
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu

2

Schedule

• 11/28, 11/30, 12/5: Machine learning (classification, regression,

clustering, deep learning)

• 12/7: Project presentations and class project due

– Project code due Monday 12/4 at 2PM on Moodle.

• Final exam on 12/14

3

Announcements

• HW4 out week of 11/14 (final homework assignment)

due 12/1 (2:05pm in lecture or 2:00pm on Moodle)

– https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

• HW3 is mostly graded and will be returned on this

Thursday with solutions.

https://www.cs.cmu.edu/~sganzfri/HW4_AI.pdf

4

Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html

5

Class project

• For the class project students will implement an agent for 3-player

Kuhn poker. This is a simple, yet interesting and nontrivial, variant

of poker that has appeared in the AAAI Annual Computer Poker

Competition. The grade will be partially based on performance

against the other agents in a class-wide competition, as well as final

reports and presentations describing the approaches used. Students

can work alone or in groups of up to 3.

• Link to play against optimal strategy for one-card poker:

– http://www.cs.cmu.edu/~ggordon/poker/

• Paper on Nash equilibrium strategies for 3-player Kuhn poker

– http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf

• https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

http://www.computerpokercompetition.org/index.php/75-limit-games
http://poker.cs.ualberta.ca/publications/AAMAS13-3pkuhn.pdf
https://moodle.cis.fiu.edu/v3.1/mod/forum/discuss.php?d=21801

6

Multiagent systems (game theory)

• Strategic multiagent interactions occur in all fields

– Economics and business: bidding in auctions, offers in

negotiations

– Political science/law: fair division of resources, e.g., divorce

settlements

– Biology/medicine: robust diabetes management (robustness

against “adversarial” selection of parameters in MDP)

– Computer science: theory, AI, PL, systems; national security

(e.g., deploying officers to protect ports), cybersecurity (e.g.,

determining optimal thresholds against phishing attacks),

internet phenomena (e.g., ad auctions)

7

Nash equilibria in two-player zero-

sum games

• Zero exploitability – “unbeatable”

• Exchangeable

– If (a,b) and (c,d) are NE, then (a,d) and (c,b) are too

• Can be computed in polynomial time by a linear

programming (LP) formulation

8

Nash equilibria in multiplayer and

non-zero-sum games
• None of the two-player zero-sum results hold

• There can exist multiple equilibria, each with different

payoffs to the players

• If one player follows one equilibrium while other

players follow a different equilibrium, overall profile is

not guaranteed to be an equilibrium

• If one player plays an equilibrium, he could do worse if

the opponents deviate from that equilibrium

• Computing an equilibrium is PPAD-hard

9

Imperfect information

• In many important games, there is information

that is private to only some agents and not

available to other agents

– In auctions, each bidder may know his own

valuation and only know the distribution from which

other agents’ valuations are drawn

– In poker, players may not know private cards held

by other players

10

Extensive-form representation

11

Extensive-form games

• Two-player zero-sum EFGs can be solved in

polynomial time by linear programming

– Scales to games with up to 108 states

• Iterative algorithms (CFR and EGT) have been

developed for computing an ε-equilibrium that scale to

games with 1017 states

– CFR also applies to multiplayer and general sum games,

though no significant guarantees in those classes

– (MC)CFR is self-play algorithm that samples actions down

tree and updates regrets and average strategies stored at

every information set

12

13

WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22

14

Extensive-form game

• A game in extensive form is given by a game tree, which

consists of a directed graph in which the set of vertices

represents positions in the game, and a distinguished vertex,

called the root, represents the starting position of the game. A

vertex with no outgoing edges represents a terminal position in

which play ends. To each terminal vertex corresponds an

outcome that is realized when the play terminates at that vertex.

Any nonterminal vertex represents either a chance move (e.g., a

toss of a die or a shuffle of a deck of cards) or a move of one of

the players. To any chance-move vertex corresponds a

probability distribution over edges emanating from that vertex,

which correspond to the possible outcomes of the chance move.

15

Perfect vs. imperfect information

• To describe games with imperfect information, in

which players do not necessarily know the full board

position (like poker), we introduce the notion of

information sets. An information set of a player is a set

of decision vertices of the player that are

indistinguishable by him given his information at that

stage of the game. A game of perfect information is a

game in which all information sets consist of a single

vertex. In such a game whenever a player is called to

take an action, he knows the exact history of actions

and chance moves that led to that position.

