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Over the years, design optimality evaluation of response surface designs focused mainly on D-optimality

and G-optimality criteria. The apparent limited use of the IV-optimality criterion appears to be influenced

by the computational challenges associated with the criterion. The lack of available computer code appears

to be the main reason for limited use of the IV-optimality criterion. In addition, the IV-optimality criterion

appears more difficult to code than the D-optimality criterion because of the integration required over

the specified design region. In this paper, an efficient and exact method is presented for computing the

IV-optimality criterion for selected response surface designs. The pseudo-code for the computer program is

also presented. The investigation examines both spherical and cuboidal regions of interest. In addition, an

analytical approach is outlined for computing the IV-optimality criterion for second-order split-plot designs.

A particular feature of the analytical expressions is that they are derived using the design parameters.

In addition, several comparisons of second-order response surface designs are illustrated for completely

randomized designs and split-plot designs.
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N
OTICEABLY absent from the response surface lit-
erature are studies involving the use of the exact

integrated prediction variance (IV) for response sur-
face designs, particularly for spherical designs, where
the computational time required increases exponen-
tially. Myers et al. (1992) present some integrated
prediction variance values for selected designs (k ≤ 5)
while evaluating the variance-dispersion properties of
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second-order response surface designs. However, they
do not give any details on the computational proce-
dure used to generate the IV values. Ozol-Godfrey et
al. (2005) illustrate the use of the fraction of design-
space plots for examining model robustness using G-
optimality and IV-optimality criteria. However, the
IV values presented are approximated values, which
they argue are unbiased estimates of the true IV val-
ues. Hussey (1987) utilizes the IV-optimality crite-
rion in a study on correlated simulation experiments
but focuses only on first-order models, which are es-
sentially cuboidal designs. Borkowski and Valeroso
(2001) study design optimality criteria for reduced
models but focus only on cuboidal designs and pre-
sented IV values for designs with 3 ≤ k ≤ 5. An
analytical approach is presented that computes the
exact IV values for the central composite design
(CCD). However, for other designs, the exact IV
value is computed by evaluating the appropriate inte-
grals, but this is time consuming. Haines (1987) and
Borkowski (2003b) utilize the IV-optimality criterion
in generating exact optimal designs, but its applica-
tion is restricted to second-order models with 2 or
3 factors for the cuboidal region. Hardin and Sloane
(1993) present an algorithm capable of generating
IV-optimal designs for a number of “classical” situ-
ations, such as linear, quadratic, or cubic response
surface designs with 1 ≤ k ≤ 12 continuous variables
in a cube or a sphere.

Borkowski (2003a) demonstrates the inaccuracies
of computer packages in generating average predic-
tion variance (APV) as an approximation of the IV-
criterion for cuboidal designs. He gives a caution-
ary note that the practitioner should be careful in
using APV values given by these computer pack-
ages to compare designs. A Monte Carlo approach
is suggested for computing the IV-criterion, which is
not necessarily exact but provides better approxima-
tion values than what is currently available in com-
puter packages. However, this suggestion can still be
time consuming, depending on the number of sam-
pled points. The most obvious reason for the seem-
ingly limited use of the IV-optimality criterion is the
lack of available computer code to generate exact IV
values. Even though published research work gives
IV values for selected designs, there is no published
work on how to efficiently compute the exact IV val-
ues without the need for numerical computation in-
volving integration. It is the objective of this paper
to present a method to obtain a closed-form expres-
sion for the IV-optimality criterion for second-order
response surface designs.

General Form of
the Second-Order Model

The split-plot model is developed as the general
case and the completely randomized model is consid-
ered a specific instance of the split-plot model. The
general form for split-plot models in matrix form is
given as

y = XΘ + δ + ε,

where y is an N × 1 vector of responses, Θ is a p× 1
vector of unknown model parameters, X is the N ×p
matrix of the levels of the independent variables, and
δ and ε are N × 1 vectors of random variables for
whole-plot and subplot errors, respectively. It is as-
sumed that δ + ε ∼ N(0,Σ). The structure of the
variance–covariance matrix, Σ, is a block diagonal
matrix in which the ith block matrix is of the form,
Σi = σ2

δ1wi×11′
1×wi

+σ2
εIwi×wi , where wi represents

the number of subplot runs (whole-plot size) for the
ith block matrix, σ2

δ is the covariance and whole-
plot error variance, and σ2

ε is the subplot error vari-
ance. A split-plot design (SPD) is similar to that of a
completely randomized design (CRD); the only dif-
ference is the variance–covariance matrix, Σ. For a
CRD, Σ = σ2IN , where I is the identity matrix of
dimension N .

IV-Optimality Criterion

Box and Draper (1959, 1963) were the pioneers of
the IV-optimality criterion. They present the mean-
squared deviation from the true response as the av-
erage over the region of interest, normalized by the
design points and variance. The average mean-square
error criterion is comprised of two main components.
The first component is the “variance error” result-
ing from sampling errors, and the second compo-
nent is the “bias error,” which reflects the inade-
quacy of the fitted model. The first component is
the IV-optimality criterion, which generates a single
measure of prediction performance throughout the
entire region of interest, Ξ. Computationally, this is
accomplished by integrating the prediction variance
v(x) over Ξ. The standardized IV function for a CRD
response surface design can be expressed as follows:

IV =
1
Ω

∫
Ξ

v(x)dx

=
1
Ω

∫
Ξ

f(x)′(X′X)−1f(x)dx

= trace
[
(X′X)−1 1

Ω

∫
Ξ

f(x)′f(x)dx
]

,
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where Ω =
∫
Ξ

dx is the volume of the region Ξ.
The general form of the model vector for second-
order designs is given as f(x)′ = [1 | x1, . . . , xk |
x1x2, . . . , xk−1xk | x2

1, . . . x
2
k].

