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Foreword

The Proceedings of the 10™ International Conference on Scour and Erosion (ICSE-10) are a
combination of the products of recent achievements by the geotechnical and hydraulic engineering
communities, who meet biennially to share new findings on understanding, evaluating, and
remediating scour and erosion. While celebrating such achievements, we have even more reasons
to be thankful for the resilience of the international community in these challenging times. After
the successful ICSE-5 in San Francisco in 2010, we anticipated the return of the ICSE to the United
States in the beautiful fall of the Washington, D.C. area in 2020. Yet, we made the difficult decision
to postpone the conference by one year and another difficult decision to hold the ICSE-10 entirely
online for the first time. It is indeed with excitement and heart-felt appreciation to see the
occurrence of the virtual ICSE-10 on October 18 to 21, 2021 after five years of preparation since
the ISSMGE Technical Committee on Scour and Erosion awarded us the privilege of organizing
the conference.

The ICSE-10 proceedings include 137 full papers and 5 abstracts of keynote lectures. Each paper
was peer-reviewed by two reviewers. The publications cover fourteen broad topics in scour and
erosion from fundamental research to full-scale applications. The topics include: mechanics of
internal erosion; sediment transport: grain scale and continuum scale; effects of geology on internal
erosion; rock scour; erosion and structures; river, coastal, estuarine and marine scour and erosion;
numerical modelling of scour and erosion; physical modelling of scour and erosion; erosion
monitoring and measurement; scour and erosion countermeasures and mitigation; geo-hazards
induced by scour and internal erosion; erosion risk assessment; case histories, lessons learned, and
general practice; and impact and adaptation: flooding, drought, and scour in a changing climate.
They represent the state of the art and the state of the practice of scour and erosion and the most
recent achievements by researchers, practitioners, policy makers, and the general public. The
ICSE-10 proceedings are entirely open-access; the authors own the copyright of their publications.
Thus, it is expected these achievements will be shared with and benefit a broad, international
audience.

Many individuals and organizations have supported the ICSE-10 in many ways. The International
Scientific Committee members and the National Scientific Committee members of ICSE-10
guided and directly participated in the conference preparation, decision making, technical paper
reviews, and organizing conference technical sessions. The ICSE-10 is under the auspices of the
International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical
Committee on Scour and Erosion (TC-213), that is chaired by Professor Shinji Sassa. The
conference is organized and sponsored by the American Society of Civil Engineers (ASCE) Geo-
Institute. We particularly thank Geo-Institute Director, Mr. Brad Keelor, and the staff members,
Lucy King, Erin Harrover, and Barbara Curtis, and the Geo-Institute Presidents, Drs. Youssef
Hashash, Patrick Fox, and James Collin for supporting the conference.

Ming Xiao, ICSE-10 Chair
On behalf of the ICSE-10 Organizing Committee
University Park, Pennsylvania, U.S.A.
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Designing Scour-Resistant Bridge Structures for Extreme Events
Roger L. Simpson, Ph.D., P.E., M. ASCE and Gwibo Byun, Ph.D.
AUR, Inc., 605 Preston Avenue, Blacksburg, VA 24060-4618; email: aur@aurinc.com
ABSTRACT

Bridge failures over water are likely due to scour, often during floods and peak flow
events which are becoming more common with climate change. All bridge scour failures are
produced by large-scale scouring vortices formed at piers and abutments that bring higher
velocity water down to erode the river bed. The purpose of this paper is to summarize scouring-
vortex-preventing designs that would have prevented bridge scour failures and will prevent
future failures at all flow speeds. Tests and computational fluid dynamic (CFD) studies for a
large variety of pier and abutment cases show that no scouring vortices are produced. One case
of rock scour under a concrete seal is discussed with application of a scAUR™ retrofit design to
prevent scouring vortices. Other advantages of these designs are: much lower present value of all
current and probable future costs, lower river levels and flow blockage, lower possibility for
debris and ice buildup, and greater protection of piers and abutments against impact loads.

