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Abstract— In this paper, we discuss the issue of security in
multiagent systems in the context of their underlying graph
structure that models the interconnections among agents. In
particular, we investigate the minimum number of guards
required to counter an infinite sequence of intruder attacks
with a given sensing and response range of an individual guard.
We relate this problem of eternal security in graphs to the
domination theory in graphs, providing tight bounds on the
number of guards required along with schemes for securing a
multiagent system over a graph.

I. INTRODUCTION

Security and protection against malicious agents and ex-

ternal intrusions is often required for a reliable operation

of multiagent systems. This demands not only the proper

surveillance of the system, but also the efficient response

strategies to counter attacks within a suitable time span,

thus, motivating the study of search and secure problems

in cooperative systems.

Problems related to search and secure scenarios, have been

studied in the literature under several settings, focusing on

different aspects of the topic. They include the number of

guards required for monitoring all the agents, a problem that

is related to the art gallery problem (e.g. [1]), distributed

detection schemes for observing abnormalities within agents

(e.g., [2]–[4]), cooperative minimum time surveillance al-

gorithms (e.g. [5]), and cooperative tracking of moving

intruders with fixed sensors and mobile robots (e.g., [7], [8]),

to name a few.

In multiagent systems, the interconnection among agents

is frequently modelled by a graph structure where vertices (or

nodes) represent agents and edges abstract the cooperation

or interconnection among these agents. For the cases, where

agents compute some values via pre-defined strategies, it is

shown in [6] that the network topology completely charac-

terizes the resilience of linear iterative strategies to malicious

behavior of nodes. A graph theoretic interpretation of search

and secure problems is of particular interest for multiagent

systems, where protection of these cooperative systems is

associated to the concept of security in graphs in some sense

(e.g., [9]).

The notion of eternal security in graphs, introduced in

[15], and later studied in [10] and [18], addresses the problem

of making all the nodes in a graph secure against an infinite

sequence of intruder attacks by a certain minimum number

of guards. An intruder attack on a node (or a vertex) refers

to any malicious activity on that node. A guard can detect
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and respond to an intruder attack by moving from one node

to another in its neighborhood, along the edges of a graph. A

dominating set in a graph is a set of vertices such that all the

vertices lie in the immediate neighborhood of that set. Thus,

placing guards at these dominating vertices ensures that every

vertex is secured against an intruder. However, the movement

of a guard from a dominating vertex to another, may leave

some vertices unmonitored. In other words, the set of vertices

corresponding to the new position of guards may not be a

dominating set, thus leaving some vertices unsecured. The

idea behind eternal security is to deal with such situations

and secure vertices against an arbitrary sequence of attacks.

This requires that vertices corresponding to the new positions

of guards 1 also constitute a dominating set in a graph. Such

a security in a graph is referred to as the eternal 1-security

[10], where 1 denotes that only one guard moves in response

to an attack while others maintain their current positions2.

The minimum number of guards needed to make a graph

eternally 1-secure is known as the eternal 1-security number,

σ1(G), of a graph. Fig. 1 illustrates this concept through an

example.

In this paper, we generalize the eternal 1-security problem

by extending the notion of neighborhood to k-neighborhood.

By this we mean that a guard can detect and respond to an

intruder that is at most k-distant from it in a graph. This

generalization, which we term as the eternal 1-security with

k-neighborhood, allows us to study a relationship between

the number of guards required and the distance covered by

each guard to counter intruder attacks. Also, we can analyse

the minimum number of guards required to eternally secure

a graph, with a given sensing and response range of an

individual guard. This analysis is often needed for designing

cost effective and secure network topologies for multiagent

and cooperative systems. See Fig. 3 for the illustration of an

eternal 1-security of a given graph with 2-neighborhood.

The paper is organized as follows: In Section II, we

introduce the necessary terms and notations. In Section III,

we formally state the problem of eternal 1-security with k-

neighborhood. Section IV presents some results on σ
(k)
1 (G)

in terms of the graph power, Gk. In Section V, domination

theory in graphs is used to obtain further results on the

number of guards required. In Section VI, this problem is

investigated for some classes of graphs. Finally, we present

conclusions in Section VII.

