼ no follow”) [6], Robots

Exclusion Standard (robots.txt) [10], and Sitemap [9] [22] for

forum operators to instruct web crawlers on how to crawl a

site effectively, we found that over a set of nine test forums

more than 47 percent of the pages crawled by a breadth-first

crawler following these protocols were duplicates or

uninformative. This number is a little higher than the 40

percent that Cai et al. [13] reported but both show the

inefficiency of generic crawlers. More information about this

testing can be found in bellow Section

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 120 | P a g e

Auto-Completion: In auto-completion, the system suggests

several possible queries the user may type in next. There have

been many studies on predicting queries many systems do

prediction by treating a query with multiple keywords as a

single prefix string. Therefore, if a related suggestion has the
query keywords but not consecutively, then this suggestion

cannot be found.

Instant Search: Many recent studies have been focused on

instant search, also known as type-ahead search. The studies

in proposed indexing and query techniques to support instant

search. The studies in presented triebased techniques to tackle

this problem. Studied instant search on relational data

modeled as a graph.

Fuzzy Search: The studies on fuzzy search can be classified

into two categories, gram-based approaches and trie-based

approaches. In the former approach, sub-strings of the data are

used for fuzzy string matching. The second class of
approaches index the keywords as a trie, and rely on a

traversal on the trie to find similar keywords. This approach is

especially suitable for instant and fuzzy search since each

query is a prefix and trie can support incremental computation

efficiently.

Proximity Ranking: Recent studies show proximity is highly

correlated with document relevancy, and proximityaware

ranking improves the precision of top results significantly.

However, there are only a few studies that improve the query

efficiency of proximity-aware search by using early-

termination techniques exploited document structure to build a
multi-tiered index to terminate the search process without

processing all the tiers.

Admin Module:This module is used to help the server to

view details and upload files Details. The admin after the

login and view the user downloading details and the counting

of file request details on flowchart.

Literature Survey:Existing methods only identify a single

tuple unit to answer keyword queries. However, they neglect

the fact that in many cases, we need to integrate multiple

related tuple units to answer a keyword query. To address this

problem, in this paper, we propose a structure-aware-index-

based method to integrate multiple related tuple units to
effectively answer keyword queries.

Proposal of the Proposed System:The proposed to improve

search efficiency by indexing structural relationships, and

existing methods identify a single tuple unit to answer

keyword queries. However, in many cases, multiple tuple

units should be integrated to answer a keyword query. Thus,

these methods will involve false negatives. To address this

problem, in this paper, we study how to integrate multiple

related tuple units to effectively answer keyword queries. To

achieve a high performance, we propose an approach that

focuses on common phrases in the data and queries, assuming
records with these phrases are ranked higher. We study how to

index these phrases and develop an incremental-computation

algorithm for efficiently segmenting a query into phrases and

computing relevant answers. We conducted a thorough

experimental study on real data sets to show the tradeoffs

between time, space, and quality of thesesolutions.

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 121 | P a g e

II. CONCLUSION

Unlike many evaluations reported in the literature, ours

investigates the overall, end-to-end performance of relational

keyword search techniques. Hence, we favor a realistic query

workload instead of a larger workload with queries that are
unlikely to be representative (e.g., queries created by

randomly selecting terms from the data set). Our experimental

results do not reflect well on existing relational keyword

search techniques. Runtime performance is unacceptable for

most search techniques. Memory consumption is also

excessive for many search techniques. Our experimental

results question the scalability and improvementsclaimed by

previous evaluations. These conclusions are consistent with

previousevaluations that demonstrate the poor runtime

performance of existing search techniques as a prelude to a

newly-proposed approach.

III. PROPOSED SYSTEM

Further research is unquestionably necessary to investigate the

myriad of experimental design decisions that have a

significant impact on the evaluation of relational keyword

search systems. For example, our results indicate that existing

systems would be unable to search the entire IMDb database,

which underscores the need for a progression of data sets that

will allow researchers to make progress toward this objective.

Creating a subset of the original data set is common, but we

are not aware of any work that identifies how to determine if a

subset is representative of the original data set. In addition,
different research groups often have different schemas for the

same data (e.g., IMDb),but the effect of different database

schemas on experimental results has also not been studied.