INTRODUCTION

Removal of river bed substrate around bridge pier and abutment footings, also known as
scour, presents a significant cost and risk in the maintenance of many bridges throughout the
world and is one of the most common causes of highway bridge failures (Lagasse et al. 2001).
For US bridges over water, 70% are not designed to withstand scour, 21000 are currently “scour
critical”, and 80% of bridge failures are due to scour, often during floods and peak flow events
over a short time, which are becoming more common with climate change, as discussed in detail
by Flint et al. (2017). Lin et al. (2013) examined 36 bridge failures due to scour in terms of
structural, hydraulic, and geotechnical conditions. Local scour, channel migration scour, and
contraction scour were responsible for 78% of failures. Sadly, many lives were lost during these
failures.

This has motivated research on the causes of scour at bridge piers and abutments (Ettema
et al. 2004) and led bridge engineers to develop numerous scour countermeasures that attempt to
reduce the risk of catastrophe. Unfortunately, all previously used scour countermeasures are
temporary responses that require many recurring costs and do not prevent the formation of
scouring vortices, which is the root cause of the local scour (Shepherd et al. 2011; Tian et al.
2010). Consequently, soil and rocks around the foundations of bridge abutments and piers are
loosened and carried away by the flow during floods, which may compromise the integrity of the
structure. Even designing bridge piers or abutments with the expectation of some scour is highly
uncertain, since a recent study (Shepherd et al. 2011) showed huge uncertainties in scour data
from hundreds of experiments.

None of the conservative current bridge pier and abutment footing or foundation designs
prevent scouring vortices, which are created when the flow interacts with underwater structures,
so the probability of scour during high water or floods is present in all previous designs. Baker et
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al. (1988) point out that designs to avoid catastrophes should be based on extreme events and
that there is a need for more physical understanding of flood processes and situations, rather than
just using statistical probabilities from past experiments and events. Preventing scouring vortices
is a new approach to preventing scour at all flow speeds!_All previous scour protection methods
tolerate scouring vortices and try to reduce their effects; those methods don’t always work.

Two well publicized and investigated bridge failures due to scour were discussed by
Simpson and Byun (2019): the Schoharie Creek Bridge pier collapse of 1987 and the Loon
Mountain abutment collapse of 2011. These failures could have been avoided if scour-vortex-
prevention designs had been used.

The nature of scouring vortices is briefly discussed below. A/l bridge scour failures are
produced by large-scale scouring vortices formed at piers and abutments that bring high velocity
water down to the river bed. Since the scouring forces on the bed material vary with the square
of the local velocity, it is clear that the best scour countermeasure is to prevent the scouring
vortices.

Because of the unique circumstances of each bridge, it is suggested that each bridge be
designed for scour prevention, taking into account the upstream flow and geometry, rather than
using data correlations with associated uncertainties. One should use peak flow levels estimated
from rainfall and runoff data in an analysis to obtain the most severe scouring conditions.

After this, applications of the scAUR™ (streamlined control Against Underwater
Rampage) special streamlined fairings that prevent scouring vortices will be discussed for rock
scour under concrete seals and hydraulic structures. The costs of bridge failures relative to costs
for application of the scAUR™ special streamlined fairings and VorGAUR™ (Vortex
Generators Against Underwater Rampage) will be discussed.

The conclusions point out that that proper scouring-vortex-preventing designs would
have prevented all of the bridge scour failures, will prevent future failures at all flow speeds,
have much lower present value of all costs, lower river levels and flow blockage, lower
possibility for debris and ice buildup, and greater protection of piers and abutments against
impact loads.