1after one of them moves to some node in its immediate neighborhood
in response of an attack at that node.

2Another version of eternal security, known as the eternal m-security,
also exists where m guards move in response to an attack [10].
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(a) (b) (c) (d) (e) (f)

Fig. 1. (a) A given graph G is protected by 3 guards placed at the colored vertices. These vertices are in fact a dominating set of G. Let there be an
intruder attack at the vertex, indicated by an arrow. (b) A guard in the neighborhood of an attacked vertex, moves towards it through a highlighted edge.
Note that the set of vertices corresponding to the new guard positions, is still a dominating set of G. In (c), (d), (e) and (f), a sequence of intruder attacks
and the response of the guards to counter them is shown. Note that the guards always lie on the vertices that dominate the whole graph, thus securing a
graph against an infinite sequence of attacks.

II. PRELIMINARIES

A graph G(V,E), with a vertex set V (G) and an edge set

E(G), is a simple, undirected graph throughout this paper.

A set I ⊂ V (G) is an independent set of a graph if no two

vertices in I are adjacent in G. The independence number,

α(G), is the cardinality of a largest independent set. Let W ∈
V (G) be a subset, such that every two vertices x, y ∈ W are

adjacent to each other in G (i.e. (x, y) ∈ E(G)), then the

vertices in W induce a complete subgraph in G, referred to

as a clique. The clique cover number of a graph, denoted

by θ(G), is a partitioning of V (G) into a minimum number

of subsets such that the vertices in each subset induce a

clique. The distance between two vertices u, v ∈ V (G) in

G, denoted by d(u, v)G, is the length of the shortest path

between u and v and the diameter of a graph, diam(G),
is max d(u, v)G, ∀u, v ∈ G. The kth power of a graph

G, denoted by Gk, is a graph with V (Gk) = V (G) and

(u, v) ∈ E(Gk), whenever d(u, v)G ≤ k.

The open neighborhood of a v ∈ V (G), denoted by N(v),
is the set of vertices adjacent to v, i.e., N(v) = {u | (u, v) ∈
E(G)}. The closed neighborhood of v, denoted by N [v], is

N(v)∪ {v}. Similarly, the open k-neighborhood of a vertex

v ∈ V (G), denoted by Nk(v), is the set of vertices {v′ ∈
V : d(v′, v)G ≤ k}. The closed k-neighborhood, denoted by

Nk[v], is Nk(v) ∪ {v}.

A set S ∈ V (G) is a dominating set, if for each v ∈ V (G),
either v ∈ S, or v is adjacent to some si ∈ S. In other

words, S is dominating if and only if
⋃

si∈S

N [si] = V (G).

The domination number, denoted by γ(G), is the cardinality

of a minimum dominating set in G. For a connected graph, a

connected dominating set, Sγc
∈ V (G), is a dominating set

such that the vertices in Sγc
, induce a connected subgraph.

The connected domination number, γc, is the cardinality of

a minimum connected dominating set.

An example illustrating the above terms and notions is

shown in the Fig. 2.

III. PROBLEM FORMULATION

Consider a graph where a certain number of guards are

placed on its vertices. Every guard can detect and respond

to an intruder attack on some vertex that is at most k-distant

from it, by moving along the edges of a graph. We say that

a vertex v ∈ V , is secured if there exists at least one guard

that is at most k-distant from it. A graph is secured when

u1u2

u3

v2v1

v3

x

(a) (b)

Fig. 2. (a) For a given G, an independent set I = {u2, x, v2} with α(G) =
3. Clique cover number, θ(G) = 3, i.e., three cliques (highlighted in grey)
span the whole graph. A dominating set S = {u1, v1} with γ(G) = 2.
A connected dominating set Sγc = {u1, x, v1} with γc(G) = 3. (b) G2,
where extra edges due to the square of a graph are shown in grey.

all of its vertices are secured. In case of an attack on some

vertex, a single guard will move to that vertex countering

the attack. Now, if the graph remains secured with this new

guard position along with the other guards that did not move,

then all the vertices are secured against an infinite sequence

of single vertex attacks, establishing the eternal 1-security of

that graph with a k-neighborhood. An example illustrating

the the eternal 1-security with 2-neighborhood in a given

graph is shown in the Fig. 3. We can state the eternal 1-

security with k-neighborhood formally as below.

