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A wide literature review of recent advance on monitoring, diagnosis, and power forecasting for photovoltaic systems is
presented in this paper. Research contributions are classified into the following five macroareas: (i) electrical methods, covering
monitoring/diagnosis techniques based on the direct measurement of electrical parameters, carried out, respectively, at array level,
single string level, and single panel level with special consideration to data transmissionmethods; (ii) data analysis based on artificial
intelligence; (iii) power forecasting, intended as the ability to evaluate the producible power of solar systems, with emphasis on
temporal horizons of specific applications; (iv) thermal analysis, mostly with reference to thermal images captured by means of
unmanned aerial vehicles; (v) power converter reliability especially focused on residual lifetime estimation. The literature survey
has been limited, with some exceptions, to papers published during the last five years to focus mainly on recent developments.

1. Introduction

The photovoltaic (PV) market has witnessed over the last
years a remarkable growth as a result of various stimulating
factors: the significant cost reduction of the PV modules on
themarket and the changes on support policies.These factors
have made the return on investment of a photovoltaic system
more interesting. However, like other industrial processes, a
photovoltaic system may be subject during its fabrication to
defects and anomalies leading to a reduction of the overall
system performance or even to total unavailability. These
negative consequences will obviously reduce the productivity
of a PV system and therefore its profit.Thus, proper early fault
detection and real-time diagnostic are crucial not only for
lowering cost and timemaintenance, but also to avoid energy
loss, damage to equipment, and safety hazards.

Several research papers and institutional body reports,
such as IEA, have underlined the low yields of PV systems
due to faulty components, especially the DC section (i.e., PV
cells/modules and MPPT) [1–9]. Broadly speaking, faults of
PV arrays are categorized as cracks in the cells, delamination,
hot spots, dirt accumulation, modules mismatches, short
circuit of modules, junction box faults, caused by damaged
connections, corrosion of the connections, open circuit, short
circuit, and MPPT faults [10]. Obviously, this is not an
exhaustive list and many other faults can be found in the
literature [11, 12].

The basic approach for the detection of unexpected power
losses of PV systems uses analytical redundancy, which is
a comparison between the monitored electrical quantities
(output power, voltage, and current) and their counterparts
obtained from a reference model. An alarm is triggered when
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predetermined differences are reached [13–16]. The reference
model is often based on the one diode model, whose param-
eters are determined either by the manufacturer’s datasheet
or by automatic extraction methods [17]. However, these
methods are only effective for the detection and diagnosis
of a grouped set of faults but not for an individual location
of each defect [18]. Moreover, irradiation and temperature
measurements are essential requirements for this approach
[15].

Another fault detection and diagnostic method is based
on hardware redundancy, in which several similar subsys-
tems undertake the same task. By collecting and analyzing
each subsystem’s data, abnormalities can be detected. Since
monitoring of electrical parameters usually produces a large
amount of data, artificial intelligence and data mining are
adopted as well. Similar models are adopted for power
forecasting, which is important for bothmonitoring purposes
and the management of the utility grid.

Recently, thanks to the widespread diffusion of
unmanned aerial vehicles (UAV), thermal analysis is
becoming a cost-effective alternative to electricalmonitoring.
Also the reliability of power converters plays a key role in the
correct operations of PV.

The paper is organized as follows: Section 2 describes the
monitoring techniques based on the measurement of electri-
cal parameters; Section 3 focuses on the analysis of measured
data with artificial intelligence and data mining algorithms;
Section 4 is devoted to power forecasting; Section 5 discusses
aerial thermal analysis; and Section 6 deals with the reliability
of power converters. Conclusions are drawn in Section 7.

2. Electrical Methods

This section presents the recent trends for monitoring and
diagnosis (M&D), based on electrical parameters directly
acquired from the solar field. In principle, the performance
analysis based on such parameters is straightforward, because
it is based on the comparison between measurements and
predictions. Unfortunately, the large number of unpre-
dictable conditions, which affect the performance of solar
panels, poses a serious challenge to the definition of a reliable
target for the expected outputs.

The first step towards a suitable monitoring system is
the definition of what should be measured, how it can be
measured, and how measurements can be handled. The
question about what should be measured introduces the first
trade-off among possible monitoring/diagnosis approaches,
depending on how PV subsystems are grouped. Indeed,
the overall performance of a PV system depends on the
performance of each subsystem, where the individual sub-
system is the single solar cell forming the solar panel. A
more pervasive measurement system increases the accuracy
of M&D at the expense of an increased cost. Therefore, a
rough classification of M&D electrical techniques can be
based on the “level of granularity” (LoG). The lowest LoG
corresponds to themonitoring of the solar field as a whole. In
this case, only the instantaneous output power generated by
the PV field, at either the DC side or the AC side, is measured

and then converted into the energy yield of plant. In this
case, the widely adopted figure of merit is the Performance
Ratio (PR) defined, according to the IEC 61724 [26], as the
ratio between the measured instantaneous power, 𝑃𝑖, (or
the measured cumulated energy) and the nominal power
of the solar field, 𝑃nom, (or the cumulated energy produced
at nominal power rate), corrected by taking into account
the actual instantaneous irradiance 𝐺𝑖. With respect to the
irradiance at STC (1 kW/m2),

PR =
𝑃𝑖
𝑃nom

𝐺STC
𝐺𝑖
. (1)

The main drawback of adopting (1) as figure of merit
is that, as well pointed out in [27], the power yield largely
depends on the working temperature. In order to take into
account thermal effects, an improved version (2) has been
proposed:

PR (𝑇) =
𝑃𝑖

𝑃nom + 𝛽 ⋅ Δ𝑇

𝐺STC
𝐺𝑖
, (2)

where𝛽 is the temperature coefficient for the power generated
(it is always a negative number) and ΔT is the temperature
increment with respect to 25∘C.