Our results should serve as a challenge to this community

because little previous work has acknowledged these

challenges. Moving forward, we must address several issues.

First, we must design algorithms, data structures, and

implementations that recognize that main memory is limited.

Search techniques must manage their memory utilization

efficiently, swapping data to and from disk as necessary. Such

implementations are unlikely to have performance

characteristics that are similar to existing approaches but must
be used if relational keyword search systems are to scale to

large data sets (e.g., hundreds of millions of tuples). Second,

evaluations should reuse data sets and query workloads to

provide greater consistency of results, for even our results

vary widely depending on which data set is considered.

Having the community Coalesce behind reusable test

collections would facilitate better comparison among systems

and improve their overall evaluation. Fortunately, our

evaluation benchmark is beginning to gain traction in this area

as evidenced by others’ adoption of it for their evaluations.

Third, the practice of researchers reimplementing search

techniques may account for some evaluation discrepancies.

Making the original source code (or a binary distribution that

accepts a database URL and query as input) available to other

researchers would greatly reduce the likelihood that observed

differences are implementation artifacts.

IV. REFERENCES

[1]. G. Li, J. Feng, X. Zhou, and J. Wang, “Providing Built-in
Keyword Search Capabilities in RDBMS,” The VLDB J., vol.
20, pp. 1-19, Feb. 2011.

[2]. V. Hristidis and Y. Papakonstantinou, “DISCOVER: Keyword
Search in Relational Databases,” Proc. 28th Int’l Conf. Very

Large Data Base (VLDB ’02), pp. 670-681, Aug. 2002.
[3]. V. Hristidis, L. Gravano, and Y. Papakonstantinou, “Efficient

IRStyle Keyword Search over Relational Databases,” Proc. 29th
Int’l Conf. Very Large Data Bases (VLDB ’03), pp. 850-861,
Sept. 2003.

[4]. A. Singhal, J. Choi, D. Hindle, D. Lewis, and F. Pereira,
“AT&T at TREC-7,” Proc. Seventh Text REtrieval Conf.
(TREC-7), pp. 239-252, Nov. 1999.

[5]. S.E. Dreyfus and R.A. Wagner, “The Steiner Problem in
Graphs,” Networks, vol. 1, no. 3, pp. 195-207, 1971.

[6]. G. Reich and P. Widmayer, “Beyond Steiner’s Problem: A
VLSI Oriented Generalization,” Proc. 15th Int’l Workshop
Graph-Theoretic Concepts in Computer Science, pp. 196-210,
1990.

[7]. W. May, “Information Extraction and Integration with Florid:
The Mondial Case Study,” Technical Report 131, Universita ẗ

Freiburg, Institut fu ̈r Informatik, 1999.
[8]. G. Pass, A. Chowdhury, and C. Torgeson, “A Picture of

Search,” Proc. First Int’l Conf. Scalable Information Systems
(InfoScale ’06), May 2006.

[9]. J. Coffman and A.C. Weaver, “What Are We Searching For?
Analyzing User Objectives When Searching Relational Data,”
Proc. Workshop Web Search Click Data (WSCD ’12), Feb.
2012.

[10]. K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword Proximity

Naga Madhavi Latha Kakarla received M.Tech in Computer
Science from College of Engineering, Jawaharlal Nehru
Technological University, Hyderabad, Andhra Pradesh, India.
Presently, she is working as Assistant Professor in Sir C.R.Reddy
College Of Engineering, Eluru, West Godavari District. Andhra
Pradesh, India. She is currently doing her Ph.D from Acharya
Nagarjuna University, Guntur. A.P, India. She has 13 years of
Experience in Teaching. Her research interest includes Data mining
and Bioinformatics.

B.Sravanthi Presently pursuing her M.Tech inComputer Science &
Technology from Sir C R Reddy Engineering College, Vatluru, West
Godavari District, A.P, India. Affiliated to Andhra University,
Approved by AICTE, New Delhi. University Kakinada, West
Godavari District, A.P, India.