Eternal 1-secure set with k-neighborhood of a graph G

can be defined as a set S0 ∈ V (G) that can defend against

any sequence of a single vertex attacks by a single guard

shifts along the edges of G. It means that for any ℓ and

any sequence of vertices v1, v2, · · · , vℓ, ∃ a sequence of

guards u1, u2, · · · , uℓ with ui ∈ Si−1 and either ui = vi or

d(ui, vi)G ≤ k, such that each set Si = (Si−1−{ui})∪{vi}
is a dominating set with k-neighborhood. It should be noted

that each Si is an eternal 1-secure set with k-neighborhood,

for all i. Eternal 1-security number of a graph G with k-

neighborhood, denoted by σ
(k)
1 (G), is the cardinality of a

smallest eternal 1-secure set with k-neighborhood.

In this paper, we analyse the σ
(k)
1 (G) for general graphs

by giving tight bounds using various graph theoretic tools.

IV. σ
(k)
1 (G) AND THE GRAPH POWER, Gk

A fundamental lower and upper bounds for the eternal

1-security number of a graph with a usual notion of neigh-

borhood (i.e., 1-neighborhood), were first presented in [15].

It relates σ1(G) with the independence number α(G) and

the clique cover number θ(G), of a graph.

Theorem 4.1: [15] For any graph G,

α(G) ≤ σ1(G) ≤ θ(G) (1)
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Fig. 3. (a) Two guards g1 and g2, are placed such that each v ∈ V (G) is at most 2 edges away from at least one of the guards. Let there be an intruder
attack at the vertex, indicated by an arrow. (b) The guard, g1, counters the attack by moving through a highlighted path of two edges. (c) Note that even
in a new position of guards, each v ∈ V (G), is at most two edges away from at least one of the guards. In (c), (d), (e) and (f), a sequence of intruder
attacks and the response of the guards to counter them is shown.

Due to their significance as one of the primary notions

in graph theory, literature has many nice results regarding

α(G) and θ(G). Thus, the above theorem provides a way of

translating known results for the topic of eternal 1-security.

In a similar way, it will be useful to interpret eternal 1-

security with k-neighborhood, in terms of the usual notion

of eternal 1-security, allowing us to use already known results

for interpreting this generalized notion of eternal security in

graphs. Theorem 4.2 relates σ
(k)
1 (G) and σ1(G).

Theorem 4.2: A graph G is eternally 1-secure with k-

neighborhood, if and only if Gk is eternally 1-secure with

1-neighborhood, where Gk is the kth power of a graph G.

Proof: Eternal 1-security of G with k-neighborhood

impiles that, for any ℓ and any sequence of vertices

v1, v2, · · · , vℓ in G, ∃ a sequence of guards u1, u2, · · · , uℓ

such that either ui = vi or d(ui, vi)G ≤ k. In Gk,

d(ui, vi)Gk ≤ 1 whenever d(ui, vi)G ≤ k. Thus eternal 1-

security of G with k-neighborhood implies the existence of a

guard ui for any vertex vi in Gk, such that d(ui, vi)Gk ≤ 1,

for any i and any sequence of vertices, implying the eternal

1-security of Gk with 1-neighborhood.

Since (ui, vi) ∈ E(Gk) implies that d(ui, vi)G ≤ k. Thus,

using the same argument as above, eternal 1-security of G

with 1-neighborhood is directly implied from the eternal 1-

security of Gk with 1-neighborhood.

Following lemma is a direct consequence of the Theorem

4.2.

Lemma 4.3: For any graph G,

σ
(k)
1 (G) = σ1(G

k)
Theorem 4.4: For any graph G and positive integers m

and n,

σ
(m)
1 (Gn) = σ

(n)
1 (Gm) (2)

Proof: Let Gn = X and Gm = Y . Using Lemma 4.3, left

hand side of (2) becomes, σ
(m)
1 (X) = σ1(X

m) = σ1(G
nm),

and right side gives, σ
(n)
1 (Y ) = σ1(Y

n) = σ1(G
nm). Thus,

we get the required result.