Usually, if PR is lower than 1, the solar system is under-
performing. However, the adoption of 𝑃nom in both (1) and
(2) does not take into account numerous factors leading to
a deviation of the actual performance of the solar field from
the nominal target, even though all its components operate
correctly. In order to overcome this issue, [27] proposes an
improvement of both (1) and (2) by replacing the nominal
power with a reference power provided by a detailedmodel of
the solar field.Themodel works with the same environmental
conditions of the real system but with ideal solar panels, thus
defining a “relative error” as figure of merit.

The limit of complex models, like those presented in
[27], is that their effectiveness is based on the reliability of
the model and the capability of extracting from its suitable
parameters.

An opposite view is presented in [28], as the model used
to predict the PV system electricity production has a low
complexity.

For all the cases, the expected ac power 𝑃ac, adopted in
place of 𝑃nom in (1), is evaluated as

𝑃ac = 𝐺𝑖 (𝑎1 + 𝑎2𝐺𝑖 + 𝑎3 log (𝐺𝑖)) (1 + 𝑎4 (Δ𝑇)) , (3)

where a1, a2, a3, and a4 are fitting parameters.
The method proposed in [29] is also very simple. The

sophisticated verification (SV) method has the following
expression for the PR:

PR (𝑇) =
𝑃𝑖

𝑃nom (𝐺𝑖/𝐺STC)
=
𝑃nom (𝐺𝑖/𝐺STC) − 𝐿

𝑃nom (𝐺𝑖/𝐺STC)
, (4)

where 𝐿 is a loss term (explicated in [29]) which includes
various effects (temperature, shading mismatches, etc.). The
measured energy is then plotted as a function of the irradi-
ance and, according to (4), any deviation from the straight
line is attributed to some form of malfunctioning.
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A similar approach is also proposed in [30] with reference
to a solar field with thin film panels. In this paper array losses
are defined as

𝐿Array = 𝑃nom
𝐺𝑖
𝐺STC
− 𝑉pv ⋅ 𝐼pv, (5)

where 𝑉pv and 𝐼pv are the measured operating voltage and
current of the solar field, respectively.

Once a model for evaluating losses has been selected,
another issue common to many papers is data transmission,
with the main options being WiFi, GSM, and Power Line
Communication (PLC). In [31] it is observed that a drawback
of GSM [32] is its high operating cost, as the user needs
to pay for the data transmission service; thus, the ZigBee
protocol is proposed. In [33] wireless communication is
exploited to monitor the effect of dust in solar field installed
in the desert. Methods based on the monitoring at the
array level have the drawback of not being suitable for
locating faulted components. This is a very important issue,
because maintenance costs strongly depend on the ability to
undertake focused interventions. Therefore, the number of
monitored parameters needs to be necessarily increased and
move towards a higher LoG. A commonly adopted solution
is to use the same figures of merit but refer to a single string
rather than the entire system. Actually, the availability of
string electrical performance can be also exploited to skip the
need for weather information. The comparison among the
strings allows the direct identification of the faulty ones. This
approach is well illustrated in [34], where currents between
strings are compared. In that paper, it was observed that fault
detection is difficult when failures occur in multiple strings;
the disambiguation is carried out by combining the figures of
merit with the evaluation of the standard Performance Ratio.

The definition of a more suitable figure of merit can be
found in [35], where an inferential tool, returning informa-
tion about the operation of the PV field, is presented. After
initial training, the software defines one or more reference
strings that are used in place of the nominal power for
the definition of the expected Performance Ratio. A simple
method for defining a reference string was presented in [36,
37]. In those papers the instantaneous power generated by
the best performing string in a large solar field is assumed as
the target for all other strings with the same orientation.This
approach has the advantage of being absolutely independent
on weather conditions, irradiance, and temperature and does
not require any training of the software. Moreover it allows a
fast localization of faulty strings and a reliable estimation of
energy losses attributable to each string.

A different approach for analyzing string data is proposed
in [38], where a given dataset of observed string currents and
voltages and their respective low-pass-filtered time deriva-
tives are analyzed a posteriori for the determination of the
probabilities of a restricted set of possible fault that could have
caused that dataset.

All the techniques listed so far are based on the com-
parison of the instantaneous power with a set yield target.
An alternative method, which can be found in [39], proposes
plotting the whole 𝐼-𝑉 curve of a single string using informa-
tion from the inverter. Indeed, the inverter control needs to

measure instantaneous voltage and current in order to track
the maximum power point. Moreover, as pointed out in [40],
some commercial inverters carry out a periodic scan of the
entire 𝐼-𝑉 curve in order to distinguish the global maximum
from local ones, in case of mismatch among the modules.

The measurement of the whole 𝐼-𝑉 curves of single
strings, compared with a tailored model, is also proposed in
[41] to recognize six categories of faults, including shadow
effects, bypass diode fault, cell fault, module fault, and so on.

A possible issue, which is oftenmisrecognizedwhen deal-
ing with string level monitoring techniques, is the possible
occurrence of reverse currents in parallel connected string.
Paper [42] shows the ineffectiveness of usual rules (3𝜎) used
to recognize underperforming strings, since the current of
faulty string always lies between the upper and lower bound
of the 3𝜎 rule. In order to overcome this problem, a machine-
learning local outlier factor (LOF) is defined. This factor
provides a quantitative approach to identify the faulty strings
(called outliers) by defining a density-based outlier detection
rule. This rule is based on the fact that the density around
an outlier is significantly different from the density of its
neighbors.

An improved fault location capability can be attained by
pushing the monitoring at the individual solar panel level.
It is obvious that in this case a pervasive sensor network is
needed, so that the cost of the system can be justified by
higher revenues coming from most effective maintenance
strategies. The main issues to be faced when a single panel
monitoring system is adopted are the power supply of sensors,
data communication, and data management [43], as their
effectiveness depends on the monitored parameters.The best
performing option [44] consists in measuring the entire 𝐼-𝑉
curve of each solar panel. This solution is relatively simple to
implement in distributed conversion systems [45–49], where
each solar panel has its own dc/dc converter that can be
properly controlled to plot or estimate the 𝐼-𝑉 characteris-
tic [50]; other measurements are much more complicated,
because they would require the temporary disconnection of
individual solar panels from the string.

