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Abstract- Redundant basis (RB) multipliers over Galois Field 

(GF (2m)) have gained huge popularity in elliptic curve 

cryptography (ECC) mainly because of their negligible 

hardware cost for squaring and modular reduction. In this 

paper, we have proposed a novel recursive decomposition 

algorithm for RB multiplication to obtain high-throughput 

digit-serial implementation. Through efficient projection of 

signal- flow graph (SFG) of the proposed algorithm, a highly 

regular processor-space flow-graph (PSFG) is derived. By 

identifying suitable cut-sets, we have modified the PSFG 

suitably and performed efficient feed-forward cut-set retiming 

to derive three novel multipliers which not only involve 

significantly less time-complexity than the existing ones but 

also require less area and less power consumption compared 

with the others. Both theoretical analysis and synthesis results 

con firm the efficiency of proposed multipliers over the 

existing ones. The synthesis results for field programmable 

gate array (FPGA) and application specific integrated circuit 

(ASIC) realization of the proposed designs and competing 

existing designs are compared. It is shown that the proposed 

high-throughput structures are the best among the 

corresponding designs, for FPGA and ASIC implementation. 

 

IndexTerms - Galios Field, ECC, PSFG. 

 

I. INTRODUCTION 

Cryptography is the science of hiding information which can 

be revealed only by legitimate users. It is used to ensure the 

secrecy of the transmitted data over an unsecure channel and 

prevent eavesdropping and data tampering.Many cryptography 

schemes were proposed and used for securing data, some uses 

the shared key cryptography and some uses the public key 

cryptography (PKC). Shared key cryptography is a system that 

is uses only one key by both sender and receiver for purpose 

of encrypting and decrypting the message. On the other hand, 

public key cryptography uses two keys, private-key and 

public-key. To encrypt a message in Public key scheme, 

public-key will be used and to decrypt it back a private-key is 

used.   

As compared to the shared key cryptography, public key 

cryptography is slow. However, public-key cryptography can 

be used with shared key cryptography to get the best of both. 

Public key cryptography have many advantages over the 

shared key, it increases the security and convenience where 

there is no need to distribute the private key to anyone. Most 

of today’s application of cryptography asks for authentication 

and secrecy of the data. Secret transmission of data is an 

important task to preserve the data from the immune to 

attacks, threats and misuse. The encrypted text or data is less 

secure since it can be easily decrypted. But an image cannot 

be easily decrypted by attackers. Even data can be transmitted 

more securely by converting it into an image.  

The most of hardware and software products and standards 

that use public key technique for encryption and decryption, 

authentication etc. are based on RSA cryptosystem by using 

non Conventional algorithms among RSA and ECC. The main 

attraction of ECC is that it can provide better performance and 

security for small key size, in comparison of RSA 

cryptosystem. ECC is not easy to understand by attackers. So 

it provides better security through insecure channels. 

In 1985, Neal Koblitz and Victor Miller independently 

proposed public key cryptosystems using elliptic curve. Since 

then, many researchers have spent years studyingthe strength 

of ECC and improving techniques for its implementation. 

Elliptic curve cryptosystem (ECC) provides a smaller and 

faster public key cryptosystem. ECC has been commercially 

accepted, and has also been adopted by many standardizing 

bodies such as ANSI, IEEE, ISO and NIST. The operation of 

each of the public-key cryptographic schemes described in this 

document involvesarithmetic operations on an elliptic curve 

over a finite field determined by some elliptic curve 

domainparameters. 

The main attraction of ECC is that it can provide better 

performance and security for small key size, in comparison of 

RSA cryptosystem. In ECC a 160-bit key provides the same 

security as compared to the traditional crypto system RSA with 

a 1024-bit key, thus inthis way it can reduce computational 

cost or processing cost. The security of ECC depends on the 

difficulty of finding the multiplicand for the given product and 

multiplier. ECC is not easy to understand by attackers. So 

provides better security through insecure channels. 

II. LITERATURE REVIEW 

Elliptic curves have been studied for over hundred years and 

have been used to solve a diverse range of problems. For 

example, elliptic curves are used in proving Fermat’s last 

theorem, which states that xn+yn= znhas non zero integer 

solutions for x, y, and z when n >2 [1,8]. 