A simple, but an important result from [13] states that

σ1(G) = 1, if and only if G is a complete graph. Using this

fact, we obtain the following result.

Theorem 4.5: For a connected graph G, σ
(k)
1 (G) = 1, if

and only if k ≥ diam(G).

Proof: Let σ
(k)
1 (G) = 1. From Lemma 4.3, σ1(G

k) = 1.

Also, from [13], we get that Gk is a complete graph, i.e.

(vi, vj) ∈ E(Gk), ∀vi, vj ∈ V (Gk), where i 6= j. This

implies d(vi, vj)G ≤ k in G for all vi, vj ∈ V (G), where

i 6= j, which means that diam(G) ≤ k.

Let k ≥ diam(G). Then Gk is a complete graph.

From [13], σ1 of a complete graph is 1. Thus, σ1(G
k) =

σ
(k)
1 (G) = 1.

An immediate consequence of the Theorem 4.5 is the

following,

Corollary 4.6: σ
(k)
1 (G) = 1, if and only if Gk is a

complete graph.

The above results also provide a systematic way of finding

σ
(k)
1 (G), for an arbitrary graph. For a given k, consider

a low diameter decomposition of a graph G, where each

connected component has a diameter at most k. By this we

mean a partitioning of V (G) into subsets V (G) =
a
⋃

i=1

Vi,

such that the subgraph induced by each subset Vi has a

diameter at most k. Then, σ
(k)
1 (G) is at most equal to the

number of components in the decomposition (or the number

of subsets in the partitioning of V (G)). This is so because

each component has a diameter at most k, and therefore, has

an eternal 1-security number with k-neighborhood equal to

1 (using Theorem 4.5). Conversely, if it is desired to find a

suitable k for a given σ
(k)
1 (G),3 then we need to decompose a

graph into σ
(k)
1 (G) number of connected components. Then,

the diameter of the component with the maximum diameter

will be the required k.

As an example, consider a case where a graph G is

decomposed into k-caterpillars. A caterpillar is a tree where

every vertex lies either on a central path, or at a distant

1 from some vertex on a central path. A k-caterpillar is a

caterpillar with a central path of k vertices. An example is

shown in the Fig. 4.

(a) (b) (c)

Fig. 4. A graph G is shown in (a). It can be decomposed into two 2-
caterpillars as shown in (b) and (c). Central paths of two vertices in 2-
caterpillars are highlighted in (b) and (c).

3This situation arises when a fixed number of guards are available and it
is desired to find out the required sensing and response range of a guard.
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It is to be noted that diam(Cℓ) = ℓ + 1, where Cℓ is an

ℓ-caterpillar. Thus σ
(ℓ+1)
1 (Cℓ) = 1, using Theorem 4.5. Now,

if we get a spanning subgraph of a given graph G, such that

each connected component in that spanning subgraph is an

ℓ-caterpillar with ℓ ≤ (k − 1), then, σ
(k)
1 (G) will always be

lesser than or equal to the number of components in that

spanning subgraph. This is true as, σ
(k)
1 (Cℓ) = 1 for each

connected component of the spanning subgraph (that is an ℓ-

caterpillar with ℓ ≤ k−1). Thus, a caterpillar decomposition

of a graph, that is a partitioning of V (G) into subsets, where

the vertices in each subset are spanned by a caterpillar,

provides a method for finding a sufficient number of guards

for the eternal 1-security of a graph with k-neighborhood.

V. ETERNAL 1-SECURITY AND DOMINATION IN

GRAPHS

Domination in graphs has been extensively studied in the

graph theory literature. Several variants of the domination

concept exists, including distance domination, total domina-

tion and connected domination, to name a few. Since, a lot of

theoretical and algorithmic results are available for various

versions of domination (see [17] for details), thus, relating

the notion of eternal 1-security in graphs to these domination

related concepts turns out to be useful for the computation of

σ
(k)
1 (G). In this section, we relate σ

(k)
1 (G) to the notions of

k-distance domination, total k-distance domination and the

connected domination in graphs.