THE NATURE OF SCOURING VORTICES

The bridge foundations in a water current, such as piers and abutments, change the local
hydraulics drastically because of the appearance of large-scale unsteadiness and shedding of
coherent vortices, such as horseshoe vortices. Figure la is a sketch of the horseshoe vortex
formed around the base of a pier by a separating boundary layer. The horseshoe vortex brings
higher velocity downward toward the river bed, produces high turbulent shear stress on the bed,
triggers the onset of rock and soil scour, and forms a scour hole (Simpson and Byun 2017). Like
in tornadoes, stretching of the horseshoe vortices due to the contraction of the flow intensifies the
velocities in the vortex, thus causing more scour. The "strength" of a horseshoe vortex varies
with the approach velocity U times the width W of the pier nose or UW. (See www.noscour.com
for more details.) Note that a wider pier nose exacerbates the scouring velocities on the river bed.
The 19 foot wide Schoharie Creek pier nose created intense scouring horseshoe vortices. Since
the scouring forces on the bed material vary with river bed roughness and the square of the local
velocity, it is clear that the best scour countermeasure is to prevent the scouring vortices. One
needs to keep the low velocity water on the river bottom.

The flowfield around an abutment is also highly three-dimensional and involves strong

1261



Proceedings of the 10th International Conference on Scour and Erosion (ICSE-10)

separated vortex flow (Barkdoll et al. 2007). For the spill-through abutment with no scour
protection, the flow is accelerated around the contraction and separates downstream of the
contraction leading edge as shown in Figure 1b (Simpson and Byun 2017). There is a free
surface level difference before and after the contraction leading edge due to the free surface
vortex formation. The spill-though abutment has a deep scour hole at the downstream edge of the
abutment due to the free surface vortex generated at the leading edge of the contraction. If not
prevented, this deep scour hole can progress upstream and undermine the abutment.

It should be noted that riprap rock scour countermeasures are not acceptable design
elements for new bridges. To avoid liability risk to engineers and bridge owners, new bridges
must be over-designed to withstand 500-year superfloods, assuming that all sediment is removed
from the ‘scour prism’ at that flowrate (Lagasse et al. 2001). Unlike temporary scour
countermeasures, the scAUR™ (pronounced like ‘scour’) fairing designs, discussed below and
by Simpson and Byun (2017), avoid liability risk by preventing or drastically diminishing the
scour prism and reducing the cost of new bridge engineering and construction. This greatly
reduces the probability of failure, by the tenets of catastrophic risk theory (Simpson 2013). See
www.noscour.com for details.

Spill-through abutment
without scour countermeasures
RIVER BANK

Free-surface
and CW vortex
moves down

wi/
Separation separati
vortex vortex

FLOW

Water free
surface

downstream

Horseshoe Vortex ;... ved next
to abutment
Scourhole RIVER BED

Figure 1. (a, left) The formation of a horseshoe vortex around the bottom of a bridge pier
with no scouring-vortex prevention. (b, right) Flow structure around the spill-through
abutment with no scouring vortex protection.

FEATURES OF SCAUR™ THAT PREVENT SCOURING VORTICES

As discussed in more detail by Simpson (2013) and Simpson and Byun (2017), using the
knowledge of how to prevent the formation of discrete vortices and separation for junction flows
(Simpson 1989, 1996, 2001) prior to the NCHRP-IDEA-162 project, AUR developed, proved
using model-scale tests, and patented new local-scouring-vortex-prevention scAUR™ designs.
As described in these patents, a key streamlined fairing design requirement is that the surface
shape produces surface pressure gradients that limit the flux of new vorticity at the surface so
discrete vortices are not formed. It is possible to select a surface shape that meet this requirement
for all water speeds. No one before has used this design feature, thus leading to the patents.

The scAUR™ design fundamentally alters the way the river flows around a pier or
abutment. The scAUR™ scouring-vortex-preventing fairing, US Patent No. 8,348,553, and
VorGAUR™ tetrahedral vortex generators, US Patent No. 8,434,723, are practical long-term
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permanent solutions. Piecewise continuous slope and curvature surface versions from sheet metal
have been proven to produce the same result (US Patent no. 9,453,319, Sept. 27, 2016). A
hydraulically optimum pier or abutment fairing prevents the formation of highly coherent
vortices around the bridge pier (Figure 2) or abutment and reduces 3D separation downstream of
the bridge pier or abutment with the help of the VorGAUR™ vortical flow separation control
(Figure 2). This is in contrast to a fairing shape used in an unpublished FHWA study which did
not prevent discrete vortex formation or scour for flows at angles of attack. Versions of
scAUR™ for high-angle-of-attack flows use a dog-leg arrangement. A modified tail provides
additional scour prevention for piers that are close together. Bridge owners receiving US federal
funds are no longer prohibited from using patented or proprietary products in designs (FHWA
2019).