The use of elliptic curves in public key cryptography was first 

proposed independently by Koblitz [1,9] and Miller [10] in the 

1980s. Since then, there has been an abundance of research on 

the security of ECC. In the 1990’s ECC began to get accepted 

by several accredited organizations, and several security 

protocols based on ECC [14, 20, 21] were standardized. The 

main advantage of ECC over conventional asymmetric crypto 

systems [2] is the increased security offered with smaller key 

sizes. For example, a 256 bit key in ECC produces the same 

level of security as a 3072 bit RSA key1. The smaller key 

sizes leads to compact implementations and increased 

performance.  
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This makes ECC suited for low power resource constrained 

devices. An elliptic curve is the set of solutions (x, y) to 

Equation 2.1 together with the point at infinity (O). This 

equation is known as the Weierstraß equation [1,8].  

y2 + a1xy + a3y = x3+ a2x2+ a4x + a6(1) 

For cryptography, the points on the elliptic curve are chosen 

from a large finite field. The set of points on the elliptic curve 

form a group under the addition rule. The point O is the 

identity element of the group. The operations on the elliptic 

curve, i.e. the group operations are point addition, point 

doubling and point inverse. Given a point P = (x, y) on the 

elliptic curve, and a positive integer n, scalar multiplication is 

defined as 

nP = P + P + P + ···P(n times) (2) 

The order of the point P is the smallest positive integer n such 

that nP = O. The points {O, P, 2P, 3P, ···(n −1)P} form a 

group generated by P. The group is denoted as < P >. 

The security of ECC is provided by the elliptic curve discrete 

logarithm problem (ECDLP), which is defined as follows : 

Given a point P on the elliptic curve and another point Q ∈ < P 

>, determine an integer k (0 ≤k ≤n) such that Q = kP. The 

difficulty of ECDLP is to calculate the value of the scalar k 

given the points P and Q. k is called the discrete logarithm of 

Q to the base P. P is the generator of the elliptic curve and is 

called the base point. 

There have been several reported high performance FPGA 

processors for elliptic curve cryptography. Various 

acceleration techniques have been used ranging from efficient 

implementations to parallel and pipelined architectures. In [2] 

the Montgomery multiplier [3] is used for scalar 

multiplication. The finite field multiplication is performed 

using a digit-serial multiplier proposed in [3]. The Itoh-Tsujii 

algorithm is used for finite field inversion. A point 

multiplication over the field GF(2167) is performed in 0.21ms. 

In [3] a fully parameterizable ABC processor is introduced, 

which can be used with any field and irreducible polynomial 

without need for reconfiguration. This implementation 

although highly flexible is slow and does not reach required 

speeds for high bandwidth applications. A 239 bit point 

multiplication requires 12.8ms, clearly this is extremely high 

compared to other reported implementations. 

In [3], the ECC processor designed has squarers, adders ,and 

multipliers in the data path. The authors have used a hybrid 

coordinate representation in affine, Jacobian, and López-

Dahab form. In [3,4] an end-to-end system for ECC is 

developed, which has a hardware implementation for ECC on 

an FPGA. The high performance is obtained with an 

optimized field multiplier. A digit-serial shift-and-add 

multiplier is used for the purpose. Inversion is done with a 

dedicated division circuit. 

The processor presented in [5] achieves point multiplication in 

0.074ms over the field GF(2163). However, the 

implementation is for a specific form of elliptic curves called 

Koblitz curves. On these curves, several acceleration 

techniques based on precomputation [6] are possible. However 

our work focuses on generic curves where such accelerations 

do not work. 

In [7] a high speed elliptic curve processor is presented for the 

field GF(2191), where point multiplication is done in 0.056ms. 

A binary Karatsuba multiplier is used for the field 

multiplication. However, no inverse algorithm seems to be 

specified in the paper, making the implementation incomplete. 

In [8] a microcoded approach is followed for ECC making it 

easy to modify, change, and optimize. The microcode is stored 

in the block RAM [9] and does not require additional 

resources.  

In [4], the finite field multiplier in the processor is prevented 

from becoming idle. The finite field multiplier is the bottle 

neck of the design therefore preventing it from becoming idle 

improves the overall performance. Our design of the ECCP is 

on similar lines where the operations required for point 

addition and point doubling are scheduled 

III. METHODOLOGY 

We received several curves 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over ℤ𝑝 where 

𝑎, 𝑏, 𝑝 are given, and the order of 𝐸(ℤ𝑝) is a prime number 

which is also given. 

According to Hasse's theorem,| #𝐸(ℤ𝑝) − (𝑝 + 1)| ≤ 2√p, 

where #𝐸(ℤ𝑝) is the size of 𝐸(ℤ𝑝), and thus #𝐸(ℤ𝑝) ≈ 𝑝. 

