
IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 187 | P a g e

Regression Based Prioritization Testing Using Graphical

User Interface
Jyoti1, Kirti Bhatia2

1Mtech Scholar, Sat Kabir Institute of technology & Management, Bahadurgarh
2Assistant Professor, Sat Kabir Institute of technology & Management, Bahadurgarh

Abstract—Regression is done in two situations 1) If software

has been changed (because of fixes or Adding extra functionality

or deleting existing functionality, 2) If the Environment changes

still we will do regression. Regression testing will be conducted

after any bug fixed or any functionality changed.Test suite

minimization technique address this issue by removing

redundant test cases and Test

case prioritization technique by scheduling test cases in an order

that enhance the efficiency of attaining some

performance criteria. This paper presents a new approach for

regression testing by combining these two techniques.

The approach is to first minimize the test suite by using greedy

approach and then prioritize this minimized test suite

using genetic algorithm. Proposed approach supports tester by

minimizing the test suite while ensuring all the

requirement coverage and minimum execution time. The overall

aim of this research is to make the testing process time

and cost effective by reducing the number of test cases that need

to run after changes have been made.

Keywords—prioritization technique, regression testing,

efficiency

I. INTRODUCTION

Regression testing is a type of software testing that verifies

that software previously developed and tested still performs

correctly after it was changed or interfaced with other

software.Changes may include software enhancements, patches,

configuration changes, etc. During regression testing, new

software bugs or regressions may be uncovered. Sometimes a

software change impact analysis is performed to determine what

areas could be affected by the proposed changes. These areas

may include functional and non-functional areas of the

system.Retesting (also called Confirmation testing) when testing

is done to confirm that the bug which we reported earlier has

been fixed in new build is called retesting but Regression testing

means testing to ensure that the fixes has not introduced new

bugs to beappear.

When a bug is fixed by the development team than testing the

other features of the applications which might be affected due to

the bug fix is known as regression testing. Regression testing is

always done to verify that modified code does not break the

existing functionality of the application and works within the

requirements of the system.

For Example there are three Modules in the Project named

Admin Module, Personal Information, and Employment Module

and suppose bug occurs in the Admin Module like on Admin

Module existing User is not able to login with valid login

credentials so this is the bug. Now Testing team sends the above

- mentioned Bug to the Development team to fix it and when

development team fixes the Bug and hand over to Testing team

than testing team checks that fixed bug does not affect the

remaining functionality of the other modules (Admin, PI,

Employment) and also the functionality of the same module

(Admin) so this is known as the process of regression testing

done by Software Testers.

1. Retest all – It is one of the conventional techniques for

regression testing in which each and every test case in the

existing test suite are retuned. This technique is not feasible

most of time as it require more time and budget.

2. Regression Test Selection (RTS) - Here, RTS allows us to

omit some of the test cases. RTS is beneficial only if the

cost of selecting some of the test cases is less than the cost

of executing the complete test suite. In this technique only

part of test cases in test suite is selected to rerun. RTS

techniques are further classified into three categories

[3]CoverageTechnique, Minimization Technique and Safe

Technique.

3. Test Case Prioritization – Test case prioritization techniques

arranges test cases in a most beneficial order thus making

the testing process more effective. There are 18 different test

case prioritizations techniques [4] numbered

P1-P18 which is divided into three groups:-Comparator

Techniques, Statement Level Techniques, and Function

Level Techniques.

II. REGRATION TESTING AND STRATEGIES

Regression testing is an expensive and lavish process in

which a number of approaches of regression testing are utilized

to enhance its viability and improve effectiveness as it may

accounts 70% of the total cost. Techniques used to improve its

http://testingbasicinterviewquestions.blogspot.in/2012/05/is-software-tester-should-be-from-high.html

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 188 | P a g e

effectiveness are retest all, test case selection, test case reduction

and test case prioritization. Retest all approach involves retesting

and re-execution of all test cases defined in test suites, which are

more cost effective due to their critical behavior and severity. In

order to increase cost effectiveness and efficiency, test case

prioritization approach is used to prioritize the test cases by

rearranging.

Regression Testing

Reset All

Test Case Prioritization

Regression Test Case
selection

Test suite reduction

Fig.1. Regression Testing Techniques

Regression testing is achieved after the bug fixed, means

testing the operation whether the fixed defect is affecting

remaining functionality of the application or not. Usually in

regression testing bug fixed module is tested. During regression

testing tester always check the entire system whether the fixed

bug make any adverse effect in the existing system or not.