We start by relating σ
(k)
1 (G) with the k-distance domina-

tion number, γ(k)(G) of a graph. A k-distance dominating

set, or simply a k-dominating set, S(k) ∈ V (G), is a set of

vertices such that for each v ∈ V (G), either v ∈ S(k) or v is

at most k distant from some vertex in S(k). The cardinality

of a minimum k-dominating set is the k-domination number

of a graph, denoted by γ(k).

Theorem 5.1: For any graph G,

σ
(2k)
1 (G) ≤ γ(k)(G) (3)

where γ(k) is a k-domination number of G.

Proof: Let S(k) = {s1, s2, · · · , sγ(k)} be a minimum k-

dominating set of G. Let Gsi be a subgraph induced by the

vertices in Nk[si]. Then, by the definition of a k-dominating

set, d(v, si)Gsi
≤ k, ∀v ∈ Nk[si]. Thus, for any x, y ∈

Nk[si], d(x, y)Gsi
≤ 2k, implying that diam(Gsi) ≤ 2k.

By using Theorem 4.5, σ
(2k)
1 (Gsi) = 1. This is true for each

si ∈ S(k). Since,
⋃

si∈S(k)

Gsi ⊆ G, so we get σ
2(k)
1 (G) ≤

γ(k).

For k = 1, we have σ
(2)
1 (G) ≤ γ(G), where, γ(G) is a

domination number of a graph. An example illustrating the

above proof for k = 1 is shown in the Fig. 5. It is to be

mentioned here that the bound in (3) is tight. For example,

consider the graph in the Fig. 5, where σ
(2)
1 (G) = γ(G) = 2.

Using Theorem 5.1 and the notion of graph power, Gk,

we can generalize the relationship between σ
(k)
1 (G) and the

domination number of a graph.

(a) (b)

Gs1
Gs2

s1 s2

Fig. 5. (a) Given a graph G. (b) S = {s1, s2} is a dominating set.
For each si ∈ S, there exits a subgraph Gsi , with diam(Gsi ) = 2,

and so, σ
(2)
1 (Gsi ) = 1. Also, Gs1 ∪ Gs2 ⊆ G. So, σ

(2)
1 (G) ≤

[

σ
(2)
1 (Gs1 ) + σ

(2)
1 (Gs2 )

]

= 2.

Theorem 5.2: For any graph G and a positive k,

σ
(2k)
1 (G) ≤ γ(Gk) (4)

Proof : Let Gk = Z . Using Lemma 4.3 we get, σ
(2k)
1 (G) =

σ1(G
2k) = σ1(Z

2) = σ
(2)
1 (Z). Now using Theorem

5.1, σ
(2)
1 (Z) ≤ γ(Z), i.e. σ

(2)
1 (Gk) ≤ γ(Gk), implying

σ
(2k)
1 (G) ≤ γ(Gk).

We can also relate σ
(k)
1 (G) to a widely studied notion of

connected domination in graphs.

Theorem 5.3: For any connected graph G,

σ
(k+2)
1 (G) ≤ σ

(k)
1 (Gγc

)

where, Gγc
is a subgraph induced by the vertices in a

minimum connected dominating set, Sγc
, of G.

Proof: Let Sγc
= {s1, s2, · · · , sγc

} be a set of vertices in

a minimum connected dominating set of G and Gγc
be a

subgraph induced by Sγc
.

A vertex v ∈ V (G), is eternally 1-secure with k-

neighborhood, if there always exists a guard u, such that

d(u, v)G ≤ k. Then, a graph is eternally 1-secure with k-

neighborhood, if and only if all of its vertices are eternally

1-secure with k-neighborhood. Now, let us assume that G

has σ
(k)
1 (Gγc

) number of guards.

Claim 1: Each si ∈ Sγc
is eternally 1-secure with (k+1)-

neighborhood in G.

Proof: σ
(k)
1 (Gγc

) guards will ensure that, for each si ∈
V (Gγc

), there always exists a guard in Gγc
that will eternally

1-secure it with a k-neighborhood. Now in G, for every

v ∈ V − Sγc
, there always exist some s ∈ Sγc

such that

d(v, s)G = 1. This is true as Sγc
is a dominating set of G.

So, in case of an attack on some si ∈ Sγc
, there always exist

a guard in G that is at most k + 1 distance away from it.