16

• A strategy of a player is a function that assigns to each

of his information sets an action available to him at that

information set. A path from the root to a terminal

vertex is called a play of the game. When the game has

no chance moves, any vector of strategies (one for each

player) determines the play of the game, and hence the

outcome. In a game with chance moves, any vector of

strategies determines a probability distribution over the

possible outcomes of the game.

17

• Every extensive-form game can be converted to an equivalent

strategic-form game, and therefore all the prior concepts and

theoretical results (e.g., domination, security level, mixed

strategies, Nash equilibrium, Minmax Theorem) will apply.

However, this conversion produces a strategic-form game that

has size that is exponential in the size of the original game tree,

and is infeasible for large games. Therefore, we would like do

develop algorithms that operate directly on extensive-form

games and avoid the conversion to strategic form games.

18

19

WL/12 CC CF FC FF

00 0 0 0 0

01 -0.5 -0.5 1 1

02 -1 1 -1 1

10

11

12

20

21

22

20

Gambit

• http://gambit.sourceforge.net/gambit15/gui.html

http://gambit.sourceforge.net/gambit15/gui.html

21

Algorithms for game solving

• Two-player zero-sum games: there exists a linear programming

formulation and it can be solved in polynomial time.

• For two player “general-sum” and games with more than two

players, it is PPAD-hard (though not NP-hard), and widely

conjectured no efficient algorithms exist.

• For two-player zero-sum extensive-form games, there also exists

a linear-programming formulation, despite the fact that

converting it to normal-form would involve an exponential

blowup in size of the game tree.

22

Computing Nash equilibria of two-

player zero-sum games

• Consider the game G = ({1,2}, A1 x A2, (u1, u2)).

• Let U*i be the expected utility for player i in equilibrium (the

value of the game); since the game is zero-sum, U*1 = - U*2.

• Recall that the Minmax Theorem tells us that U*1 holds constant

in all equilibria and that it is the same as the value that player 1

achieves under a minmax strategy by player 2.

• Using this result, we can formulate the problem of computing a

Nash equilibrium as the following optimization:

Minimize U*1

Subject to Σk in A2 u1,(a
j
1, a

k
2) * sk

2 <= U*1 for all j in A1

Σk in A2 s
k
2 = 1

sk
2 >= 0 for all k in A2

23

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2 <= U*1 for all j in A1

Σk in A2 s
k
2 = 1

sk
2 >= 0 for all k in A2

• Note that all of the utility terms u1(*) are constants while the

mixed strategy terms sk
2 and U*1 are variables.

24

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2 <= U*1 for all j in A1

Σk in A2 s
k
2 = 1

sk
2 >= 0 for all k in A2

• First constraint states that for every pure strategy j of player 1, his expected

utility for playing any action j in A1 given player 2’s mixed strategy s1 is at

most U*1. Those pure strategies for which the expected utility is exactly U*1

will be in player 1’s best response set, while those pure strategies leading to

lower expected utility will not.

• As mentioned earlier, U*1 is a variable; we are selecting player 2’s mixed

strategy in order to minimize U*1 subject to the first constraint. Thus, player

2 plays the mixed strategy that minimizes the utility player 1 can gain by

playing his best response.

25

Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2 <= U*1 for all j in A1

Σk in A2 s
k
2 = 1

sk
2 >= 0 for all k in A2

• The final two constraints ensure that the variables sk
2 are

consistent with their interpretation as probabilities. Thus, we

ensure that they sum to 1 and are nonnegative.

26

Learning in games

• In game theory, fictitious play is a learning rule first

introduced by George W. Brown. In it, each player

presumes that the opponents are playing stationary

(possibly mixed) strategies. At each round, each player

thus best responds to the empirical frequency of play of

their opponent. Such a method is of course adequate if

the opponent indeed uses a stationary strategy, while it

is flawed if the opponent's strategy is non-stationary.

The opponent's strategy may for example be

conditioned on the fictitious player's last move.

27

Fictitious play

• Simple “learning” update rule

• Initially proposed as an iterative method for computing Nash

equilibria in zero-sum games, not as a learning model!