For many applications, the regions of interest, Ξ,
in response surface methodology are either cuboidal
or spherical. The difference is that, for a cuboidal re-
gion, the design variables are confined according to
−1 ≤ xi ≤ 1 for i = 1, 2, . . . , k such that all points
are either positioned on or inside a hypercube; while
for a spherical region, the design variables are con-
fined according to

∑k
i=1 x2

i ≤ k such that all points
are either positioned on or inside a hypersphere of
radius

√
k. In addition, the volume of the respective

region is given as follows:

Ω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k for cuboidal region

(
√

π)k

Γ
(

k + 2
2

) for spherical region. (1.1)

Computing the IV-optimality criterion numerically is
challenging primarily because integration is required
over the specified design region. Computation is less
extensive for cuboidal regions than it is for spher-
ical regions. However, computation time increases
exponentially for both regions as the dimensional-
ity of the problem increases. That is, as the num-
ber of factors increases, both the dimension of infor-
mation matrix and the number of variables to inte-
grate expand rapidly. In the case of the spherical re-
gion, the integration process is even more elaborate
because the process involves converting from rect-
angular to hyperspherical coordinates, formulating
the Jacobian due to change of variables, and inte-
grating trigonometric functions. In addition, numer-
ical computations are prone to numerical errors and
error propagation. These issues are typically over-
come when an analytical approach to the problem
can be developed. In general, analytical computa-
tion is much more efficient than numerical compu-
tation and often reveals a clear relationship among
the parameters governing the system and the system-
optimality performance measure. Further, it is much
easier to write computer codes for analytical expres-
sions. These features of the analytical computational
approach can then be exploited to design optimal
systems or study the optimality of a system. The
method presented in this paper eliminates the need
for integrating trigonometric functions. In addition,
the method is not only efficient computationally, but
computes exact IV-optimality values.

Matrix of Region Moments

In response surface methodology, region moments
of order two and four are required for second-
order designs. Giovannitti-Jensen and Myers (1989)
present expressions for these region moments when
the region of interest is a spherical surface. They il-
lustrated the matrix of region moments for the case
of k = 3 for both the first- and second-order models.
Haines (1987) also presents the matrix of region mo-
ments for k = 2 for a cuboidal region. Hussey et al.
(1987) show a similar moment matrix but consider
only first-order models.

In general, the matrix
∫
Ξ

f(x)′f(x)dx is a (p× p)
matrix of region moments (M) of the form given in
Equation (1.2). The variable p represents the number
of model parameters and

M =

⎛
⎜⎝

Ω 0 Ωφ1J′
k

0 diag(Ωmi) 0

Ωφ1Jk 0 Ωφ2Ik + Ωφ3JkJ′
k,

⎞
⎟⎠

(1.2)
where Ω is as described in Equation (1.1), φ1 repre-
sents region moment of order 2, while φ2 and φ3 rep-
resent region moments of order 4. Therefore, dividing
the matrix of region moments (M) by the volume of
the region reduces the matrix of region moments to

M
Ω

=

⎛
⎜⎝

1 0 φ1J′
k

0 diag(mi) 0

φ1Jk 0 φ2Ik + φ3JkJ′
k,

⎞
⎟⎠
(1.3)

where

mi =

⎧⎨
⎩

φ1 for 1 ≤ i ≤ k

φ3 for k + 1 ≤ i ≤ k +
(

k

2

)
.

After a careful study of the region moments
for cuboidal designs, it became apparent that the
second- and fourth-order moments are constants re-
gardless of the number of factors. Therefore, only
the dimensionality of the matrix M changes to re-
flect the number of parameters in the model. Thus,
for a cuboidal region, the second- and fourth-order
moments are given as

φ1 =
1
3
, φ2 =

4
45

, and φ3 =
1
9
. (1.4)

In the case of the spherical region, a unit sphere
was considered. The investigation revealed that, un-
like the cuboidal region, the second- and fourth-order
moments are functions of k. Table 1 gives the values
of these quantities for 2 ≤ k ≤ 6.
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TABLE 1. Spherical Second- and Fourth-Order Region

Moments for 2 ≤ k ≤ 6

Region moments

k φ1 φ2 φ3

2 1/4 1/12 1/24
3 1/5 2/35 1/35
4 1/6 1/24 1/48
5 1/7 2/63 1/63
6 1/8 1/40 1/80

The values in Table 1 agree with the expressions

φ1 =
1

k + 2

φ2 =
2

(k + 2)(k + 4)
or 2φ3

φ3 =
1

(k + 2)(k + 4)
(1.5)

as presented by Box and Draper (1959, 1963).

In terms of implementation, the computation of
the exact value for the IV-optimality criterion is ac-
complished by simply taking the trace of (X′X)−1

and Equation (1.3). For a cuboidal region, the appli-
cable second- and fourth-order region moments are
given in Equation (1.4); while for a spherical region,
the applicable second- and fourth-order region mo-
ments are given in Equation (1.5). The pseudo-code
used to implement the MATLAB program for com-
puting the exact integrated prediction variance is as
follows:

1. Set D = design matrix

2. Set k = number of design factors

3. Set N = number of observations

4. Specify type of design region, whether cuboidal
or spherical

5. If cuboidal region of interest

(i) Set X = model matrix for D (2nd order
model)

(ii) Set A = information matrix X′X
(iii) Set region moments as follows:

φ1 =
1
3
, φ2 =

4
45

, and φ3 =
1
9

(iv) Generate matrix of region moments (M)
(v) Go to step 7

6. If spherical region of interest

(i) Scale design (D) to be within a sphere of
radius 1

(ii) Set X = model matrix for D (second-order
model)

(iii) Set A = information matrix X′X
(iv) Set region moments as follows:

φ1 =
1

k + 2

φ2 =
2

(k + 2)(k + 4)
or 2φ3,

φ3 =
1

(k + 2)(k + 4)

(v) Generate matrix of region moments (M)
(vi) Go to step 7

7. Set A∗ = inverse of A

8. Set IV = trace of (M × A∗)

9. Integrated prediction variance = IV

10. Scaled integrated prediction variance = N∗ IV

It is important to point out that scaled optimality
values are used to compare designs of different num-
ber of observations (N) that have the same number
of factors. However, the standardized optimality val-
ues are appropriate for comparing designs with the
same number of observations and factors.