A more widely adopted solution consists in the measure-
ment of the operating voltage and the operating current of the
solar panel to calculate the instantaneous power generated.
This approach requires reduced hardware for sensing electri-
cal parameters, while it could be demanding for the power
supply, depending on both the adopted communication
system and the sampling rate of measurements. For example,
[51] proposes GSM, but no details are given about power
supply. A possible alternative to GSM is PLC, which exploits
the existing dc wiring; in this case it is essential to avoid the
fact that signals travel through the solar panels (that are series
connected with the dc power cable). To this end, a bypass low
impedance path must be provided. Reference [52] proposes
connecting a capacitor in parallel with each solar panel,
while [53, 54] propose a more effective LC filter. PLC is also
suggested in [55] to make a fire proof protection system. A
heartbeat is sent through the power line to a microcontroller
mounted on each solar panel. If the heartbeat is lost, either
because the power line is opened on purpose or broken by
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fire, the microcontroller trips a series switch to open the
circuit and a parallel switch to short circuit the solar panel.

The main drawback of a single panel monitoring sys-
tem is that the operating current is the same for all the
series connected solar panels and depends on the string
operating point, which is fixed by the centralized converter.
The consequence is that the operating power cannot be
considered as a diagnostic measurement for each individual
panel. From this point of view, the most advanced single
panel monitoring system is described in [56–59]. In addition
to the measurement of operating voltage and current, this
system uses both the open circuit voltage, 𝑉oc, and short-
circuit current, 𝐼sc, which are unique to each solar panel.
Moreover,𝑉oc is an indirect measurement of the temperature
while 𝐼sc is directly related to the irradiance, so that no
specific sensors are needed for these parameters. In order
to carry out the aforementioned measurements, the system
physically disconnects the solar panel from the string for
about 20ms, thanks to a series solid state switch. The power
of the electronic board is drawn from the solar panel. Since,
during the measurement of 𝐼sc, the output voltage is zero,
a supercapacitor is used as a backup storage to allow the
continuous controllability of the circuit. Lastly a cheap WiFi
communication system is adopted for data transmission.

A common problem encountered by monitoring systems
is the large amount of data to be analyzed. In the next section
approaches adopted artificial intelligence and datamining are
described.

3. Artificial Intelligence and Data Mining

As PV array characteristics are highly nonlinear, the presence
of underperformance and faults within the system can lead to
uncorrelated effects. Hence, more sophistication and refine-
ment of the algorithms and methods for fault detection and
diagnostic are required. One active research area is on the use
of artificial intelligence and data mining, which are primarily
based on the concept of a knowledge database.Thesemethods
can be split into three categories [60–65]: signal processing
methods, classificationmethods, and inferencemethods.The
main idea of signal processing methods is to extract some
features of the measured signals, which can be attributed
to a particular state of health of the PV system. The most
commonly used methods are wavelet transform techniques
[66] and Fast Fourier Transform (FFT) [67].The classification
methods are instead based on artificial intelligence, where
knowledge is built from an available dataset. As the amount of
labeled data is quite large, supervised learning algorithms can
learn the characteristics of the system and make the predic-
tion after training. A number of supervised learning models
addressing fault detection and diagnostic in PV systems have
been proposed in the literature. For instance, artificial neural
networks (ANN)have been proposed for PV systemsworking
under partial shading conditions [68]; for the monitoring
and supervision of health status of a PV system in [69];
and for short-circuit fault detection of PV arrays in [70]. In
other works, BayesianNeural Network (BNN) and regression
polynomial models have been proposed to predict the soiling
effects on large-scale PV arrays [71]. Dataminingmethods for

fault detection and isolation in PV systems are also proposed
in the literature such as decision-tree method, 𝐾-nearest
neighbor, and support vector machine (SVM).

4. Forecasting of Power Production in
Photovoltaic Plants

The forecasting of the power generated by a PV plant is a key
activity for supporting the monitoring of PV fields [72, 73].
Usually, it makes use of either solar radiation measurements
made on module plane or solar radiation data taken from
meteorological service providers [74], with the aim being to
calculate reference values for energy yield.

Depending on the task required, forecasting techniques
can have different timescale: the very short (up to one
hour) and short (up to 6 hours) time scales belong to
intraday forecasts, while longer forecasts have time scales of
one or more days. With reference to the spatial extension,
forecasting can be related to a single plant or, for regional
models [75, 76], a cluster of plants.

As PV systems are greatly influenced by weather condi-
tions, such as solar irradiance and air temperature, accurate
models are required for a reliable prediction of their power
generation. Many approaches have been developed over the
last decades and a good review of them is presented [73,
77]. Models for forecasting the power generated by a PV
plant can be broadly classified into three categories. A first
type of techniques is based on Numerical Weather Predic-
tion (NPW) for the forecast of meteorological parameters
such as the solar irradiance and the air temperature. These
parameters are used as the input of a model of the PV
system to forecast the power generated. Another approach
is based on statistical modelling of the historical record of
the power generated. This approach includes regressive (e.g.,
autoregressive, AR; autoregressive moving average, ARMA;
autoregressive integrated moving average, ARIMA, etc.) and
Artificial Intelligence (AI) models (e.g., artificial neural
networks, ANN; support vector machine, SVM; adaptive
neurofuzzy inference system, ANFIS, etc.). Finally, a third
way to forecast the power generated by a PV system combines
physical and statistical modelling, called hybrid technique
[78–80]. Hybrid techniques are usually applied when some
of the data required by physical or statistical methods are
missing and can also be used for improving the accuracy of
the forecasting activity [73]. The three different approaches
have different temporal capability: most of the techniques
produce short-term predictions, while NPW-based methods
are better suited for long-term predictions of up to 15 days
[81].