Based on the past published work on scour and the experience of AUR (Simpson 1989,
1996, 2001), more physical evidence and insights support the idea that these scour vortex
preventing devices work better at full scale than model scale. Scouring forces on river bed
materials are produced by pressure gradients and turbulent shearing stresses, which are
instantaneously unsteady. At higher Reynolds numbers and sizes, pressure gradients and
turbulent fluctuation stresses are lower than at model scale, so scour at the same flow speed is
lower. Work by others (Ettema 2004; Shepherd et al. 2004, 2011) support the conclusion that
scour predictive equations, developed largely from laboratory data, over predict scour on full-
scale underwater structures. Thus, the scAUR™ and VorGAUR™ work as well or better in
preventing the scouring vortices and any scour at full scale as at the proven model scale. Other
computational fluid dynamics (CFD) studies by AUR, which is discussed by Simpson and Byun
(2017), show that scAUR™ and VorGAUR™ designs also prevent scouring vortices around
bridge piers downstream of bending rivers.

) =

Figure 2. (left) scAUR™ fairing around a pier (5) with VorGAUR™ vortex generators (3)
that produce no scouring vortices. (right) Example stainless steel scAUR™ retrofit (black)
for a pier. VorGAUR™ vortex generators create vortices that bring low-speed flow up to
prevent scour at the pier downstream end.

RECENT NCHRP-IDEA-162 PROJECT BY AUR PROVES THAT scAUR™ IS
EFFECTIVE

This project focused on providing more evidence that the scAUR™ and VorGAUR™
concepts and designs work at full scale in preventing scour-producing vortices and for a wider
range of geometries and conditions. Simpson and Byun (2017) summarized the results, which
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were all successful. Task I dealt with selecting a scour-critical bridge in Virginia for prototype
installation (Simpson 2013). Further CFD work on the effect of pier size or scale (Task II)
(Figure 3) and model flume tests for other sediments (Task III), other abutment designs (Task
IV.A), and for open bed scour conditions (Task IV.B) were done to expand confidence in these
concepts and designs. Constructed full-scale prototypes (Task V) were tested (Task VI). Cost-
effective manufacturing and installation of scAUR™ and VorGAUR™ designs were further
developed (Task VII). Designs for various types of piers, footings, abutments, angles of attack,
river swirl, and bed conditions have been tested at model scale and some at full scale and show
no scouring vortices (Simpson 2013; Simpson and Byun 2017). These designs have much lower
present value of all costs, lower river levels and flow blockage, lower possibility for debris and
ice buildup, and greater protection of piers and abutments against impact loads.

Low Reynolds Number Case - Near wall streamlines pass through
Xft=7.24 and Y/t=0.013

Figure 3. Low Reynolds number case CFD calculated flow streamline patterns around a
scAUR™ streamlined bridge pier fairing. Flow indicates no discrete vortex formation on
nose and sides (Simpson and Byun 2017).

DESIGN TO PREVENT SCOURING-VORTICES FOR A SPECIFIC BRIDGE CASE

Each bridge has a number of specific unique features that affect the design to prevent
scouring vortices at the river bed next to a pier or abutment. One or two dimensional calculations
with correlations of laboratory data or full-scale data of past scour are not likely to apply for this
case. Consequently, it is prudent to use a physics-based approach with a proven turbulence
model in a fully three-dimensional Navier-Stokes computational fluid dynamics (CFD) code.
This will produce more detailed results of the flow around the bridge hydraulic structures. AUR
uses the v2F model in an OpenFOAM code. Many important features of 3-D flows are closely
modeled by this code and model.