Claim 2: Each vi ∈ V (G)−Sγc
is eternally 1-secure with

(k + 2)-neighborhood in G.

Proof: Let there be an attack at some vi ∈ V −Sγc
, and si

be a vertex in Sγc
such that d(vi, si)G = 1. By claim 1, for

every si ∈ Sγc
, there exists a guard in G that is at most k+1

distant from it. Thus, there always exists a guard in G that

is at most k + 2 distance away from vi ∈ V − Sγc
, making

every such vi eternally 1-secure with (k + 2)-neighborhood

in G. �

From claims 1 and 2, all the vertices in G are eternally

1-secure with (k + 2)-neighborhood.
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A. Eternal 1-Security and the Total k-Domination in

Graphs:

A set Sγk
t
(G) is a total k-dominating set, if every v ∈ V

is within a distance k from some vertex of Sγk
t
(G), other than

itself. The cardinality of a smallest set Sγk
t
(G), is known as

the total k-domination number, γk
t (G), of a graph.

Now, we will relate σ
(k)
1 (G) with a total k-domination

number of a graph. First, we define the following notion.

Definition 5.1: (Matching in a Graph): Given a graph G,

a matching M , is a set of edges that do not share a common

vertex. The cardinality of a largest matching in a graph is

called the matching number of G, denoted by ν(G). Also a

vertex is matched if it is incident to an edge in a matching,

otherwise a vertex is unmatched.

Theorem 5.4: For any connected graph G, and k ≥ 1,

σ
(2k+1)
1 (G) ≤ γk

t (G) − ν(Gγk
t
)

where, ν(Gγk
t
) is a matching number of a subgraph induced

by the vertices in a minimum total k-dominating set, Sγk
t
(G).

Proof: Let Sγk
t
= {s1, s2, · · · , sγk

t
} be a minimum total

k-dominating set of a G. If Gsi is a subgraph induced by

the vertices in Nk[si], then, by the definition of a total k-

dominating set, diam(Gsi) ≤ 2k. Now, let Gγk
t

be a sub-

graph induced by the vertices in Sγk
t

, and M be a maximum

matching of Gγk
t

with | M |= ν(Gγk
t
). Then, without loss

of generality, we can partition Sγk
t
= {s1, s2} ∪ {s3, s4} ∪

· · · {s(2ν−1), s(2ν)}∪ {s(2ν+1), · · · , sγk
t
}, where the vertices

in {si, si+1} for i + 1 < (2ν + 1), are the end vertices of

some edge e ∈ M , and the vertices in {s(2ν+1), · · · , sγk
t
}

are the unmatched vertices. Then, G ⊇
⋃

si∈S
γk
t

Gsi

= (Gs1∪Gs2 )∪(Gs3∪Gs4 )∪· · · (Gs2ν−1∪Gs2ν )

γk
t

⋃

i=2ν+1

Gsi

Noting that diam(Gsi ∪ Gsi+1) ≤ (2k + 1), for i + 1 <

2ν + 1. Thus, we decompose a given G into ν + (γk
t −

2ν) components, where the diameter of each component is

at most (2k + 1). Using Theorem 4.5, the σ
(2k+1)
1 of each

component is 1. Thus, we get σ
(2k+1)
1 (G) ≤ ν+(γk

t −2ν) =
γk
t − ν(Gk

t ), which is the desired result.

An illustration of the above proof, through an example is

shown in the Fig. 6.

B. Eternal 1-Security and the k-Distance Paired Domina-

tion:

A set Sγk
t
(G), is a k-distance paired dominating set, if

it is a k-dominating set, and the subgraph induced by the

vertices in Sγk
p
(G) has a perfect matching. The cardinality

of a smallest Sγk
p
(G), is known as the k-distance paired

domination number, γk
p (G), of a graph (See [14] for details).

Theorem 5.5: If G is a connected graph, then,

σ
(2k+1)
1 (G) ≤

γk
p

2
Proof: Let Sγk

p
= {s1, s2, · · · , sγk

p
} be a minimum k-

distance paired dominating set of a given G, and Gγk
p

be

(a) (b)

s1 s2 s3

(c)

s1 s2 s3

s2 s3
s1

Gs1
∪Gs2

Gs3

Fig. 6. (a) Given a graph G. (b) Sγ1
t
= {s1, s2, s3} is a total dominating

set. Gγ1
t

(shown in dark) is the subgraph induced by the vertices in Sγ1
t

.