The following section shows the results of the ap-
plication of the MATLAB code in computing the in-
tegrated prediction variance for several types of de-
signs for both spherical and cuboidal regions of in-
terest. Interested persons can contact the author for
the actual computer codes.

Integrated Prediction Variance
for CRDs

Lucas (1974, 1976) examines design optimality
properties for several second-order designs; how-
ever, his examination did not include integrated
prediction variance. Park et al. (2005) study the
prediction-variance properties of second-order de-
signs for cuboidal regions. Their investigation fo-
cused on maximum prediction variance (G-optimal)
and presented the average prediction variance for the
outer edge of the design space. This approach will
not give the exact value for the integrated predic-
tion variance even though it can provide some insight
into the behavior of the average-prediction variance
over the selected set of points. Also, several of the
saturated designs developed for second-order mod-
els focus on the generalized variance of the parame-
ter estimates (D-optimality). Designs such as those
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TABLE 2. Integrated Prediction Variance for

Standard CCD and BBD—Spherical Designs

IV

k Design N nc Standardized Scaled

2 CCD 11 3 0.3611 3.9722

3 BBD 15 3 0.4619 6.9286
CCD 17 3 0.3757 6.3862

4 BBD 28 4 0.3611 10.1110
CCD 28 4 0.3611 10.1110

5 BBD 44 4 0.3360 14.7830
CCD 29 3 0.4130 16.0498

6 BBD 52 4 0.4242 22.0590
CCD 48 4 0.3887 20.3001

7 BBD 59 3 0.4423 26.0980
CCD 81 3 0.3784 30.6480

8 CCD 84 4 0.3967 33.3200

9 BBD 128 0 0.3587 45.9080

developed by Hoke (1974), Box and Draper (1974),
and Notz (1982) all use the generalized variance as
the criterion for optimal designs. These designs may
not be the best for prediction purposes because the
designs are generated based on the variance of the pa-
rameter estimates, while the primary concern often is
on prediction variance when choosing a second-order
design.

According to the equivalence theorem of Kiefer–
Wolfowitz (1959, 1961), D-optimal designs are also
G-optimal in the limit of an infinite number of tri-
als. Lucas (1974) discusses some of the merits of G-
efficient designs. Table 2 presents the integrated pre-
diction variance for the CCD and Box-Behnken de-
signs (BBD) for 2 ≤ k ≤ 9. For the CCDs on a spher-
ical region, α =

√
k. The number of center points,

(nc), used is also presented. The results indicate that,
for k = 3, 5 and 6, the CCD performs better than
the BBD. However, for k = 7, the BBD is a better
design. Note that, for k = 4, both the BBD and CCD
give the same average scaled-prediction variance be-
cause, in this case, the BBD is simply a rotation of
the CCD design. Therefore, for k = 4, either design

would produce the same level of confidence in terms
of predicting new observations. However, it is impor-
tant to point out that the spherical CCD provides
additional degrees of freedom for lack of fit and for
estimating pure cubic terms because of the fact that
it is a 5-level design in comparison with a 3-level
spherical BBD or even cuboidal designs. The data
given for k = 2, 8, and 9 is presented for complete-
ness.

For comparison purposes, the designs presented
in Table 2 were evaluated using JMP version 7 up to
k = 8, which is the limit of JMP’s built-in design-
generation feature. The results indicate that the av-
erage prediction variances for the CCDs are the same.
However, the average prediction variance reported
for the BBDs were different because the BBD de-
signs were not scaled to be on a sphere of radius 1 in
JMP. Compensating for the difference in scaling re-
sults in the same values of the IV criterion. To make
fair comparisons among competing designs, the au-
thors emphasize the need to scale the designs to the
same spherical radius.

Hybrid and Small Composite Designs (SCD)

Giovannitti–Jensen and Myers (1989) and Myers
et al. (1992) compare the hybrid and SCD designs
for three factors using variance-dispersion graphs
to study the properties of the prediction variance
throughout the entire region for these designs. The
information presented here complements the work
done by these authors and confirms their findings.
For details on the construction of these designs, see
Roquemore (1976) and Hartley (1959). In computing
and ranking the IV values for these designs, the num-
ber of center runs and the ranking system used by
Myers et al. (1992) were utilized, as shown in Table
3. The ranking is done such that 1 and 4 represent
the best and worst designs, respectively. The design
matrices have been scaled such that the points in the
design either lie on or inside a sphere of radius 1. The
scaling factor used for each design is also given in
Table 3. In terms of integrated prediction-variance
properties, the design with the smallest scaled IV
value is desirable. The results in Table 3 show that,
for k = 3, the hybrid 311B with three center runs per-
forms the best, followed by 311A. The SCD performs
the worst as a result of having the largest scaled IV
value. It is important to point out that scaled opti-
mality values are used to compare designs of differ-
ent number of observations, (N), that have the same
number of factors. A similar ranking is obtained for
k = 4, with the hybrid 416C with five center runs
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170 WAYNE R. WESLEY, ET AL.

TABLE 3. Comparison of IV Values for Near-Saturated Designs over Spherical Regions

IV
Ranked Scaling

Design N nc Standardized Scaled performance factor

k = 3

SCD α =
√

k 13 3 0.798 10.369 4 0.57735
Hybrid

310 12 2 0.670 8.034 3 0.64445
311A 12 2 0.576 6.911 2 0.44721
311B 13 3 0.519 6.745 1 0.40825

k = 4

SCD α =
√

k 19 3 0.816 15.503 4 0.50000
Hybrid

416A 20 4 0.571 11.430 3 0.52244
416B 20 4 0.569 11.387 2 0.54189
416C 20 5 0.568 11.362 1 0.54865

k = 6

1/2 fraction CCD α = 2.378 48 4 0.389 18.659 1 0.42052
Hybrid

628A 30 2 0.683 19.817 2 0.43301
628B 31 2 0.723 21.687 3 0.41547

k = 7

1/2 fraction CCD α = 2.828 81 3 0.378 30.648 1 0.35355
Hybrid

746 47 2 1.311 61.601 2 0.30995

performing the best, followed by 416B. Again, the
SCD performs the worst. These results agree with the
rankings given by Myers et al. (1992). However, as
pointed out by Myers et al. (1992), while the hybrid
design outperforms the SCD in terms of prediction-
variance properties, the SCD is useful particularly
in situations where sequential experimentation and
augmentation is desirable.