There are mostly three strategies to regression testing, 1) to

run all tests called unit Regression test 2) partial regression Test

and 3) always run a subset of tests based on a test case

prioritization technique called full regression test.

By increasing the overall rate of severe fault detection, a

greater number of errors can be found more rapidly in the code

developed to meet user requirements. As frequent rebuilding and

regression testing achieves popularity, the need for a time

constraint aware prioritization technique developing as per

requirements. New software development processes such as

extreme programming also promote a short development and

testing cycle and frequent execution of fast test cases. Therefore,

there is a clear need for a prioritization technique that has the

potential for more effectiveness when a test suite's allowed

execution time is known, particularly when that execution time is

short.

III. MYTHOLOGY FOR REGRESSION TESTING

The purpose of regression testing is to ensure that changes

such as those mentioned above have not introduced new

faults. One of the main reasons for regression testing is to

determine whether a change in one part of the software affects

other parts of the software. Common methods of regression

testing include rerunning previously completed tests and

checking whether program behavior has changed and whether

previously fixed faults have re-emerged. Regression testing can

be performed to test a system efficiently by systematically

selecting the appropriate minimum set of tests needed to

adequately cover a particular change.Regression testing is the re-

testing of features to make safe that features working earlier are

still working fine as desired.

It is executed when any new build comes to QA (quality

accurance), which has bug fixes in it or during releasing cycles

(Alpha, Beta or GA(Genetic algorithm) to originate always the

endurance of product.

Fig.2. Regression Testing Techniques Approach

Let A, B, C are the three modules where A can be direct

interaction with B and B can direct interact with C.in this case C

module interconnect with A indirectly. Based on the testing can

divide in three form. 1) Unit regression testing, 2) partial testing

and 3) full regression or prioritization technique for testing.

A. Unitregression testing

Unit Regression is done only when a defect is fixed in a

module, if that module has relationship with other sections

within that Module, then we perform Unit Regression. We will

be testing only the fixed part of the module, if any defect is

fixed. This happens when the Developer who has fixed the defect

says to perform the Unit Regression.The goal of unit testing is to

isolate each part of the program and show that the individual

parts are correct. A unit test provides a strict,

written contract that the piece of code must satisfy. As a result, it

affords several benefits.

B. Partial regression testing

Partial regression is when regression will be done after

Impact Analysis and we would go for Partial regression means

complete Regression suite will not be executed.

C. Prioritization testing

Testing the changes and all the remaining features, Normally

done when the changes are done in the root of the product or

https://en.wikipedia.org/wiki/Design_by_Contract

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 189 | P a g e

whenever the modifications or changes are more in the product

we do full regression testing.

Full regression or Test case prioritization techniques organize

the test cases in a test suite, prioritize them increase in the

effectiveness of testing on the basis of requirements. One

performance goal, the severe fault detection rate, is a measure of

how quickly severe faults are detected during the testing process.

An improved rate of severe fault detection can provide faster

feedback regarding the quality of the system under testing, as

complete testing process is vast and too expensive. This is often

the case with regression testing, the process of validating the

modified version of software to detect whether new errors have

been introduced into previously tested code and to provide

confidence that modifications are correct.

Requirements Designing Development Phase Testing Maintenance

Test Planning Test case Develop Test Evalution Evaluation Results

Fig.3: Software Development Life Cycle

IV. APPROACH AND ALGORITHM

The time constrained test case prioritization problem can be

effective and reduced to the NP-complete zero/one knapsack

problem. This can often be efficiently approximated with a

genetic algorithm (GA) heuristic search technique. Genetic

algorithms have been effectively used in other software

engineering and programming language problems such as test

generation, program transformation, and software maintenance

resource allocation, this survey demonstrates that they also prove

to be effective in creating time constrained test prioritizations

using requirements factors and technique that prioritizes

regression test suites so that the new ordering:-

1. Will always run within a given time limit.

2. Will have the highest possible potential for severe

defect detection based on derived coverage

information and requirements.
In summary, the important contributions of this survey are as

follows:

a) A GA based technique to prioritize a regression test

suite that will be run within a time constrained

execution environment.

b) An empirical evaluation of the effectiveness of the resulting

prioritizations in relation to (i) GA-produced prioritizations

using different user requirement parameters.