In the curves we got, p and #𝐸(ℤ𝑝) were of 40-60 bits. 

When the group's order is prime, any 𝑃 ≠ ∞ is of the same 

order as the group, since 𝑂𝑟𝑑𝑒𝑟(𝑃)|#𝐸(ℤ𝑝) and 𝑂𝑟𝑑𝑒𝑟(𝑃) ≠

1. 

We got 7 40-bit curves, 10 50-bit curves and 9 60-bit curves, 

out of which we have attacked all 40-50 bit curves and 2 of the 

60 bit curves, some several times with the isomorphism 

enhancement enabled or disabled, or for different values of L. 

For each curve we have attacked, we found a point 𝑃 on the 

curve in the following manner: starting from 𝑥 = 0 we 

checked if 𝑥3 + 𝑎𝑥 + 𝑏 is a quadratic residue modulo 𝑝, if so- 

we found a square root modulo 𝑝 of 𝑥3 + 𝑎𝑥 + 𝑏 and set it to 

be 𝑦, and then 𝑃 = (𝑥, 𝑦), otherwise we advance to the next 

value of 𝑥. 

The most attempts it took us to find a point was 6, and usually 

either 𝑥 = 0 or 𝑥 = 1 worked. 

After finding the first point, we randomly chose an integer 

0 ≤ 𝑘 < #𝐸(ℤ𝑝), computed 𝑄 = 𝑘𝑃 and solved 

ECDLP(𝑃, #𝐸(ℤ𝑝), 𝑄) using Pollard's Rho algorithm, since 

the order is a prime. 

The average results from our runs:  
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Where the expected iteration number is estimated as √
π⋅#𝐸(ℤ𝑝)

2
. 

It is worth pointing out that the average iteration count for n 

bits is approximately 
n

2
-bits, as we would expect from PR. 

The average runtime per iteration is lower for 60 bit than it is 

for 40 and 50 bit. 

This could result from the fact that the average here reflects 

only 2 60-bit runs, and that even for 40 and 40 bit there was 

some distribution of this parameter- all runs were done on two 

different laptops with other active processes, and perhaps the 

changes in workload had an effect on the average runtime per 

iteration. 

These runs were done on a different computer than the one 

used for the first challenge where we got 0.22ms per iteration, 

which is much better- even if we consider the fact that q in the 

first challenge was only 28-bits. 

All-one polynomials (AOP) or 1-equally spaced polynomials 

form a special class which can be used for simpler and more 

efficient implementation compared to trinomials and 

penanomial-based multipliers. The AOP-based representation 

of elements, thus, expected to have potential application in 

efficient hardware implementation of elliptic curve 

cryptosystems and error control coding. Irreducible AOPs are 

not as abundant as irreducible trinomials or pentanomials, but 

it is also not difficult to find the AOP bases for generating the 

finite fields. 

 
Fig.1: Systolic Array all irreducible polynomials 

 

It is known that for m <2000, there exists 108 possible AOP 

bases, e.g., m = 2,4, 10, 12, 18, 28, 36, 52, 58, 60, 82, 100, 

106, 148, 172, 178, 226, 268, 292, 316, 346, 388, 466, 508, 

556, 562 etc, and infinitely many more for m >2000 [2]. 

Efficient architectures for the field multiplication and the 

computation of power-sum of the form (A+B2) for field 

generated by AOPs. 

For both fixed point and GF multiplications, the first stepis 

generating a matrix of partial products. These are calculated 

by ANDing the corresponding term in X and Y as: Partial 

products are arranged in rows, witheach row shiftedpositions 

to the left as in Figure 2. Eachdot represents the output of an 

AND gate. The fixed pointproductis obtained by adding the 

resulting partialproducts. 

The partial product matrix is composed of four sub-matrices . 

The upper-right and lower-left sub-matrices correspond to the 

partial products to be added forGF multiplications. These 

partial products are indicated byhollow dots in Figure 2. The 

partial products in the othertwo sub-matrices, indicated by 

black dots, are set to zerowhen calculating a GF product, by 

ANDing theto thesesub-matrices with the control signal. This 

extra hardware only represents 28 AND gates. It adds only one 

AND gate delay tothe critical path. The XORing represents 

the GF sum, for an iterative key generation unit 

The design presented in this paper uses the pre-

calculatedcanonical representation of the seven GF-elements 

of theform. Each of these seven values is an 28-bit vector. The 

reduction is performed by adding the corresponding GF 

elementto substitute for each bit. The seven 28-bit values to be 

added are computedas soon as the extended result is ready. 