Table 3 also presents the comparison of the inte-
grated prediction variance for hybrid and CCD for
k = 6 and 7. According to the variance dispersion
results presented by Myers et al. (1992) for k = 6,
the hybrid design 628A performs much better than
the half-fraction CCD over a considerable portion of
the design region. However, it is clear from the scaled
IV values given in Table 3 that the half-fraction CCD

performs better but at a cost of over a 50% increase
in design size. Therefore, depending on the interest
of the practitioner, the most suitable design can be
chosen. If the average variance is more of a concern,
then the half-fraction CCD provides the better op-
tion. However, if cost constraints are more critical,
then the hybrid 628A design is the better option. Ac-
cording to Roquemore (1976), the hybrid 746 design
for k = 7 is not a near-saturated design but repre-
sents an economical alternative to the half=fraction
CCD with α = 2.828. The comparison of both de-
signs in terms of their scaled IV values given in Table
3 indicate that the half-fraction CCD outperforms
the hybrid 746. Therefore, the only time the hybrid
746 should be used is when very limited resources are
available.
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TABLE 4. Integrated Prediction Variance of

Selected Cuboidal Designs

IV

k Design N nc Standardized Scaled

2 FCC 11 3 0.3260 3.5863
Notz 9 3 0.4635 4.1716
Box–Draper 7 1 0.6060 4.2417

3 FCC 16 2 0.3405 5.4483
Notz 12 2 0.7073 8.4875
Hoke 16 3 0.3524 5.6382
SCD 10 0 1.0333 10.3330
Box–Draper 12 2 0.4944 5.9327

4 FCC 25 1 0.3376 8.4397
Notz 16 1 0.7430 11.8870
Hoke 21 2 0.4918 10.3280
SCD 16 0 1.0269 16.4300
Box–Draper 18 3 0.5708 10.2740

5 FCC 26 0 0.4155 10.8030
Notz 24 3 0.6213 14.9100
Hoke 28 2 0.4382 12.2700
SCD 21 0 1.9375 40.6880
Box–Draper 24 3 0.8201 19.6820

6 FCC 44 0 0.3902 17.1670
Notz 32 4 0.6788 21.7200
Hoke 36 2 0.4883 17.5800
Box–Draper 31 3 1.2146 37.6540

7 FCC 78 0 0.3840 29.9490
Hoke 44 1 0.5768 25.3810
Box–Draper 39 3 1.7784 69.3590

8 Hoke 53 0 0.6790 35.9870
Box–Draper 48 3 2.5403 121.9400

9 Hoke 64 0 0.7814 50.0120
Box–Draper 57 2 3.5967 205.0100

10 Hoke 76 0 0.9625 73.1530
Box–Draper 68 2 4.8529 330.0000

11 Hoke 89 0 1.0813 96.2360
Box–Draper 80 2 6.4077 512.6100

Comparison of Selected Cuboidal Designs

The exact IV-criterion for selected cuboidal de-
signs was computed using 0 through 5 center points.
The designs with the lowest scaled integrated predic-
tion variance are presented in Table 4. The standard-

ized values are also presented. Borkowski (2003b)
presented similar results for cuboidal designs, as
well as a discussion about exact versus approximate
prediction-variance values. It is clear from the data
presented in Table 4 that, for 2 ≤ k ≤ 6, the face-
centered cube (FCC) design is superior to the other
cuboidal designs. For FCC designs with k equal to
4, 5, and 6, there are no degrees of freedom for lack
of fit. Therefore, to facilitate the test for lack of fit,
some form of replication would be needed. In terms
of pure error calculation, 3 center runs are suggested.
By adjusting the number of center runs to 2 and 3,
respectively, the resulting scaled IV values are 8.45
and 8.53 for k = 4, 11.17 and 11.41 for k = 5, and
17.47 and 17.67 for k = 6. Even with these additional
center runs, the FCC design maintains the advantage
over the other designs, except for k = 6, when 3 cen-
ter runs are used. For k = 6, the Hoke design offers
a slightly better scaled IV value of 17.58. The Hoke
design performs the best for 7 ≤ k ≤ 11, even with
the addition of 2 to 3 center runs. In general, the best
saturated designs are the Hoke designs because they
consistently outperform the Notz, Box and Draper,
and the SCD designs. JMP 7 computes the exact av-
erage prediction variance for cuboidal designs such
as the FCC. However, for the other designs in Table
4, a comparison could not be made because JMP 7
does not generate these designs.

Analytical Determination of
Integrated Prediction Variance

It is understood that, for split-plot designs
(SPDs), alphabetic optimality is dependent on an
information matrix of the form X′Σ−1X. This sit-
uation suggests that optimal designs will depend on
the variance ratio, η = σ2

δ/σ2
ε . The standardized IV

function for SPDs can be expressed as

IV = trace
[
(X′R−1X)−1 1

Ω

∫
Ξ

f(z,x)′f(z,x)dzdx
]
,

where Ω =
∫
Ξ

dzdx is the volume of the region Ξ
and R is the correlation matrix derived by dividing
the variance–covariance matrix, Σ, by σ2

δ + σ2
ε . The

general form of the model vector for second-order
SPD is given as

f(z,x)′ = [1 | z1, . . . , zwp | x1, . . . , xsp |
z1z2, . . . , zwp−1zwp | z1x1, . . . , zwpxsp |
x1x2, . . . , xsp−1xsp | z2

1 , . . . , z2
wp |

x2
1, . . . , x

2
sp],

where z and x are the whole-plot and subplot fac-
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(X′R−1X)−1 =

⎛
⎜⎜⎝

γ1 0 γ2J′
wp γ3J′

sp
0 diag(1/di) 0 0

γ2Jwp 0 γ7(Iwp − γ4JwpJ′
wp) γ5[JspJ′

wp]
′

γ3Jsp 0 γ5JspJ′
wp γ8(Iwp − γ6JspJ′

sp)

⎞
⎟⎟⎠ (1.6)

tors, respectively, while wp and sp are the number of
whole-plot and subplot factors, respectively.

