ATIS CODE	P-ALT
TEMP/DEW	DEN/ALT
ALTIMETER	WIND

WEIGHT AND BALANCE PA30 N84JS

Max Gross3600Empty Weight2543Empty Weight C.G.84.86Useful Load1057

ITEM	WEIGHT	X ARM	=	MOMENT
Empty Weight	2543.00	84.86		215798.98
Fuel Nacelle Tanks		93.0		
Fuel (Inboard)	324.00	90.0		29160.00
Fuel (Outboard)	180.00	95.0		17100.00
Pilot/Pass. (Front)		84.8		
Passenger (Rear)		120.5		
Baggage (Max 200)	20.00	142.0		2840.00
Wing Lockers	10.00	130.0		1300.00
TOTALS				

C.G. = Total Moment Divided by	Fotal Weight $C.G. = $ $Most\ Forward\ C.G. = 85.8$ $Most\ Rearward\ C.G. = 92$		
S.E.S.C	S.E.A.C		
(Single Engine Service Ceiling)	(Single Engine Absolute Ceiling)		
Departure Performance			
Takeoff Distance	Rate Of Climb (Single Engine)		
Landing Distance	Rate Of Climb (Two Engines)		
Accelerate Stop	Accelerate Go		
	((50 / (se roc x 60 / ground speed)) x 5280) + Takeoff Distance		
	a. $\sec x 60 = a$		
	b. $a / ground speed = b$ c. $b \times 5280 = c$		
	$c = D \times 2/30 = c$		

d. 50 / c = d

e. d + TakeoffDistance = Accelerate-Go Distance

(where d is the distance from rotation to clear 50' obstacle)