Among the different approaches presented in the litera-
ture, where the main challenge is the design of cost-effective
models working for different PV technologies, locations, and
working conditions, physical, regressive, and ANN-based
models are the most applied techniques accounting for 50%
of the reviewed literature [73].

Physical approaches, which represent 11% of the used
techniques [73], use models of the PV system to generate the
forecasts, while themajor research attempts are spent on solar
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irradiance forecasting [75]. NWP modelling is based on the
physical state and on the dynamic motion of atmosphere [75,
77, 82–84]. One of the latest works in this field can be found
in [85], where the solar irradiance is forecasted on a day-
ahead and intraday basis bymeans of amodel provided by the
European Center for Medium Range Wheatear Forecasting
(ECMWF model). NPW modelling is also used to calculate
the temperature that, together with the solar irradiance,
usually is the main input of any physical model for the
calculation of the power generated [86].

Statistical modelling does not require any information
regarding the system to model and use data to predict the
future behavior of the plant [73]. These approaches include
a number of different types of time series regression models
[87], accounting for 14% of the total forecasting techniques
[73]. The mostly used techniques are ARIMA-based models
because of their generality [88]. As reported in [89], ARMAX
models, which use exogenous inputs, give the best results for
this type of modelling.

In a similarway, techniques based on artificial intelligence
do not require any information regarding the system and
include a number of different approaches: artificial neural
networks, fuzzy logic, evolutionary algorithms, expert sys-
tems, and others [90].Themost usedAI-based techniques use
ANN, representing 24% of the total, and they can be classified
as follows.

(i) A first type of ANN-based model estimates the
power generated by the PV plant starting from the
instantaneous working conditions of solar irradiance
and temperature [91–93].Theworking conditions can
come either from sensors mounted on the field or
from NWP-based models.

(ii) Other ANN-based models take as an input the cur-
rent and the past values of the output power [81, 94–
96]. These models directly forecast the power output
without any additional meteorological parameters.

(iii) A third type of ANN-based models is a combination
of the first two types [97–100].

5. Aerial Thermal Analysis

As it is widely known, the degradation of long-term per-
formance and overall reliability of PV plants can drastically
reduce expected revenues. It should be considered that
medium- and large-size plants are composed by thousands of
modules, with each one potentially affected by the following
main types of faults:

(i) optical degradation or fault: bubbles, delamination,
discoloration of the encapsulant, and front cover (i.e.,
glass) fracture;

(ii) electrical mismatches: cell cracks/fractures, breakage
of interconnection ribbons, poor soldering, snail
tracks, shunts, shading;

(iii) nonclassified: potential induced degradation (PID),
defective/short-circuited bypass diodes, short-
circuited modules or strings, and junction box
failure.

Standard monitoring approaches, that is, electrical string
monitoring, only ensure power losses detection in a portion
of the PV field, while the accurate localization of faulty
modules requires strings disassembling, visual inspection,
and/or electrical and thermographic analysis. Unfortunately
the above-mentioned techniques are time demanding, cause
undesired stops of the energy generation, and often require
laboratory instrumentation, thus resulting in cost effective-
ness only in case of catastrophic faults. Moreover, it should
be noted that PV plants are often located in inaccessible
places, for example, rooftops, thus making any intervention
dangerous. As a consequence, the safety of operation deeply
impacts on the maintenance costs.

The introduction of diagnostic techniques provides on
one hand rapid detection and effective classification over a
large number of faults, but on the other hand they limit mon-
itoring and diagnostics costs. This requires in the majority of
PV fields cost-effective O&M.

In the recent literature [19–25, 37, 101–106], a new nonde-
structive diagnostic approach uses unmanned aerial systems
(UAS) equipped with thermal and/or visual cameras to
inspect PV fields and automatic tools for image processing
and fault detection and classification. The main challenges of
this approach are

(a) positioning;
(b) individual module identification;
(c) defect detection;
(d) defect classification.

The critical aspect of PVmodule automatic identification
in infrared images (point (b)) has been studied in [107].
Unfortunately, the small 5% error obtained by means of
manual camera increases to 30%when a drone carries out the
measurement from a flying altitude of 20m.

An automatic defects detection and classification pro-
cedure is proposed in [108] for a cell-level analysis. First,
the variance and the mean value of the temperature of each
pixel of the photograph are calculated for each PV cell.
Nonuniform cells, that is, cells exhibiting a large variance in
their temperature distribution, are discarded and separately
analyzed. Uniform cells are classified into light, medium,
and strong hot spot according to their mean temperature.
Subsequently, hot cells are classified as a function of the most
common defects.

A simple and effective method to identify the frames
of PV modules from thermal images is proposed in [109].
This approach relies on the assumption that the solar cells
have temperature higher than the metallic frame and there
is a sharp transition between the two regions. Moreover, the
proposed procedure is capable of classifying the defects by
means of the thermal gradient analysis carried out at cell
level.The obtained results are promising, but the applicability
of aerial inspections is still limited by strict requirements in
terms of thermal camera resolution and/or low flight height.