• Brown, G.W. (1951) “Iterative Solutions of Games by Fictitious

Play”

• Algorithm:

Initialize beliefs about the opponent’s strategy

Repeat:

1) Play a best response to the assessed strategy of

the opponent

2) Observe the opponent’s actual play and update

beliefs accordingly

28

• In fictitious play, the agent believes that his opponent

is playing the mixed strategy given by the empirical

distribution of the opponent’s previous actions. That is,

if A is the set of the opponent’s actions, and for every a

in A we let w(a) be the number of times that the

opponent has played action a, then the agent assess the

probability of a in the opponent’s mixed strategy as

– P(a) = w(a) / ∑a’ in Aw(a’)

29

• For example, in a repeated Prisoner’s Dilemma game, if the

opponent has played C, C, D, C, D in the first five games, before

the sixth game he is assumed to be playing the mixed strategy

(0.6, 0.4).

• In general the tie-breaking rule chosen has little effect on the

results of fictitious play.

• On the other hand, fictitious play is very sensitive to the players’

initial beliefs. This choice, which can be interpreted as action

counts that were observed before the start of the game, can have

a radical impact on the learning process. Note that one must pick

some nonempty prior belief for each agent; the prior beliefs

cannot be (0,…0), since this does not define a meaningful mixed

strategy.

30

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1

31

• As the number of rounds tends to infinity, the empirical

distribution of the play of each player will converge to

(0.5,0.5). If we take this distribution to be the mixed

strategy of each player, the play converges to the

unique Nash equilibrium of the normal form stage

game, that in which each player plays the mixed

strategy (0.5,0.5).

32

Machine learning

• An agent is learning if it improves its performance on

future tasks after making observations about the world.

Learning can range from the trivial, as exhibited by

jotting down a phone number, to the profound, as

exhibited by Albert Einstein, who inferred a new

theory of the universe.

• We will start by concentrating on one class of learning

problem, which seems restricted but actually has vast

applicability: from a collection of input-output pairs,

learn a function that predicts the output for new inputs.

33

Machine learning

• Why would we want an agent to learn? If the design of

the agent can be improved, why wouldn’t the designers

just program in that improvement to begin with? There

are three main reasons.

34

• First, the designers cannot anticipate all possible

situations that the agent might find itself in. For

example, a robot designed to navigate mazes must

learn the layout of each new maze it encounters.

35

• Second, the designers cannot anticipate all changes

over time; a program designed to predict tomorrow’s

stock market prices must learn to adapt when

conditions change from boom to bust.

36

• Third, sometimes human programmers have no idea

how to program a solution themselves. For example,

most people are good at recognizing the faces of family

members, but even the best programmers are unable to

program a computer to accomplish that task, except by

using learning algorithms.

37

Supervised learning

• The task of supervised learning is this: Given a training set of

N example input-output pairs (x1, y1),(x2, y2),…,(xN, yN),

• Where each yj was generated by an unknown function y = f(x),

discover a function h that approximates the true function f.

• Example: xi, can be True/False for whether email says “Prize” in

it, and yi can be True/False for whether or not it is Spam.

• x and y can be any value, they need not be numbers.

– E.g., x can be {red, green, blue} for jacket color, and y can be price.

• The function h is a hypothesis. Learning is a search through the

space of possible hypotheses for one that will perform well,

even on new examples beyond the training set.

38

Supervised learning

• To measure the accuracy of a hypothesis we give it a test

set of examples that are distinct from the training set.

– What would happen if we tested on the examples that were

trained on?

• We say a hypothesis generalizes well if it correctly

predicts the value of y for novel examples. Sometimes

the function f is stochastic—it is not strictly a function of

x, and what we have to learn is a conditional probability

distribution, P(Y|x).

39

Supervised learning

• When the output y is one of a finite set of values (such as

sunny, cloudy, or rainy), the learning problem is called

classification, and is called Boolean or binary

classification if there are only two values. When y is a

number (such as tomorrow’s temperature), the learning

problem is called regression. (Technically, solving a

regression problem is finding a conditional expectation or

average value of y, because the probability that we have

found exactly the right real-valued number for y is 0).