One needs information on the upstream 3-D river bed and banks geometry and the size
and distribution of the surface roughness that will affect the shearing stress on the flow. The
three-dimensional inflow to the river at least 10 river widths upstream should be used. If the
bridge is downstream of a bend of the river, the piers and abutment are particularly susceptible to
scour. The high velocity surface water hits the outer river bank, moves to the bottom of the river
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and scours hydraulic structures. One would need information on the resultant flow distribution to
be able to modify the scAUR™ shape to account for swirl.

It is prudent to be ready for flood conditions that are likely to happen sometime (Flint et
al. 2017), so data on the maximum river flowrate that has been observed are needed. This is the
flow condition that should be used in the CFD computations. Use the highest flowrate outlier
points in the USGS and other data, which suggest catastrophic conditions, rather than an average
flowrate from data (Baker 1988; Flint et al. 2017). Sources of maximum river flowrate
information include maximum rainfall historical data from rain gages and radar used in
regression equations. A surface runoff analysis should also be used.

SCOURING-VORTEX PREVENTION APPLIED TO ROCK SCOUR

A heavily used large long bridge is downstream of a bend in a river and has the most
severe scour under the pier seals of any relatively new bridge in this state. Swirling flow
produced by the bend in the river brings the highest velocity surface water down to the river
bottom. The limestone under the base seals of the piers, which do not have pilings, has been
partially scoured away, not the concrete seals. One pier has lost 40% of its load-bearing strength
and 70% of its moment-bearing strength. The loss of this bridge would devastate the local rural
economy.

Edge of Seal . Edge of Footng

N S H Edge of Column

More seal undermining

Seal undermining- 7 In 2016 report

shown in
2010 report

Outer bank

gl Seal undermining in 2013 repoft
of river bend

mainly rock

Area of Undermining -

Flow

< —
PLAN

oto 3: Looking Back Station at Pier |

Figure 4 . Pier with severe seal scour (left). The 2010, 2013, and 2016 state bridge
inspection reports show progression of limestone rock scour under the concrete.

The scour that occurs around the seal foundation is due to the near-surface high velocities
produced by horseshoe vortices formed around the model, such as shown in Figure 5 below.
Model flume test scour results shown in Figure 6 below are very similar to full-scale case loss of
limestone in Figure 4 above.
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Scouring downstream
3 horseshoe vortex

Scouring horseshoe vortex e
Figure S. The flow behavior around a seal is like around a surface-mounted cube

represented well by Martinuzzi and Tropea (1993).

l’-'-f ¥ Shie
Deep scour under front and side edges of model

Figure 6. Case 39: Base seal model in the AUR flume. Results after one hour test run. Scour
under model very similar to full-scale case limestone loss in Figure 4 above.

Prevent formation
of downstream
scouring vortex

*Bottom contoured
to limestone surface

This design is protected by United States Patents 8,348,553 and 9,453,319
Figure 7. SELECTED PROVEN DESIGN. Case 43: Seal model with C-shaped extended
ramp on the front and both sides.
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Figure 7 shows the only scouring-vortex-preventing retrofit design for foundation rock scour
prevention for this seal. It uses cost-effective modular stainless steel units that can be attached to
the concrete seal using standard methods over a short time. The permanent solution_- prevent the
swirling flow from reaching the limestone under the seal. Traditional scour countermeasures do
not do this. Just filling the gap under the seal with concrete under pressure does not restore
support under the seal less vertical containment plates at the edges of the seal are used in a strong
structure, as in this design. Without the ramps and streamlined fairings to prevent scouring
vortices, a repaired seal would scour rock under the repaired concrete and defeat the repair.

This streamlined fairing design was added to the seal model in Figure 6 and tested in the
AUR flume with no scour, as shown in Figure 8 below._This project will restore the strength of
these piers using accepted methods, and fabricate and install a scouring-flow-altering stainless
steel streamlined fairing design that permanently prevent future scour under the seal.

Figure 8. Case 43: Seal model with C-shaped extehded ramp on the front and both sides.
The streamlined ramps and fairings produced no scour undermining of the seal or ramps.
Results after one hour flume test run.