To develop the analytical approach to compute
IV-optimality of a design, the IV function is sep-
arated into two components. The first component
is the inverse of the information matrix, B =
(X′R−1X)−1, and the second component is M =
(1/Ω)

∫
Ξ

f(z,x)′f(z,x)dzdx, which is referred to as
the matrix of region moments. Wesley et al. (2009)
give a full discussion of the analytical characteriza-
tion of (X′R−1X)−1 for both the CCD and BBD
within a split-plot structure. The general form of
(X′R−1X)−1 for the split-plot CCD and BBD is
given as in Equation (1.6), where 0’s are zero ma-
trices of appropriate sizes; Jwp and Jsp are unit vec-
tors of wp × 1 and sp × 1, respectively; Iwp and Isp

are wp-dimensional and sp-dimensional identity ma-
trices; γi are scalar quantities (see Appendix A); and
diag(1/di) is a diagonal matrix of which the diago-
nal elements correspond to the linear and interaction
terms.

A similar characterization of the inverse of the
information matrix for a (CRD) was presented by
Borkowski (1995). However, by setting η = 0 and
the whole plot size to 1 in the above results, the
CRD characterization is obtained. Essentially, the
split-plot design is the more general structure while
the CRD actually represents a specific instance of the
SPD. In the following section ,we examine the second
component M, the matrix of region moments.

It is important to point out that the matrix of
region moments (M) is not affected by restrictions
on randomization and, thus, the variance ratio, η,
will not have any impact on its structure. Therefore,
the matrix of region moments for a CRD and an SPD
are exactly the same. The whole-plot factor is simply
seen as another variable in the design. To reflect the
nature of the SPD, the matrix of region moments can
be partitioned as

The following section presents the explicit func-
tions that can be used to compute the integrated
prediction variance for the split-plot CCD and the
split-plot BBD. It is important to point out that the
computation of IV values for second-order SPDs can
also be easily computed by simply taking the trace
of (X′R−1X)−1 and Equation (1.7), which is what
Equation (1.8) represents.

IV for the Split-Plot CCD and BBD

Performing the necessary matrix multiplication,
the IV-optimality criterion for both the CCD and
BBD can be determined analytically as

IV = γ1 + φ1(wpγ2 + spγ3)
k+(k

2)∑
i=1

Diag
(

mi

di

)

+ ([φ3(1 − wpγ4) + φ2(1 − γ4)]γ7

+ φ3spγ5 + φ1γ2)wp

+ ([φ3(1 − spγ6) + φ2(1 − γ6)]γ8

+ φ3wpγ5 + φ1γ3)sp. (1.8).

Table 13 summarizes the scalar quantities γi for both
the split-plot CCD and the split-plot BBD (see Ap-
pendix A). The expression in Equation (1.8) is gen-
eral regardless of the shape of the region of interest.
The distinction lies in the values for the region mo-
ments, φi. Tables 5 and 6 give the parameters used
to characterize the split-plot CCD and BBD, respec-
tively. Using these parameters and the pertinent con-
stants (ci) given in Tables 14 and 15, the IV value
for the respective SPD can be calculated.

The computer codes generated for these analyti-
cal expressions are available upon request by email-
ing the first author. The following section shows the
application of these functions in computing the inte-
grated prediction variance for several types of SPDs
for both spherical and cuboidal regions of interest.

M =

⎛
⎜⎜⎝

1 0 φ1J′
wp φ1J′

sp
0 Diag(mi) 0 0

φ1Jwp 0 φ2Iwp + φ3JwpJ′
wp φ3[JspJ′

wp]
′

φ1Jsp 0 φ3JspJ′
wp φ2Ik + φ3JkJ′

k

⎞
⎟⎟⎠ . (1.7)
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TABLE 5. Table of Notations for the Split-Plot CCD

Notations Meanings

f No. of factorial runs (2k or 2k−m
V )

fw No. of whole-plot factor runs
wi ith whole plot size
ai No. of whole plots with size wi

rw No. of repeated whole-plot axials
rs No. of repeated subplots axials
β Whole-plot axial setting
α Subplot axial setting
ζ Factor-level setting

Integrated Prediction
Variance for SPDs

In this section, we illustrate the utilization of
the analytical method for computing integrated pre-
diction variance values for second-order SPDs. The
response surface designs considered are the CCD
and the BBD for both spherical and cuboidal re-
gions. These designs were developed within a split-
plot structure by Vining et al. (2005) and Parker et
al. (2006, 2007). The notation VKM is used to de-

TABLE 6. Table of Notations for the Split-Plot BBD

Notations Meanings

f No. of factorial runs per block (2t)
fc No. of factorial runs at edge centers
wi ith whole-plot size
ai No. of whole plots with size wi

rw No. of blocks within which a whole-plot
factor appears

rs No. of blocks within which a subplot
factor appears

t No. of active subplot factors per block
(t ≥ 1)

λc No. of edge centers
λw No. of times a pair of whole plot factors

appears in the same block (λw ≥ 1)
λs No. of times a pair of subplot factors

appears in the same block
λint No. of times a whole plot factor appears

with a subplot factor in the same
block

β Whole-plot factor level setting
α Factor-level setting

note the Vining method of construction while MWP
is used to denote the minimum whole-plot Parker
method of construction. These designs were selected
because they possess the equivalent estimation prop-
erty indicating that the least-squares estimates are
equivalent to the generalized least-squares estimates,
making parameter estimation simple for practition-
ers. Equivalent designs allow for estimation of pa-
rameters using ordinary least squares instead of re-
stricted maximum-likelihood estimation. One of the
primary advantages of these designs is that the pa-
rameters of the mean model can be estimated sepa-
rately from the whole-plot and subplot error terms,
which are frequently not easy to estimate precisely.
Several combinations of whole-plot and subplot fac-
tors are considered. Further, these designs were se-
lected to demonstrate the flexibility of the methods
presented and to show how easy it is to compute the
IV values for large designs. Table 7 lists the split-plot
designs selected for evaluation in this section. For de-
tails on these designs and others, visit the following
link to access a reference catalog of split-plot designs:
http://scholar.lib.vt.edu/theses/available/etd-0330
2005-194026/. The spherical designs are scaled such