The modulo2 addition of eachto the 28 least significant bits of 

theextended result is done in parallel, in a binary tree 

configuration, which has logarithmic delay. An 

implementation is shown in Figure 1, where the AND blocks 

per-form and the XOR blocks perform GF addition. 
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Fig.2: Galios field multiplier 

 

The proposed scheme for implementation of finite field 

multiplication over GF(2m) generated by AOP can be outlined 

as follows.  

Algorithm for Multiplication: 

STEP-1: Perform multiplication of bit b0 with the input 

operand A, to obtain b0 ・ A; and initialize the first (m−1)-bits 

of a finite field accumulator (FFA) by (b0.ai ), for 0 ≤i ≤m −1 

according to (13d). The m-th location (i.e., the MSB) of the 

FFA is initialized to zero. 

STEP-2: For i = 1 to m −1  Perform cyclic left-shift operation 

of the polynomial Pi−2α of degree (m + 1) to reduce its degree 

by one to obtain the operand Pi−1 of degree m. Perform bit-

level multiplication of bi with Pi−1 to obtain Yi. Add Yi to the 

content of the FFA to obtain the partial result of degree m. 

STEP-3: Perform modular reduction of Y to reduce its degree 

from m to (m −1) to obtain the desired product value. 

Recursive operations of the proposed algorithm are in STEP-2, 

while STEP-1 may be considered as pre-processing step and 

STEP-3 may be considered as a post-processing step. 

 

ENCRYPTION PROCESS 

 
DECRYPTION PROCESS 

 
 

In encryption and decryption process we do find AND and 

XOR gates. During the process of key generation B is the 

public key and A is the private key. D stands for original 

text and Chipher text is denoted by ET in our programming 

implementation. 

So as per the limitation of encryption and decryption, 

decryption is the reciprocal process for encryption. The 

addition process was shifted to subtraction process after key 

generation unit. B is a public key will be generated by using 

system. 

ENCRYPTION ALGORITHM:-  
Suppose sender wants to send a message m to the receiver  

Step 1. Let m has any point M on the elliptic curve  

Step 2. The sender selects a random number k from [1,n-1]  

Step 3. The cipher texts generated will be the pair of points 

(A,B) where  

B1= A⊕ 𝐵*G  

B2= M ⊕ B1  

DECRYPTION ALGORITHM:-  

To decrypt the cipher text, following steps are performed:-  

Step 1. The receiver computes the product of B1 and its 

private key  

Step 2. Then the receiver subtracts this product from the 

second point B2  

M = B2- (B1)  

M is the original data sent by the sender 

 

IV. RESULTS AND DISCUSSION 

A. Results of Descriptive Statics of Study 

Variables 
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PARAMETERS ENCRYPTION DECRYPTION 

AREA (UM2) 15402 15402 

CRITICAL PATH 

DELAY 

0.72NS 0.94NS 

POWER(MW) 2.75 2.75 

AREA DELAY 

PRODUCT 

11089 14494 

POWER DEALY 

PRODUCT 

1.98 2.585 

 

V. CONLUSION 

In this project, we have presented an application of ECC 

with Generator g data encryption. ECC points convert into 

cipher text at sender side and Decryption algorithm is used 

to get original text within a very short time with a high level 

of security at the receiver side. Elliptic curves cryptography 

are believed to provide good security with smaller key sizes, 

something that is very useful in many applications. Smaller 

key sizes may result in faster execution timings for the 

image encryption, which are beneficial to systems where 

real time performance is a critical factor ECC can be used 

into a security system such as Video Compression, Face 

recognition, Voice recognition, thumb impression, Sensor 

network, Industry and Institutions. 

Nowadays, RSA generally uses public key cryptosystem in 

most applications that use PKC. However, recently ECC has 

a trend which makes it become the convenient cryptography 

system. ECC is also becomes substitute for RSA in 

efficacious applications caused by its efficiency in software 

as well as in hardware realizations. ECC provides a better 

security with shorter bit sizes than in RSA. Shorter key 

length saves bandwidth, power, and it enhances the 

performance. In contrast with the past, pairing in ECC 

attracts more attention of experts because it can be used to 

build a number of cryptographic schemes that cannot be 

constructed in any other way. 
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