Even though defects in solar panels often cause an
increase of the surface temperature, sometimes the poor
resolution of the thermal cameras hinders an accurate defect
classification. In [20], a double stage procedure is proposed:
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in the first step UAV (in the following also referred to as
drone) equipped with a thermal camera provides a prelimi-
nary thermal analysis to detect and classify large-size defects,
while a subsequent visual inspection with a second drone,
equipped by a HD photo camera, provides small-size defects
classification. In particular, the first stage detects defective
points in the PV field and classifies them depending on their
shape and location.The following faults can be identified: (a)
interconnection issues, that is, entire module warming; (b)
defective bypass diodes, internal short circuits, cellmismatch,
and snail trails, that is, isolated hot spots or “patchwork
pattern”; (c) partial shadowing and cracks, that is, hot spots
and/or polygonal patches. Additional information is obtained
by reducing the distance between PV arrays and the UAV,
thus allowing a more accurate visual analysis. Indeed, visual
images can validate the detection and the classification of
defects and failures like browning, bubbles, cracked cell,
burning, corrosion, cell or module breakages, white spots,
snail tails, discoloration, broken interconnections, solder
bond failures, and dirty points.

Nevertheless, some critical aspects have to be addressed
for an accurate aerial visual inspection, as reported in [21]:

(i) the vertical photography (axis of the camera perpen-
dicular to the ground) should produce a sort of a map
of the PV field, where the objects are slightly affected
by perspective issues;

(ii) overlap between two consecutive pictures has to be
ensured;

(iii) a given flight height must be respected depending on
the specific faults to be detect;

(iv) the stability of the drone has to be ensured by
flying without wind (wind speed < 3m/s) and sunny,
cloudless, and clear sky;

(v) there is a need to find suitable flight trajectory to
minimize the reflection of objects located near the
modules and the sunlight.

In [22, 104] images acquired by a light UAV produced an
IRTmap, that, is thermal orthophotoplan, of the investigated
PV installation by means of aerotriangulation methods.
In particular, both photogrammetry techniques and global
positioning system (GPS) receivers are employed to ensure
correct positioning, while an image postprocessing proce-
dure based on Canny edge approach allows highlighting hot
spot of photovoltaic modules. Unfortunately no automatic
classification tool is suggested, but auxiliary diagnostic mea-
surements (e.g., IRT, 𝐼-𝑉 characterization, and EL) validate
fault detection and qualitatively classify the analyzed results
into a specific fault type, corresponding to a specific thermal
pattern, 𝐼-𝑉 characteristic, and EL pattern. Automated diag-
nostic tools based on aerial thermal analysis are proposed in
[23–25, 37].

The system described in [23, 24] uses a three-step proce-
dure: (i) undertaking a raw preliminary defects detection; (ii)
selecting faultymodules from the thermal image according to
health index; (iii) carrying out accurate defects detection and
classification. In the first step the thermal image is converted

into grayscale and digital filters (namely, rectangular average,
rectangular ideal, and Gaussian filters) are applied to the
frequency domain. Subsequently, a high-pass filter evidences
the hot area in the panel. According to the assumption that
a hot area suggests a fault, all the panels showing a high
percentage of hot area with respect to the global one are
selected for further analyses and their frames are accurately
extracted by means of a Laplace filter. In the third step,
the Decision Support Center evaluates the defect and failure
type and proposes the best solution for the specific plant
by comparing actual performance and its monitored history.
Nevertheless, there are still no studies tackling the accurate
description of the algorithms executed by the Decision
Support Center.

An effective statistical data-driven approach is adopted in
[25], where the identification of individual modules consists
of the following steps: (1) normalization, (2) thresholding,
(3) orientation estimation of the photovoltaic modules, and
finally (4) correction and refinement. Moreover, in the
proposed pipeline, all data corresponding to the detected
photovoltaic modules within an infrared image are processed
to obtain four sets of features. Suited statistical test highlights
outliers, thus suggesting temperature abnormalities caused
by module defects. Then, major temperature abnormalities
are classified accurately into three main groups: overheated
modules, hot spots, and overheated substrings. The method
reaches high accuracy level, but the classification is still poor
and generic. Table 1 reports information regarding drones
and cameras adopted to implement the techniques discussed
above.

Results obtained in [23–25, 37] suggest that drone-
assisted diagnostic is going to achieve an important role
in O&M of PV plants thanks to its effectiveness in terms
of detection and localization. Moreover, even though these
techniques still require high resolution cameras often costly
and heavy, as indicated in Table 1, today the market has on
offer a growing number of light electric drones with high
payload, sophisticated navigation systems mainly based on
GPS receivers, and extended flight time. Nevertheless, an
accurate classification of defects is still a challenge.

6. Converter Reliability

Among possible faults in photovoltaic systems, those associ-
ated with dc/ac power converters are the most dramatic. In
fact, this occurrence completely stops the energy generation.
Although a malfunction of the dc/ac power converter is
easy to detect (even though reference data from inverter
manufacturers might be needed), it is not so easy to fix, as it
often requires the location and the replacement of damaged
devices inside the case. Therefore, the challenge is to prevent
failures by estimating the residual lifetime (RLT) of the power
modules. RLT algorithms are different in terms of type of
applications and module characteristics. In the following,
different methods to estimate the expected RLT of IGBT
modules based on accelerated life tests are summarized. First,
temperature cycling tests are introduced to correlate RLT to
temperature stresses.Then, methods for the estimation of the
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Table 1: Drones and cameras employed in aerial inspections.

Reference
Drone Camera

Model Propulsion Type Pixels Range Temperature
range Accuracy Thermal

sensitivity Weight

[19] dji S1000 Electric

GoPRo Hero 3 1920 × 1080 — — — — 76 g

Optris PI 450 + recorder 382 × 288 7.5–
13 𝜇m

−20∘C to 100∘C
±2∘C or
±2%. 0.040K 380 g0∘C to 250∘C

150∘C to 900∘C

[20]

Nimbus
EosXi Gasoline ThermoteknixMicroCAM

640 640 × 480 8–
12 𝜇m — — 0.060K 74 g

Nimbus
PLP-610 Electric Nikon1 V1 HD 3906 × 2606 — — — — 383 g

[21] Nimbus
PLP-610 Electric Nikon1 V1 HD 3906 × 2606 — — — — 383 g

[22]
Condor AY

704 Electric Optris PI 450 382 × 288 7.5–
13 𝜇m

−20∘C to 100∘C
±2∘C or
±2%. 0.040K 320 g0∘C to 250∘C

150∘C to 900∘C
[23]
[24]

Nimbus
PLP-610 Electric Flir A35 320 × 256 −40∘C to 160∘C ±5∘C or

±5% 0.05K 200 g
−40∘C to 550∘C

[25]
DaVinci
Copters

ScaraBot X8
Electric

GoPRo Hero 3+ 1920 × 1080 — — — — 76 g

Optris PI 450 382 × 288 7.5–
13 𝜇m

−20∘C to 100∘C
±2∘C or
±2%. 0.04K 320 g0∘C to 250∘C

150∘C to 900∘C

junction temperature (JT) and the temperature humidity bias
(THB) tests are presented.