TABLE 7. Split-Plot Designs Selected for Evaluation

Factor combination
Number of

Design wp sp whole plots

Spherical region

k = 4

VKM BBD 1 3 5
MWP BBD 1 3 5
VKM BBD 2 2 11
VKM CCD 2 2 11

k = 6

VKM CCD 2 4 11
MWP CCD 2 4 11
VKM BBD 2 4 11

Cuboidal region

k = 7

VKM CCD 3 4 17
MWP CCD 3 4 17
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TABLE 8. Design Matrix for a Balanced VKM BBD with

One Whole-Plot Factor and Three Subplot Factors

Whole plot z1 x1 x2 x3 Whole-plot size

1 −1 ±1 ±1 0 4
−1 ±1 0 ±1 4
−1 0 ±1 ±1 4

2 1 ±1 ±1 0 4
1 ±1 0 ±1 4
1 0 ±1 ±1 4

3 0 ±1 ±1 0 4
0 ±1 0 ±1 4
0 0 ±1 ±1 4

4 0 0 0 0 12
5 0 0 0 0 12

that the design points lie on or inside a sphere of ra-
dius 1. For each of the designs presented, both the
standardized and scaled IV values are presented. Es-
sentially, the standardized IV value is obtained using
Equations (1.8). The standardized IV value is then
multiplied by the design size (N) to obtain the scaled
IV value. Because all the designs within a compar-
ison have the same number of whole plots, scaling
by the design size is appropriate. It is important to
point out that scaled optimality values are used to
compare designs of different number of observations
(N) that have the same number of factors. However,
the standardized optimality values are appropriate
for comparing designs with the same number of ob-
servations and factors.

SPD With One Whole-Plot Factor and Three
Subplot Factors

The first design type considered is the BBD. Ta-
bles 8 and 9 show the design matrices represent-
ing the structure of the balanced VKM BBD and
MWP BBD, respectively. Their unbalanced counter-
parts would have the sizes of whole plots 4 and 5
reduced from 12 to 2 for the VKM and whole plots
4 and 5 reduced from 13 to 2 for the MWP. Table
10 gives the details of the design parameters used
to compute the IV values for both the balanced and
unbalanced designs.

Equation (1.8) is evaluated using the values of the
parameters given in Table 10 and the expressions of
the scalar quantities and pertinent constants for the
split-plot BBD given in Tables 13, 14, and 15. The
results are obtained for variance ratios 0.5, 1, and
10, which are used to compute the functions, Φi, as

TABLE 9. Design Matrix for a Balanced MWP BBD with

One Whole-Plot Factor and Three Subplot Factors

Whole plot z1 x1 x2 x3 Whole-plot size

1 −1 ±1 0 0 2
−1 0 ±1 0 2
−1 0 0 ±1 2
−1 0 0 0 7

2 1 ±1 0 0 2
1 0 ±1 0 2
1 0 0 ±1 2
1 0 0 0 7

3 0 ±1 ±1 0 4
0 ±1 0 ±1 4
0 0 ±1 ±1 4
0 0 0 0 1

4 0 0 0 0 13
5 0 0 0 0 13

outlined in Appendix A. Table 11 summarizes the
results obtained. It is important to note that smaller
IV value indicates better design. It can be observed
that the unbalanced MWP BBD design has the best
scaled integrated prediction variance when compared
with the other designs. The balanced MWP BBD de-
sign is the next best design, while the balanced VKM
BBD design performs the worst. Because all the de-
signs have the same number of whole plots, the un-
balanced MWP design would be more cost effective
and therefore the best design.

An investigation is also performed on the similar-
ity between VKM CCD and VKM BBD with 4 fac-
tors. It is understood that, for a CRD in 4 factors,
the BBD is just a rotation of the CCD. Therefore,
both designs will give the same prediction variance
results. The purpose of this investigation is to verify
whether or not the VKM CCD and VKM BBD de-
signs with 4 factors are equivalent. It was observed
that, for the SPD, the condition of equivalency is
dependent on the number of whole-plot and subplot
factors. The details are presented only for the de-
signs that are equivalent. The equivalent designs are
balanced VKM CCD and VKM BBD; both with 2
whole-plot factors and 2 subplot factors. The scaled
integrated prediction variance values for these de-
signs are 14.31, 15.20, and 17.52 for variance ratios
0.5, 1, and 10, respectively. Both designs have whole-
plot sizes of 4 observations, 11 whole plots, 2 of which
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TABLE 10. Design Parameters for VKM BBD and MWP BBD with

One Whole-Plot Factor and Three Subplot Factors

VKM MWP

Parameters Balanced Unbalanced Balanced Unbalanced

f 4 4 2 2
fc 4 4 2 2
t 2 2 1 1
a1 3 3 3 3
a4 2 2 2 2
w1 12 12 13 13
w4 12 2 13 2
wp 1 1 1 1
sp 3 3 3 3
N 60 40 65 43
rw 6 6 13 13
rs 6 6 6 6
λw 1 1 1 1
λs 3 3 2 2
λint 4 4 2 2
λc 3 3 2 2
β 0.57735 0.57735 0.70711 0.70711
α 0.57735 0.57735 0.70711 0.70711
p 15 15 15 15

are dedicated to center runs. The designs will also
give the same result if the sizes of the two whole
plots of center runs are increased or reduced. The re-
sults indicate that only SPD involving 2 whole-plot
factors and 2 subplot factors will give the same pre-
diction variance properties. Any other combination
of whole-plot and subplot factors will result in differ-
ent prediction variance properties, depending on the
design type.

