Chapter 2 Quadratic Functions

Section 2-1 Transformations of Quadratic Functions

Essential Question How do the constants a, h, and k affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

The parent function of the quadratic family is $f(x) = x^2$. A transformation of the graph of the parent function is represented by the function $g(x) = a(x - h)^2 + k$, where $a \neq 0$.

EXPLORATION 1 Identifying Graphs of Quadratic Functions

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a.
$$g(x) = -(x-2)^2$$

b.
$$g(x) = (x-2)^2 + 2$$

a.
$$g(x) = -(x-2)^2$$
 b. $g(x) = (x-2)^2 + 2$ **c.** $g(x) = -(x+2)^2 - 2$

d.
$$g(x) = 0.5(x-2)^2 - 2$$

e.
$$g(x) = 2(x-2)^2$$

d.
$$g(x) = 0.5(x-2)^2 - 2$$
 e. $g(x) = 2(x-2)^2$ **f.** $g(x) = -(x+2)^2 + 2$

A.

C.

D.

F.

REMEMBER:

VERTEX AND INTERCEPT FORMS OF A QUADRATIC FUNCTION

FORM OF QUADRATIC FUNCTION

CHARACTERISTICS OF GRAPH

$$Vertex form y = a(x-h)^2 + k$$

The vertex is (h,k).

The axis of symmetry $\underline{is} x = h$.

Communicate Your Answer

2. How do the constants a, h, and k affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

2

Writing Transformations of Quadratic Functions

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex**. The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \ne 0$ and the vertex is (h, k).

Quadratic Equations in different forms (Identify the form and state the vertex).

$$f(x) = x^2$$

$$f(x) = x^2 + 3x - 2$$

$$f(x) = -(x-2)^2 + 3$$

$$f(x) = (x-3)(x+2)$$

Describing Transformations of Quadratic Functions

A quadratic function is a function that can be written in the form $f(x) = a(x - h)^2 + k$, where $a \neq 0$. The U-shaped graph of a quadratic function is called a parabola.

EXAMPLE 1 Translations of a Quadratic Function

Describe the transformation of $f(x) = x^2$ represented by $g(x) = (x + 4)^2 - 1$. Then graph each function.

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

1.
$$g(x) = (x-3)^2$$

2.
$$g(x) = (x-2)^2 - 2$$

2.
$$g(x) = (x-2)^2 - 2$$
 3. $g(x) = (x+5)^2 + 1$

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

a.
$$g(x) = -\frac{1}{2}x^2$$

b.
$$g(x) = (2x)^2 + 1$$

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

- **4.** $g(x) = \left(\frac{1}{3}x\right)^2$

- **5.** $g(x) = 3(x-1)^2$ **6.** $g(x) = -(x+3)^2 + 2$

Writing a Transformed Quadratic Function

Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

EXAMPLE 4 Writing a Transformed Quadratic Function

Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for g.

REMEMBER

To multiply two binomials, use the FOIL Method.

- 7. Let the graph of g be a vertical shrink by a factor of $\frac{1}{2}$ followed by a translation 2 units up of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.
- 8. Let the graph of g be a translation 4 units left followed by a horizontal shrink by a factor of $\frac{1}{3}$ of the graph of $f(x) = x^2 + x$. Write a rule for g.

EXAMPLE 5

Modeling with Mathematics

The height h (in feet) of water spraying from a fire hose can be modeled by $h(x) = -0.03x^2 + x + 25$, where x is the horizontal distance (in feet) from the fire truck. The crew raises the ladder so that the water hits the ground 10 feet farther from the fire truck. Write a function that models the new path of the water.

SOLUTION

- Understand the Problem You are given a function that represents the path of water spraying from a fire hose. You are asked to write a function that represents the path of the water after the crew raises the ladder.
- Make a Plan Analyze the graph of the function to determine the translation of the ladder that causes water to travel 10 feet farther. Then write the function.
- 3. Solve the Problem Use a graphing calculator to graph the original function.

Because h(50) = 0, the water originally hits the ground 50 feet from the fire truck. The range of the function in this context does not include negative values. However, by observing that h(60) = -23, you can determine that a translation 23 units (feet) up causes the water to travel 10 feet farther from the fire truck.

$$g(x) = h(x) + 23$$
$$= -0.03x^2 + x + 48$$

Add 23 to the output.

Substitute for h(x) and simplify.

- The new path of the water can be modeled by $g(x) = -0.03x^2 + x + 48$.
- **4. Look Back** To check that your solution is correct, verify that g(60) = 0.

$$g(60) = -0.03(60)^2 + 60 + 48 = -108 + 60 + 48 = 0$$