40

Supervised learning

41

Supervised learning

• The figure shows a familiar example: fitting a function of a single variable to

some data points. The examples are points in the (x,y) plane, where y = f(x).

We don’t know what f is, but we will approximate it with a function h

selected from a hypothesis space, H, which for this example we will take to

be the set of polynomials such as x5 + 3x2 + 2. Figure a shows some data with

an exact fit by a straight line (the polynomial 0.4x + 3). The line is called a

consistent hypothesis because it agrees with all the data. Figure b shows a

high-degree polynomial that is also consistent with all the data. This

illustrates a fundamental problem in inductive learning: how do we choose

from among multiple consistent hypotheses? The answer is to prefer the

simplest hypothesis consistent with the data. This principle is called

Ockham’s razor, after the 14th-century English philosopher William of

Ockham, who used it to argue sharply against all sorts of complications.

Defining simplicity is not easy, but it seems clear that a degree-1 polynomial

is simpler than a degree-7 polynomial, and thus (a) should be preferred to (b).

We will make this intuition more precise later.

42

Supervised learning

• Figure c shows a second data set. There is no consistent straight

line for this data set; in fact, it requires a degree-6 polynomial for

an exact fit. There are just 7 data points, so a polynomial with 7

parameters does not seem to be finding any pattern in the data and

we do not expect it to generalize well. A straight line that is not

consistent with any of the data points, but might generalize fairly

well for unseen values of x, is also shown in c. In general, there is

a tradeoff between complex hypotheses that fit the training data

well and simpler hypotheses that may generalize better. In figure

d we expand the hypothesis space H to allow polynomials over

both x and sin(x), and find that the data in c can be fitted exactly

by a simple function of the form ax + b + csin(x). This shows the

importance of the hypothesis space.

43

Supervised learning

• In some cases, an analyst looking at a problem is willing to make

more fine-grained distinctions about the hypothesis space, to say—

even before seeing any data—not just that a hypothesis is possible

or impossible, but rather how probable it is. Supervised learning

can be done by choosing the hypothesis h* that is most probable

given the data:

– h* = argmaxh in H P(h|data)

– By Bayes’ rule, this is equivalent to h* = argmaxh in H P(data|h) P(h)

• Then we can say that the prior probability P(h) is high for a degree-

1 or -2 polynomial, lower for a degree-7 polynomial, and

especially low for degree-7 polynomials with large, sharp spikes as

in Figure 18.1(b). We allow unusual-looking functions when the

data say we really need them, but we discourage them by giving

them a low prior probability.

44

Supervised learning
• Why not let H be the class of all Java programs, or Turing

machines? After all, every computable function can be

represented y some Turing machine, and that is the best we can

do. One problem with this idea is that it does not take into

account the computational complexity of learning. There is a

tradeoff between the expressiveness of a hypothesis space and

the complexity of finding a good hypothesis within that space.

For example, fitting a straight line to data is an easy

computation; fitting high-degree polynomials is somewhat

harder; and fitting Turing machines is in general undecidable. A

second reason to prefer simple hypothesis spaces is that

presumably we will want to use h after we have learned it, and

computing h(x) when h is a linear function is guaranteed to be

fast, while computing an arbitrary Turing machine program is

not even guaranteed to terminate. For these reasons, most work

on learning has focused on simple representations.

45

Learning decision trees

• A decision tree represents a function that takes as

input a vector of attribute values and returns a

“decision”—a single output value. The input and

output values can be discrete or continuous. For now

we will concentrate on problems where the inputs have

discrete values and the output has exactly two possible

values; this is Boolean classification, where each

example input will be classified as true (a positive

example) or false (a negative example).

46

Decision trees

• A decision tree reaches its decision by performing a

sequence of tests. Each internal node in the tree

corresponds to a test of the value of one of the input

attributes, Ai, and the branches from the node are

labeled with the possible values of the attribute, Ai =

vik. Each leaf node in the tree specifies a value to be

returned by the function. The decision tree

representation is natural for humans; indeed, many

“How To” manuals (e.g., for car repair) are written

entirely as a single decision tree stretching over

hundreds of pages.