SPD With Two Whole-Plot Factors and Four
Subplot Factors

We now consider the VKM and the MWP CCD
with 2 whole-plot factors and 4 subplot factors. An
examination of the results in Table 11 reveals that
the unbalanced VKM CCD performs the best among
the designs considered. The unbalanced VKM CCD
has the lowest scaled integrated prediction variance
across the variance ratios considered. The next best
design is the unbalanced MWP CCD.

The VKM BBD given in Table 12 with 2 whole-
plot factors and four subplot factors was also con-
sidered. A close examination of the design structure
shows that subplot factor x2 has a total of 48 settings

at the ±1 levels, while the remaining subplot factors
have 24 settings at the ±1 levels. Therefore, the de-
sign moments among the subplot factors are different
and, as a result, the analytical method presented is
not capable of computing the IV values for this de-
sign. However, the matrix manipulation method pre-
sented is used to compute the IV value. This method
still represents an efficient and exact way of comput-
ing the IV values. The unbalanced structure of the
design is a result of the size of the whole-plot cen-
ters reducing from eight to two. Table 11 gives the
results, which indicate that the unbalanced design
performs better than the balanced design. However,
when compared with the IV results for VKM CCD
with k = 6, the unbalanced VKM CCD performs bet-
ter than the VKM BBD. This comparison is possible
because both designs have the same number of whole
plots and were scaled to be on a sphere of radius 1.

SPD With Three Whole-Plot Factors and
Four Subplot Factors

The previous examples examined designs with
spherical regions. However, the region of interest is
often cuboidal. The cuboidal designs considered are
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TABLE 11. Integrated Prediction Variance for Selected Split-Plot Designs

Standardized IV IV Scaled by design size

Balanced Unbalanced Balanced Unbalanced
Variance

Design ratio (η) VKM MWP VKM MWP VKM MWP VKM MWP

Spherical region

k = 4

BBD 0.5 0.658 0.373 0.686 0.397 39.453 24.270 27.431 17.075
1 wp 3 sp 1 0.827 0.404 0.848 0.425 49.629 26.246 33.932 18.261

10 1.243 0.472 1.247 0.477 4.606 30.661 49.891 20.490

BBD & CCD 0.5 0.325 — — — 14.310 — — —
2 wp 2 sp 1 0.346 — — — 15.240 — — —

10 0.398 — — — 17.521 — — —

k = 6

CCD 0.5 0.365 0.356 0.378 0.365 32.152 35.247 28.718 30.986
2 wp 4 sp 1 0.372 0.358 0.382 0.365 32.756 35.450 29.001 31.057

10 0.389 0.360 0.391 0.361 34.236 35.601 29.697 30.714

BBD 0.5 0.441 — 0.453 — 38.780 — 34.441 —
2 wp 4 sp 1 0.490 — 0.499 — 43.110 — 37.944 —

10 0.611 — 0.612 — 53.738 — 46.540 —

Cuboidal region

k = 7

CCD 0.5 0.323 0.262 0.339 0.267 43.956 40.010 41.986 37.160
3 wp 4 sp 1 0.362 0.277 0.375 0.282 49.288 42.406 46.536 39.189

10 0.459 0.315 0.461 0.316 62.376 48.195 57.205 43.920

the VKM and MWP CCD, both having the same
number of whole plots. Therefore, scaling these de-
signs by the design size for comparison is a reason-
able way of selecting the most efficient design. A
comparison of the designs according to the IV val-
ues given in Table 11 indicates that the unbalanced
MWP design performs the best among the designs
for each of the variance ratios considered. The bal-
anced MWP design is the next best design. There-
fore, in this case, the MWP designs should be the
design of choice rather than the VKM design, assum-
ing that the cost of collecting the additional runs is
feasible. The VKM and MWP designs are not the
only cuboidal designs available. Draper and John
(1998) and Goos and Vandebroek (2001) presented

some split-plot cuboidal designs and D-optimal de-
signs, respectively, but these designs do not satisfy
the equivalent estimation criteria.

Conclusion

In most cases, the lack of available computer pro-
grams and the computational challenges encountered
to compute the IV-optimality criterion have been a
deterrent to most practitioners interested in using
the criterion. Our investigation has led to the de-
velopment of a computationally efficient method for
computing the exact value of the IV-optimality cri-
terion for second-order response surface designs. The
methods presented are capable of dealing with com-
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TABLE 12. Design Matrix for a Balanced VKM BBD with

Two Whole-Plot Factors and Four Subplot Factors

Whole Whole-
plot z1 z2 x1 x2 x3 x4 plot size

1 −1 −1 0 ±1 0 0 8
2 −1 0 0 ±1 ±1 0 4

−1 0 ±1 0 0 ±1 4
3 −1 1 0 ±1 0 0 8
4 0 −1 ±1 0 ±1 0 4

0 −1 0 0 ±1 ±1 4
5 0 0 ±1 ±1 0 ±1 8
6 0 1 ±1 0 ±1 0 4

0 1 0 0 ±1 ±1 4
7 1 −1 0 ±1 0 0 8
8 1 0 0 ±1 ±1 0 4

1 0 ±1 0 0 ±1 4
9 1 1 0 ±1 0 0 8

10 0 0 0 0 0 0 8
11 0 0 0 0 0 0 8

pletely randomized designs and split-plot designs for
both spherical and cuboidal regions. An attractive
feature of the derived analytical functions to com-
pute the exact IV-optimality criterion for the CCD
and the BBD is that they are functions of the de-
sign parameters. Therefore, the effect of changes in
any of the design parameters can be easily evaluated
without the need to generate the actual design.

The applications of these methods were demon-
strated by the evaluation of several response surface
second-order designs. With respect to completely
randomized designs on spherical region, the results
indicate that, for k = 3, 5, and 6, the CCD performs
better than the BBD. However, for k = 7, the BBD is
a better design. For saturated or near saturated de-
signs on spherical region, the hybrid designs for k = 3
and 4 perform the best. However, for k = 6 and 7, the
half-fraction CCD performs better than the hybrid
designs. For a cuboidal region of interest, the FCC
designs for 2 ≤ k ≤ 6 are the best designs, while,
for 7 ≤ k ≤ 11, the Hoke designs are the best. In
the case of split-plot designs, the results reveal that
the unbalanced split-plot designs have a tendency to
give better IV values when compared with the bal-
anced split-plot designs. It was also shown that, for
4 factors, the CCD and BBD are only equivalent for
situations involving two whole-plot factors and two

subplot factors. Any other combination of whole-plot
and subplot factors will result in two different de-
signs, thus giving different optimality results.