From the above, the testing phases contain the following

processes: test planning, test development, test execution and

evaluation of results.With existing test case prioritization

techniques researched in 1998-2015, this paper introduces and

organizes a new “4C” classification of those existing techniques,

based on their prioritization algorithm’s characteristics, as

follows:

1. Customer Requirement-based techniques:-Customer

requirement-based techniques are methods to prioritize

test cases based on requirement documents. Also, many

weight factors have been used in these techniques,

including custom-priority, requirement complexity and

requirement volatility.

2. Coverage-based techniques: Coverage-based techniques

are methods to prioritize test cases based on coverage

criteria, such as requirement coverage, total requirement

coverage, additional requirement coverage and

statement coverage.

3. Cost Effective-based techniques: Cost effective-based

techniques are methods to prioritize test cases based on

costs, such as cost of analysis and cost of prioritization.

4. Chronographic history-based techniques:

Chronographic history-based techniques are methods to

prioritize test cases based on test execution history.

Test cases in the test suites are reschedule which will further

prioritize using an algorithm. Before dealing with prioritization

algorithms the problem associated with test case prioritization

requires understanding which is defined as follows:

Dentition 1: Given: T, a test suite, PT, the set of permutations of

T , and f , a function from PT to the real numbers.

Problem: Find T’ ϵ PT such that (ΛT’’) (T’’ ϵ PT) (T’’ ≠ T’) [f

(T’) ≥ f (T’’)]

Prioritization Factor Value (pfv) = PFvalue * PFweight

In this definition, PT represents the set of all possible

prioritizations (orderings) of T , and f is a function that, applied

to any such ordering, yields an award value for that ordering. (F

or simplicity, and without loss of generality, the definition

assumes that higher award values are preferable to lower ones.)

V. PROPOSED TEST CASE PRIORITIZATION APPROACH USING

GENETIC ALGORITHM

Genetic algorithm is stochastic search technique, which is

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 190 | P a g e

based on the idea of selection of the fittest chromosome. In

genetic algorithm, population of chromosome is represented by

different codes such as binary, real number, permutation etc.

genetic operators(i.e. selection, crossover, mutation) is applied

on the chromosome in order to find more fittest chromosome.

The fitness of a chromosome is defined by a suitable

objective function. As a class of stochastic method genetic

algorithm is different from a random search. While genetic

algorithm carry out a multidimensional search by maintaining

population of potential user, random methods consisting of a

combination of iterative search methods and simple random

search methods can find a solution for a given problem. One of

the genetic method’s most attractive features is to explore the

search space by considering the entire population of the

chromosome.

The Genetic algorithm is an evolutionary algorithm and

population based search method. The selection takes place

from the available population using fitness function; genetic

operators are applied to obtain an optimal solution, followed

by termination.

The steps of genetic algorithm are as-

1. Generate population (chromosome).

2. Evaluate the fitness of generated population.

3. Apply selection for individual.

4. Apply crossover and mutation.

5. Evaluate and reproduce the chromosome.

Generate population (chromosome): Initially population is

randomly selected and encoded. Each chromosome represent the

possible solution of the problem.(in our case the sequence of test

cases is chromosome and our aim is to optimize this sequence).

For example- for 12 test cases T1, T2, T3……….T12 the

sequence is

T1->T2->T4->T6->T9->T10->T12->T3->T5->T7->T8->T11

Evaluate the fitness of generated population: The fitness of a

chromosome is defined by an objective function. An objective

function tells how ‘good’ or ‘bad’ a chromosome is. This

objective function generates a real number from the input

chromosome. Based on this number two or more chromosome

can be compared.

Apply selection for individual: In general the selection is

depending on the fitness value of the chromosome. The

chromosome with higher or lower value will be selected based

on the problem definition.

Apply crossover and mutation: Parents are choosing and

randomly combined. This technique for generating random

chromosome is called crossover. There exist two type of

crossover a Single point crossover.

A. Multiple point crossovers

For example- suppose two sequences for test cases is

P1: T1->T2->T3->T4->T5->T6->T7->T8->T9

And

P2: T4->T2->T5->T7->T8->T1->T6->T9->T2

Then using one point crossover offspring will be-

C1: T1->T2->T3->T4->T8->T6->T9->T5->T7

C2: T4->T3->T5->T7->T6->T8->T9->T1->T2

For C1 write first part of the P1 as it is and thenwrite second

part of P2 with constraint that a test case has not been added in to

C1.For doing mutation two genes selected randomly along the

chromosome and swapped with each other.