COST OF THE BRIDGE FAILURES AND COST-EFFECTIVE MANUFACTURING
AND INSTALLATION OF scAUR™ AND VorGAUR™ DESIGNS

Before the NCHRP-162 project, AUR performed a cost-benefit analysis of scAUR™
with VorGAUR™ designs as compared to currently used scour countermeasures (Simpson
2013). Published information on these currently used countermeasures shows that periodic
expenses are required for scour monitoring, evaluation, and anti-scour mitigation design and
construction, usually with rip-rap. For a bridge closed due to scour, the cost to motorists due to
traffic detours is estimated to be as great as all other costs combined. When one includes the
present value of future costs, repetitive temporary scour countermeasures are more expensive
(Simpson and Byun 2017, 2019).

There is no situation where scAUR™ and VorGAUR™ designs, as shown in Figure 2 for
a stainless steel pier retrofit, cost more than current countermeasures. There is no situation where
any type of scour is worse with the use of the scAUR™ and VorGAUR™ designs than without
them. The more frequent that scouring floods occur, the more cost effective are scAUR™ and
VorGAUR™. Clearly, scAUR™ and VorGAUR™ designs are practical and cost-effective for
US highway bridges (Simpson and Byun 2017).

An installed welded stainless steel (SS) scAUR™ retrofit bridge fairing is cost-effective,
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being about half of all costs for precast or cast-in-place concrete manufacturing and installation.
Its corrosion resistance gives it a lifetime of 100 years even in seawater environments, using a
proper thickness, construction methods, and type of SS. It is an effective way to reduce weight
and the cost associated with casting custom reinforced concrete structures. Another benefit is that
the SS VorGAUR™ vortex generators can be welded directly onto the side sections instead of
having to be integrated into the rebar cage of the reinforced concrete structure. Even for bridges
with little life left, current temporary countermeasures are much more expensive when the
present value of future expenses is considered (Simpson 2013; Simpson and Byun 2017).

For new construction, the estimates were done on the basis of added cost. This means
determining the incremental increase in the total cost of the bridge project that can be attributed
to the scAUR™ design since laborers, contractors, and equipment are already involved in new
construction. If a cofferdam is required or other site conditions produce extra costs, it affects the
project as a whole and not just scAUR™ design installation. Clearly, since the new construction
cost is about 1/3 of retrofit costs, the best time to include the scAUR™ fairing on piers and
abutments is during new construction (Simpson 2013).

Simpson and Byun (2019) discuss the liability costs associated with injuries and the loss
of life in bridge failures due to scour. For the Schoharie Creek Bridge collapse, prior to the
failure both piers could have been protected permanently from scouring vortices for all water
flow speeds for 0.45% of what was eventually spent after failure. For the Loon Mountain Bridge
abutment collapse, prior to the failure the abutment could have been permanently protected from
scouring vortices for all water speeds for less than 0.9% of what was spent after the abutment
collapse.

CONCLUSIONS

Many bridges over water around the world are susceptible to scour of supporting rocks
and soil during peak flow events such as floods. Since scouring forces vary with the velocity-
squared and scouring vortices are generated around piers and abutments, it is desirable to prevent
these vortices. This is what the scAUR™ with VorGAUR™ designs and components
accomplish: prevent the formation of scouring vortices for all flow speeds. Bridge owners
receiving US federal funds are no longer prohibited from using patented or proprietary products
in designs.

Designs for various types of piers, footings, abutments, angles of attack, river swirl, and
bed conditions have been tested at model scale and some at full scale and show no scouring
vortices. Computational fluid dynamic studies show that no scouring vortices are produced.

A successful scAUR™ streamlined fairing design was discussed to prevent rock scour
under concrete seals and hydraulic structures. The costs of bridge failures is 100 times more than
costs for application of the scAUR™ special streamlined fairings and VorGAUR™ vortex
generators. Other advantages of these designs are much lower present value of all current and
probable future costs, lower river levels and flow blockage, lower possibility for debris and ice
buildup, and greater protection of piers and abutments against impact loads.
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