Powermodules consist ofmaterials with different thermal
expansion coefficients and are subjected to temperature
swings due to the variability of the load [110–112]. These
stresses lead to a degradation of the module integrity and
development of faults, such as heal cracking [113], bond wire
lift off (BWLO) [114], and solder fatigue [115]. Corrosion
has received recently more attention as IGBT modules are
packaged in plastic cases that do not normally offer sufficient
moisture resistance.

Due to temperature swings and moisture penetrations,
the actual RLT of IGBTmodules can be significantly different
from the manufacturer’s predictions. Thus, these factors
should be taken into account to correct online the expected
RTL. Condition monitoring systems (CMS) can give an
important contribution to this problem, minimizing the
risk of failure of IGBTs. CMS gather real-time data on
temperature swings and moisture penetration during the
operations of converters and use dedicated algorithms to
correlate the measurements and update the prediction.These
algorithms are based on accelerated life tests, where overstress
conditions (high temperature, high temperature cycling, high
power cycling, humidity, etc.) are applied to the module
to understand in short time the effects of these stresses on
the external characteristics and parameters of IGBTs. The
CMS will then monitor the stresses in normal conditions and
calculate the associated residual lifetime in the correct time
scale using the acceleration factor used for the test.

Temperature cycling tests (TCT) refer to the power
cycling of IGBTmodules at high and low temperatures when
the modules are on-state and off-state, respectively. During
these tests, both the temperature difference Δ𝑇𝑗 of the junc-
tion and the mean value of the junction temperature (JT)
need to be collected. The RLT model is obtained from the
Palmgren-Miner rule [116]. In this model, the lifetime con-
sumption (LC) is calculated as the ratio of total cycle numbers
and number of cycles to failure. The former is obtained
from a counting algorithm, like the Rain Flow [117]; the
latter is calculated from the Coffin-Manson law [118], which
physically models each fault. The RLT is finally estimated by
time history (time duration when fault occur) over LC. LCs
equal to one or greater than one can be symptoms of being
close to failure or occurrence of failure, respectively.Themost
challenging issue is that TCT rely on JT.Measurement of JT is
significantly difficult in a direct way, because of the difficulty
in accessing the junction of the module [119]. Different
alternative methods have been investigated by researchers to
estimate JT, as explained hereinafter.

The JT can be directly measured by temperature sensors
[120] and IR cameras [121]. However, due to the slow
response of temperature sensors and dependency on the
point of installation, the direct method is not recommended.
Moreover IR cameras allow only average measurements of
relatively large areas of the module and are also not easy to
calibrate for the entire range of temperature variations.

The estimation of the JT is preferred to the direct
measurement, as it does not require the modification of the
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internal structure of the IGBT [7]. The current estimation
methods of JT are based on the measurement and analysis of
thermal sensitive electrical parameters (TSEPs).These can be
used to obtain the static (e.g., on-state collector-emitter volt-
age and collector current) and dynamic (e.g., gate parameters
and turn-on and turn-off delay times) characteristics of the
IGBT under examination. The improvement of models and
algorithms for the analysis of indirect measurements of JT
is now bringing the indirect methods to the same accuracy
levels of their direct counterparts, even when a detection of
JT at fast sampling rate is required.

Kuhn and Mertens [122] and Brown et al. [123] have
demonstrated that turn-on and turn-off delay times are posi-
tively correlated to JT variations. However, the measurement
of these times is challenging for the high sampling rate
required to achieve a good accuracy. A second negative aspect
of this method is that an increase of the off-state to on-state
time (𝑡on) and the on-state to off-state time (𝑡off ) can also
be caused by a degradation of the gate-oxide characteristics,
which increases the gate-emitter voltage (𝑉GE).

Denk and Bakran [124] and Baker et al. [125] showed
that the internal gate resistance (𝑅Gi) of IGBTs has a negative
correlation with JT, so that the value of gate current changes
and, hence, the voltage across the external gate resistance
linearly increase by a variation of JT. Variation of this voltage
has been considered as a TSEP, useful to estimate the JT.
The value of the proposed TSEP is accurately measured
when the gate voltage is negative; that is, the IGBT is off.
However, this method requires an external high frequency
sinusoidal voltage signal that has to be superimposed on the
negative gate voltage during the off-state time, using auxiliary
MOSFET.

Barlini et al. [118] showed that the rates of change of
the collector-emitter voltage (𝑉CE) and the collector current
(𝐼C) are linearly related to the JT. However, this relation has
been verified only for MOSFETs and it is of difficult practical
implementation, because it requires themeasurement of time
derivatives with high sampling rates.

Themeasurement of the static𝑉CE and 𝐼C characteristic of
IGBTs has been investigated as another method to estimate
the JT [126]. However, this method is not recommended,
as the estimated JT is affected by BWLO and the method
becomes unreliable if this fault occurs.

As mentioned above, RLT of IGBT modules can be
adversely affected by moisture, since the plastic package is
not hermetically sealed. Moisture can lead to corrosion of
the aluminum inside the module and, hence, faults. Zorn
and Kaminski [127] showed that the increase of moisture
causes a decrease of avalanche voltage and, above a certain
level of humidity, a surge in the leakage current. This leads
to temperature stress, especially at the junction the IGBT.
Therefore, moisture can significantly decrease RLT of IGBT
modules.