For example- when T3 and T9 get selected randomly

T1->T2->T3->T4->T8->T6->T9->T5->T7

T1->T2->T9->T4->T8->T6->T3->T5->T7

Termination criteria: The termination criteria can be selected

in the different ways such as- reaching the predefined fitness

value, the number of generation or a nonexisting difference in

the fitness values of each generation.In our approach we used a

fixed generation number as a termination criteria.

The goal of increasing the likelihood of revealing faults earlier in

the testing process. Informally, we describe this goal as one of

improving our test suite's r ate of fault detection: we describe a

function f that quantizes this goal.

There are several aspects of the test case prioritization

problem that are worth describing further. First, there are many

possible goals of prioritization, including the following:

TABLE I
TYPE OF FAULT

Code Mnemonic Description

M1 unordered no prioritization (control)

M2 random randomized ordering

M3 optimal
ordered to optimize

rate of fault detection

M4 stmt-total
prioritize in order of coverage of

statements

M5 stmt-addt
prioritize in order of coverage of

statements not y et covered

M6 branch-total
prioritize in order of coverage of

branches

M7 branch-addtl
prioritize in order of coverage of

branches not y et covered

M8 FEP-total
prioritize in order of total probability

of exposing faults

M9 FEP-addtl

prioritize in order of total probability
of exposing faults, adjusted to

consider effects of previous test

cases

Vertical lines are optional in tables. Statements that serve as captions for
the entire table do not need footnote letters.

aGaussian units are the same as cg emu for magnetostatics; Mx =

maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T =
tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry.

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 191 | P a g e

There are several motivations for meeting this goal. An

improved rate of fault detection during regression testing can let

software engineers begin their debugging activities earlier than

software. An improved rate of fault detection can also provide

faster feedback on the system under test, and provide earlier

evidence when quality goals have not been met, allowing

strategic decisions about release schedules to be made earlier

than might otherwise be possible. Further, in a testing situation

in which the amount of testing time that will be available is

uncertain (for example, when mark et pressures ma y force a

release of the pro duct prior to execution of all test cases), such

prioritization can increase the likelihood that whenever the

testing process is terminated, testing resources will have been

spent more cost-effectively in relation to potential fault detection

than they might otherwise have been. In this paper, we consider

nine different test case prioritization techniques. Table 1 lists

these techniques; we next present the techniques in turn.

VI. SIMULATION RESULTS

In this section we present technique to make regression

testing efficient. Let’s say a program, P has a test suite T in the

form of Test case- requirement matrix, representing the

requirements each test case is covering as shown in Table 1.

TABLE 2

Test suite for program p
Test

Case

Requirement

S1 S2 S3 S4 S5 S6 S7

T1 1 0 1 1 0 0 0

T2 0 1 1 1 1 0 0

T3 1 1 1 1 0 0 0

T4 0 0 0 0 1 0 1

T5 1 0 0 1 0 1 0

T6 1 0 1 0 0 0 0

T7 0 1 0 1 0 1 0

T8 0 0 0 0 0 0 0

T9 0 1 0 1 1 1 0

Fig.4. Overall view of our approach

The experiment is implemented in MATLAB. The test case

prioritization technique’s basic evaluation is to have maximum

number of faults covered and statement covered with minimum

number of test cases required. In this approach, the execution

time of every test case is also analyzed. The fault measuring

technique used in fault coverage is based testing technique. In

this example, there are test cases forming Test Suite (TS) = {T1,

T2, T3, T4, T5, T6, T7, T8, T9, } Similarly the statements

covered by the test cases are denoted as Statements Covered

(SC) = {S1, S2, S3, S4, S5, S6, S7}. The Control Flow Graph

(CFG) is seen in figure 1

We are defining a new approach to minimize and then

priorities the test cases using genetic algorithm. For this

purpose we have used the MATLAB simulator.