The resulting equations and matrices presented
provide an efficient and exact way of computing in-
tegrated prediction variance for certain second-order
designs. Therefore, it is now possible for some of
the software packages to present accurate results
for integrated prediction variance without having to
do extensive numerical computations. However, the
method presented does not address the commonly
used computer-generated designs for which design
structure does not produce nice analytical forms
for the prediction variance function. In these cases,
the authors recommend the approach by Borkowksi
(2003a), which performs an approximation by evalu-
ating over a set of random points.

Appendix A
Scalar and Constant Quantities

According to the structure of SPD, there are four
distinct categories of whole plots, denoted a1 through
a4. These categories have whole-plot sizes of w1

through w4 for factorial, whole-plot axials, subplot
axials, and center runs, respectively. In general, the
functions (Φi) of the variance ratio and whole plot
sizes are as follows:

Φ1 =
1 + η

1 + w1η

Φ2 = 1 + η

Φ3 = −2
(

η(1 + η)
1 + w1η

)
or − 2

(
η(1 + η)
1 + w3η

)
,

if unbalanced subplot axials.
Φ4 = 1 or Φ2, if whole-plot axials are grouped

with factorial whole plots.
Φ5 = Φ2 or Φ1, if subplot axials are in separate

whole plots, while Φ3 is set to 0.

Φ6, Φ7, and Φ8 =
1 + η

1 + wiη
for i = 2, 3, 4.

Φ9 = 0 or 2
(

(1 + η)2

1 + w3η

)
, if the centers are

grouped with subplot axials.

Table 13 summarizes the scalar quantities repre-
sented by γi in the inverse of the information matrix
for both the split-plot CCD and BBD. Tables 14 and
15 provide the details of the pertinent constants (ci)
for the split-plot CCD and BBD respectively.
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TABLE 13. Table of Scalar Quantities for the Split-Plot CCD and BBD

Scalars CCD expressions BBD expressions

γ1
1

c11

1
c11

γ2 − c5

c11
− c5

c11

γ3 − c9

c11
− c9

c11

γ4
c1

Φ62rwβ4 + wpc1
− Φ12rwβ4(c5)2

c11

c1

Φ1f(rw − λw)β4 + wpc1
− Φ6f(rw − λw)β4(c5)2

c11

γ5 −Φ1fζ4

c2
+

c5c9

c11
−Φ1fλintα

4

c2
+

c5c9

c11

γ6 c7 −
(Φ52rsα

4 + Φ9)(c9)2

c11
c7 −

Φ5f(rs − λs)α4(c9)2

c11

γ7
1

Φ62rwβ4

1
Φ1f(rw − λw)β4

γ8
1

Φ52rsα4 + Φ9

1
Φ5f(rs − λs)α4

TABLE 14. Table of Constant Quantities for CCD

Constants Expressions

c1 Φ1fwζ4 − (Φ1fζ4)2sp
Φ52rsα4 + Φ9 + sp(Φ4Φ1fζ4 + Φ32rsα4)

c2 (Φ52rsα
4 + Φ9 + sp(Φ4Φ1fζ4 + Φ32rsα

4))(Φ62rwβ4 + wpc1)

c3
Φ1fwζ2 + Φ62rwβ2

Φ62rwβ4 + wpc1

c4 −Φ1fζ4(Φ1fζ2 + Φ72rsα
2)sp

c2

c5 c3 + c4

c6 −Φ1fζ4(Φ1fwζ2 + Φ62rwβ2)wp

c2

c7
(Φ4Φ1fζ4 + Φ32rsα

4)c2 − ((Φ52rsα
4 + Φ9)(Φ1fζ4)2wp)

(Φ52rsα4 + Φ9 + sp(Φ4Φ1fζ4 + Φ32rsα4))c2

c8
(Φ1fζ2 + Φ72rsα

2)(1 − c7sp)
Φ52rsα4 + Φ9

c9 c6 + c8

c10 c5(Φ1fwζ2 + Φ62rwβ2)wp + c9(Φ1fζ2 + Φ72rsα
2)sp

c11 a1w1Φ1 + a2w2Φ6 + a3w3Φ7 + a4w4Φ8 − c10
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TABLE 15. Table of Constant Quantities for the Split-Plot BBD

Constants Expressions

c1 Φ1fλwβ4 − (Φ1fλintα
4)2sp

Φ5f(rs − λs)α4 + sp(Φ1Φ4fλsα4 + Φ3(f(rs − λs)α4 + fcλcα4))

c2 (Φ5f(rs − λs)α4 + sp(Φ1Φ4fλsα
4 + Φ3(f(rs − λs)α4 + fcλcα

4)))(Φ1f(rw − λw)β4 + wpc1)

c3
Φ1(frwβ2)

Φ1f(rw − λw)β4 + wpc1

c4 − (Φ1f)2rsα
2λintα

4sp

c2

c5 c3 + c4

c6 − (Φ1f)2rwβ2λintα
4wp

c2

c7
(Φ1Φ4fλsα

4 + Φ3(f(rs − λs)α4 + fcλcα
4))c2 − (Φ5f(rs − λs)α4(Φ1fλintα

4)2wp)
(Φ5f(rs − λs)α4 + sp(Φ1Φ4fλsα4 + Φ3(f(rs − λs)α4 + fcλcα4)))c2

c8
Φ1(rsα

2)(1 − c7sp)
Φ5(rs − λs)α4

c9 c6 + c8

c10 c5Φ1frwβ2wp + c9Φ1frsα
2sp

c11 a1w1Φ1 + a4w4Φ8 − c10
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