The correlation between moisture levels and RLT can be
obtained from THB tests. Generally, a THB test is conducted
in relative humidity of 85% and 85∘C to assess the moisture
resistance of the IGBT package. The test voltage applied
to the IGBT is used to regulate the leakage current. This
voltage should be carefully selected, because if the leakage

current heats the module, the moisture evaporates and the
degradation effect of humidity becomes less evident [128]. As
shown by Zorn and Kaminski [129], the problem is particu-
larly delicate when the test voltage is above the bias voltage
(typically 90% of the nominal voltage), because the leakage
current noticeably increases andmakes the degradation effect
more observable, albeit the higher temperature accelerates
the evaporation of moisture.

7. Conclusions

This paper has presented a literature survey on reliabil-
ity issues of photovoltaic fields. The main aspects of the
subject have been covered by reviewing papers dealing
with data acquisition, data management, and modelling.
Tradeoffs among high sensitivity, pervasiveness, hardware
requirements, effectiveness, and costs have been pointed out.
The abundance of high quality works is an indicator of the
relevance of the problem for the scientific community; never-
theless it also evidenced that many issues are still debated and
need a more in-depth investigation.
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“Short-mid-term solar power prediction by using artificial
neural networks,” Solar Energy, vol. 86, no. 2, pp. 725–733, 2012.

[95] P. Mandal, S. T. S. Madhira, J. Meng, and R. L. Pineda,
“Forecasting power output of solar photovoltaic system using
wavelet transform and artificial intelligence techniques,” Proce-
dia Computer Science, vol. 12, pp. 332–337, 2012.

[96] A. Mellit and S. Shaari, “Recurrent neural network-based
forecasting of the daily electricity generation of a Photo-
voltaic power system,” in Proceedings of the Ecological Vehicle
and Renewable Energy (EVER ’09), pp. 26–29, Monte-Carlo,
Monaco, March 2009.



12 International Journal of Photoenergy

[97] T. T. Teo, T. Logenthiran, andW. L.Woo, “Forecasting of photo-
voltaic power using extreme learning machine,” in Proceedings
of the IEEE Innovative Smart Grid Technologies—Asia (ISGT
ASIA ’15), November 2015.

[98] C. Chen, S. Duan, T. Cai, and B. Liu, “Online 24-h solar power
forecasting based on weather type classification using artificial
neural network,” Solar Energy, vol. 85, no. 11, pp. 2856–2870,
2011.

[99] S. Daliento, L. Mele, E. Bobeico, L. Lancellotti, and P. Morvillo,
“Analytical modelling and minority current measurements for
the determination of the emitter surface recombination velocity
in silicon solar cells,” Solar EnergyMaterials and Solar Cells, vol.
91, no. 8, pp. 707–713, 2007.

[100] S. Daliento and L. Mele, “Approximate closed-form analytical
solution for minority carrier transport in opaque heavily doped
regions under illuminated conditions,” IEEE Transactions on
Electron Devices, vol. 53, no. 11, pp. 2837–2839, 2006.

[101] H. Denio III, “Aerial solar Thermography and condition mon-
itoring of photovoltaic systems,” in Proceedings of the 38th
IEEEPhotovoltaic Specialists Conference (PVSC ’12), pp. 613–618,
Austin, Tex, USA, June 2012.

[102] P. Guerriero, F. Di Napoli, M. Coppola, and S. Daliento, “A new
bypass circuit for hot spot mitigation,” in Proceedings of the
International Symposium on Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM ’16), pp. 1067–1072, June
2016.

[103] N. Tyutyundzhiev, F. Martinez-Moreno, J. Leloux, and L.
Narvarte, “Equipment and procedures for on-site testing of
PV plants and BIPV,” in Proceedings of the 29th European
Photovoltaic Solar Energy Conference and Exhibition (PVSEC
’14), pp. 3499–3503, 2014.

[104] J. A. Tsanakas, G. Vannier, A. Plissonnier, D. L. Ha, and F.
Barruel, “Fault diagnosis and classification of large-scale photo-
voltaic plants through aerial orthophoto thermal mapping,” in
Proceedings of the 31st European Photovoltaic Solar Energy Con-
ference and Exhibition 2015, pp. 1783–1788, Hamburg, Germany,
August 2016.

[105] J. R. Martinez-De Dios and A. Ollero, “Automatic detection
of windows thermal heat losses in buildings using UAVS,”
in Proceedings of the World Automation Congress (WAC ’06),
Budapest, Hungary, June 2006.

[106] F. Grimaccia, M. Aghaei, M.Mussetta, S. Leva, and P. B. Quater,
“Planning for PV plant performance monitoring by means
of unmanned aerial systems (UAS),” International Journal of
Energy and Environmental Engineering, vol. 6, no. 1, pp. 47–54,
2015.

[107] G. Leotta, P. M. Pugliatti, A. D. Stefano, F. Aleo, and F.
Bizzarri, “Post processing technique for thermo-graphic images
provided by drone inspections,” in Proceedings of the 31st
European Photovoltaic Solar Energy Conference and Exhibition
(EU PVSEC ’15), pp. 1799–1803, Hamburg, Germany, 2015.

[108] S. Vergura, F. Marino, andM. Carpentieri, “Processing infrared
image of PVmodules for defects classification,” inProceedings of
the International Conference on Renewable Energy Research and
Applications (ICRERA ’15), pp. 1337–1341, IEEE, Palermo, Italy,
November 2015.

[109] P. Guerriero, G. Cuozzo, and S. Daliento, “Health diagnostics
of PV panels by means of single cell analysis of thermographic
images,” in Proceedings of the IEEE 16th International Confer-
ence on Environment and Electrical Engineering (EEEIC ’16),
Florence, Italy, June 2016.