Fig.5. Prepared Test Suite

This greedy prioritization algorithm may not always choose

the optimal test case ordering. To see this, suppose a program

contains four faults, and suppose our test suite for that program

contains three test cases that detect those faults as shown in

Table 2

Fig.6. Minimized Test Suite

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 192 | P a g e

For prioritizing these minimized Test Suite a random cost is

assigned to each test case . Prioritized output for

this random assignment is shown in fig 5. The basis paramenters

defined while performing Genetic Algorithm for

prioritization are:

TABLE 2: PARAMETER WITH MINIMUM CASE TEST

Parameter Value

Number of Test Cases 7

Fitness Function Minimization

Generation 100

Test cost 0 to 1

Crossover PMX

TABLE 3: NUMBER OF FAULT IN THE TEST CASE

Test Case Fault

1 2 3 4

T7 X X

T8 X X

Our greedy algorithm may select test case t1 first, test case t2

second, and test case t3 third. However, the optimal test case

orderings in this case are t2, t3, t1 and t3, t2, t1. Despite this fact,

as we shall show, our algorithm pro vides a useful benchmark

against which to measure practical techniques, because we know

that an optimal ordering could perform no worse than the

ordering that we calculate. For brevity, in the rest of this paper,

we refer to our technique that incorporates this algorithm as

optimal prioritization.

Fig.5. Prioritized Test Sequence

The output based on this random cost assignment is:-

 The obtained Test Sequence of this assignment is

T2->T3->T9->T1->T5->T4->T6

 The Process cost driven from the genetic on initial cost

assignment is Process cost = 6.979843

 The cost driven after implementation of optimized sequence

is Test Cost = 1.2563

VII. CONCLUSION

We proposed an approach which combines the Minimization

technique and prioritization techniques of Regression Testing.

Genetic algorithm is best choice for

prioritization as using this algorithm fairly large number of time

we will get optimum solution. This approach may be used by the

software practitioners to reduce the time and effort required for

prioritization of test cases in the test suite. The proposed

approach may lead to greater savings of time and effort in larger

and complex projects as compared to smaller ones. Using GA

approach, software practitioners can effectively select

& prioritize test cases from a test suite, with minimum execution

time. The algorithm is solved manually and is a step towards

Test Automation. In future an automation tool is to be

developed to implement the proposed algorithm which can solve

large number of test cases in efficient time.

VIII. REFERENCES

[1] Chartchai Doungsa et. al., “An automatic test data

generation fromUML state diagram using genetic

algorithm”,http://eastwest.inf.brad.ac.uk/document/publicati

on/Doungsa-ardSKIMA.pdf, Accessed on 25.10.2012.

[2] K.K. Aggarwal, and Y. Singh, “A book on software

engineering”, New Age International (P) Ltd.; Publishers,

4835/24, Ansari Road,Daryaganj, New Delhi, 2001.

[3] Vishnu Raja.P ,MuraliBhaskaran.V. ―Improving the

Performance of Genetic Algorithm by Reducing

thePopulation Size‖, International Journal of Emerging

Technology and Advanced Engineering , Volume 3, Issue 8,

August 2013

[4] Md. ImrulKayes ,‖Test Case Prioritization for regression

Testing Based on Fault Dependency‖, IEEE ,ICECT,2011,

3rd International Conference, Volume 5,Pages 48-52.

[5] HimanshuGhetia , ShantanuSantold, Vairamuthu S , ―Test

case Prioritization based on testing requirementPriorities and

fault dependency‖, International journal of Advanced

Research in Computer Science and Software Engineering,

Volume 4, Issue 6, June 2014

[6] A.P. Mathur, Foundations of Software Testing, New Delhi,

Addison-Wesley Professional, 2008Examples:

[7] Huang C., Huang Y., Chang R., and Chen Y.,“Design and

Analysis of Cost-Cognizant Test Case Prioritization Using

Genetic Algorithm with Test History,” in Proceedings of the

34th Annual Computer Software and Applications

Conference, Seoul, South Korea, pp. 413-418, 2010.

[8] Kaur A. and Goyal S., “A Bee ColonyOptimization

Algorithm for Code Coverage TestSuite Prioritization,”

International Journal of Engineering Science and

Technology, vol. 3, no.4, pp. 2786-2795, 2011.

[9] grawal H., Horgan R., Krauser W., and LondonS.,

“Incremental Regression Testing,” in Proceedings of

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 193 | P a g e

International Conference on Software Maintenance, CSM-

93, Montreal, Canada, pp. 348-357, 1993.

[10] R Walcott , ―Prioritizing regression test suites for time

constrainted execution using genetic algorithm‖.[online]

available at

www.cs.virginia.edu/~krw7c/gaprioritization.pdf