47

Decision tree

48

Decision trees
• As an example, we will build a decision tree to decide whether

to wait for a table at a restaurant. The aim here is to learn a

definition for the goal predicate WillWait. First we list the

attributes that we will consider as part of the input:

– Alternate: whether there is a suitable alternative restaurant nearby.

– Bar: whether the restaurant has a comfortable bar area to wait in.

– Fri/Sat: true on Fridays and Saturdays.

– Hungry: whether we are hungry.

– Patrons: how many people are in the restaurant (values are None, Some,

and Full).

– Price: the restaurant’s price range ($, $$, $$$).

– Raining: whether it is raining outside.

– Reservation: whether we made a reservation.

– Type: the kind of restaurant (French, Italian, Thai, or burger).

– WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60,

or >60).

49

Decision trees

• Note that every variable has a small set of possible

values; the value of WaitEstimate, for example, is not

an integer, rather it is one of the four discrete values 0-

10, 10-30, 30-60, or >60. The decision tree usually

used by one of us for this domain is shown in Figure

18.2. Notice that the tree ignores the Price and Type

attributes. Examples are processed by the tree starting

at the root and following the appropriate branch until a

leaf is reached. For instance, an example with Patrons

= Full and WaitEstimate = 0-10 will be classified as

positive (i.e., yes, we will wait for a table).

50

Decision trees

• An example for a Boolean decision tree consists of an

(x,y) pair, where x is a vector of values for the input

attributes, and y is a single Boolean output value. A

training set of 12 examples is shown in Figure 18.3.

The positive examples are the ones in which the goal

WillWait is true (x1, x3,…); the negative examples are

the ones in which it is false (x2, x5,…).

51

Decision tree

52

Decision trees

• We want a tree that is consistent with the examples and is as

small as possible. Unfortunately, no matter how we measure

size, it is an intractable problem to find the smallest consistent

tree; there is no way to efficiently search through the 22^n trees.

With some simple heuristics, however, we can find a good

approximate solution: a small (but not smallest) consistent tree.

The DECISION-TREE-LEARNING ALGORITHM adopts a

greedy divide-and-conquer strategy; always test the most

important attribute first. This test divides the problem up into

smaller subproblems that can then be solved recursively. By

“most important attribute,” we mean the one that makes the

most difference to the classification of an example. That way,

we hope to get to the correct classification with a small number

of tests, meaning that all paths in the tree will be short and the

tree as a whole will be shallow.

53

Decision trees

• Figure 18.4(a) shows that Type is a poor attribute, because it

leaves us with four possible outcomes, each of which has the

same number of positive as negative examples. On the other

hand, in (b) we see that Patrons is a fairly important attribute,

because if the value is None or Some, then we are left with

example sets for which we can answer definitively (No and Yes,

respectively). If the value is Full, we are left with a mixed set of

examples. In general, after the first attribute test splits up the

examples, each outcome is a new decision tree problem in itself,

with fewer examples and one less attribute. There are four cases

to consider for these recursive problems:

54

Decision trees

1. If the remaining examples are all positive (or all negative), then we are

done: we can answer Yes or No. Figure 18.4(b) shows examples of this

happening in the None and Some branches.

2. If there are some positive and some negative examples, then choose the best

attribute to split them. Figure 18.4(b) shows Hungry being used to split the

remaining examples.

3. If there are no examples left, it means that no example has been observed

for this combination of attribute values, and we return a default value

calculated from the plurality classification of all the examples that were

used in constructing the node’s parent. These are passed along in the

variable parent_examples.

4. If there are no attributes left, but both positive and negative examples, it

means that these examples have exactly the same description., but different

classifications. This can happen because there is an error or noise in the

data; because the domain is nondeterministic; or because we can’t observe

an attribute that would distinguish the examples. The best we can do is

return the plurality classification of the remaining examples.

55

Decision tree learning algorithm

• Note that the set of examples is crucial for constructing

the tree, but nowhere do the examples appear in the

tree itself. A tree consists of just tests on attributes in

the interior nodes, values of attributes on the branches,

and output values on the leaf nodes.

56

Decision tree

57

Decision tree algorithm

58

Decision tree from 12-example

training set

59

Learning curve

60

Homework for next class

• Chapter 18 from Russel/Norvig

• HW4 out week of 11/14 due 12/1

• Next lecture: Continue machine learning (regression

and clustering)