[110] N. I. Tziavos, H. Hemida, N. Metje, and C. Baniotopoulos,
“Grouted connections on offshore wind turbines: a review,”
Proceedings of the Institution of Civil Engineers—Engineering
and Computational Mechanics, vol. 169, no. 4, pp. 183–195, 2016.

[111] L. Piegari and R. Rizzo, “A control technique for doubly fed
induction generators to solve flicker problems in wind power
generation,” in Proceedings of the 1st International Power and
Energy Conference (PECon ’06), pp. 19–23, November 2006.

[112] G. Brando, A. Danmer, A. Del Pizzo, and R. Rizzo, “A gener-
alized modulation technique for multilevel converters,” in Pro-
ceedings of the International Conference on Power Engineering,
Energy and Electrical Drives (POWERENG ’07), April 2007.

[113] B. Ji, V. Pickert, B. Zahawi, and M. Zhang, “In-situ bond
wire health monitoring circuit for IGBT power modules,” in
Proceedings of the 6th IET International Conference on Power
Electronics, Machines and Drives (PEMD ’12), pp. 1–6, March
2012.

[114] V. N. Popok, K. B. Pedersen, P. K. Kristensen, and K. Pedersen,
“Comprehensive physical analysis of bond wire interfaces in
power modules,”Microelectronics Reliability, vol. 58, pp. 58–64,
2016.

[115] A. Morozumi, K. Yamada, T. Miyasaka, S. Sumi, and Y. Seki,
“Reliability of power cycling for IGBT power semiconductor
modules,” IEEE Transactions on Industry Applications, vol. 39,
no. 3, pp. 665–671, 2003.

[116] R. Bayerer, T. Herrmann, T. Licht, J. Lutz, andM. Feller, “Model
for power cycling lifetime of IGBT modules-various factors
influencing lifetime,” in Proceedings of the 5th International
Conference on Integrated Power Systems (CIPS ’08), pp. 1–6,
VDE, Nuremberg, Germany, March 2008.

[117] M. Denk and M.-M. Bakran, “Comparison of counting algo-
rithms and empiric lifetime models to analyze the load-profile
of an IGBT power module in a hybrid car,” in Proceedings of the
3rd International Electric Drives Production Conference (EDPC
’13), pp. 1–6, IEEE, October 2013.

[118] D. Barlini, M. Ciappa, M. Mermet-Guyennet, and W. Ficht-
ner, “Measurement of the transient junction temperature in
MOSFET devices under operating conditions,”Microelectronics
Reliability, vol. 47, no. 9-11, pp. 1707–1712, 2007.

[119] R. Moeini, P. Tricoli, and H. Hemida, “Increasing the reliability
of wind turbines using condition monitoring of semiconductor
devices: a review,” in Renewable Power Generation, IET, 2016.

[120] R. Schmidt and U. Scheuermann, “Using the chip as a tem-
perature sensor—the influence of steep lateral temperature
gradients on the Vce(T)-measurement,” in Proceedings of the
13th European Conference on Power Electronics and Applications
(EPE ’09), pp. 5–11, Barcelona, Spain, September 2009.

[121] W. Brekel, T. Duetemeyer, G. Puk, and O. Schilling, “Time
resolved in situ Tvj measurements of 6.5 kV IGBTs during
inverter operation,” in Proceedings of the PCIM Europe Confer-
ence, pp. 808–813, Nuremberg, Germany, May 2009.

[122] H. Kuhn and A. Mertens, “On-line junction temperature mea-
surement of IGBTs based on temperature sensitive electrical
parameters,” in Proceedings of the 13th European Conference
on Power Electronics and Applications (EPE ’09), 10, 1 pages,
September 2009.

[123] D. W. Brown, M. Abbas, A. Ginart, I. N. Ali, P. W. Kalgren,
and G. J. Vachtsevanos, “Turn-off time as an early indicator of
insulated gate bipolar transistor latch-up,” IEEE Transactions on
Power Electronics, vol. 27, no. 2, pp. 479–489, 2012.

[124] M. Denk and M.-M. Bakran, “An IGBT driver concept with
integrated real-time junction temperature measurement,” in



International Journal of Photoenergy 13

Proceedings of the International Exhibition and Conference for
Power Electronics, Intelligent Motion, Renewable Energy and
Energy Management (PCIM ’14), pp. 214–221, May 2014.

[125] N. Baker, S.Munk-Nielsen,M. Liserre, and F. Iannuzzo, “Online
junction temperature measurement via internal gate resistance
during turn-on,” in Proceedings of the IEEE 16th European
Conference on Power Electronics and Applications (EPE ’14-
ECCE Europe), pp. 1–10, August 2014.

[126] S. Bęczkowski, P. Ghimre, A. R. Vega, S. Munk-Nielsen, and P.
Th, “Online Vcemeasurementmethod for wear-outmonitoring
of high power IGBT modules,” in Proceedings of the 15th
European Conference on Power Electronics and Applications
(EPE ’13), pp. 1–7, IEEE, Lille, France, 2013.

[127] C. Zorn and N. Kaminski, “Acceleration of temperature humid-
ity bias (THB) testing on IGBT modules by high bias levels,” in
Proceedings of the 27th IEEE International Symposium on Power
Semiconductor Devices and IC’s (ISPSD ’15), pp. 385–388, May
2015.

[128] N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-
based HVDC power transmission systems: an overview,” IEEE
Transactions on Power Electronics, vol. 24, no. 3, pp. 592–602,
2009.

[129] C. Zorn and N. Kaminski, “Temperature humidity bias (THB)
testing on IGBT modules at high bias levels,” in Proceedings of
the 8th International Conference on Integrated Power Systems
(CIPS ’14), pp. 1–7, 2014.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