Matching of Gγ1
t

along with the matched vertices, {s1, s2} is also shown.

(c) Note that diam(Gs1 ∪Gs2 ) = 3 and diam(Gs3 ) = 2, so σ
(3)
1 (Gs1 ∪

Gs2 ) = σ
(3)
1 (Gs3 ) = 1. This gives, σ

(3)
1 (G) ≤ 2, which is same as

γ1
t (G)− ν(Gγ1

t
) = 3− 1 = 2.

a subgraph induced by the vertices in Sγk
p

. Since, there

exists a matching, M , of Gγk
p

, such that all of its vertices

are matched, so, we can do partition Sγk
p

= {s1, s2} ∪

{s3, s4} · · · ,∪{s(γk
p−1), sγk

p
}, where si is connected to si+1

in each subset {si, si+1}. Also, if Gsi is a subgraph induced

by the vertices in Nk[si], then, by the definition of the k-

distance paired dominating set, diam(Gsi) ≤ 2k, ∀si ∈ Sγk
p

.

Thus, diam(Gsi∪Gsi+1) ≤ 2k+1, where si and si+1 are the

end vertices of a same edge in M . Thus, G ⊇
⋃

si∈S
γk
p

Gsi =

(Gs1 ∪ Gs2) ∪ (Gs3 ∪ Gs4) · · · ∪ (Gs
(γk

p−1)
∪ Gγk

p
). So, we

can decompose G into
γk
p

2 components where diameter of

each component is at most (2k + 1), and thus, σ
(2k+1)
1 is 1

for each component. This gives, σ
(2k+1)
1 (G) ≤

γk
p/2
∑

i=1

1 =
γk
p

2 ,

which is the required result.

VI. ETERNAL 1-SECURITY WITH k-NEIGHBORHOOD FOR

SOME CLASSES OF GRAPHS

In this section, we give expressions for σ
(k)
1 (G) for path

and cycle graphs. We start with a path graph by first stating

the notion of chromatic number, χ(G), that will be used.

Definition 6.1: (Chromatic Number, χ(G)): The chro-

matic number of a graph G, denoted by χ(G), is the

minimum number of colors needed to color the vertices so

that no two adjacent vertices share the same color.

Theorem 6.1: Let G be a path graph Pn having n ver-

tices, then,

σ
(k)
1 (Pn) =

⌈

n

k + 1

⌉

Proof: From [11], χ(P k
n ) = k + 1. Since, α ≥ n

χ [11],

thus, α(P k
n ) ≥

n
k+1 and using (1), we imply that σ1(P

k
n ) ≥

⌈ n
k+1⌉. Also in P k

n , every (k+1) consecutive vertices make

a complete subgraph. Thus, we get ⌈ n
k+1⌉ cliques implying
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σ1(P
k
n ) ≤ ⌈ n

k+1⌉. Now, observing that σ1(P
k
n ) = σ

(k)
1 (Pn),

we get the desired result.

Eternal 1-security number with k-neighborhood of a circle

graph is of particular interest, as a bounded region can always

be enclosed by a circle graph.

Theorem 6.2: Let G be a cycle graph Cn with n vertices,

then,
⌊

n

k + 1

⌋

≤ σ
(k)
1 (Cn) ≤

⌈

n

k + 1

⌉

Proof: From [12], we know that α(Ck
n) = ⌊ n

k+1⌋, thus us-

ing Theorem 4.1 and Lemma 4.3, we get σ
(k)
1 (Cn) ≥ ⌊ n

k+1⌋.

Now assume that vertices of Cn are labelled consecutively

{1, 2, · · · , n}. Consider a partition P , of V (Ck
n).

P ={{1, · · · , k + 1}, {k + 2, k + 3, · · · , 2(k + 1)},

· · · , {x, x+ 1, · · · , n}}

where, x =
[(

⌈ n
k+1⌉ − 1

)

(k + 1) + 1
]

. Note that, all the

vertices in each subset of P are adjacent to each other in Ck
n.

Thus, the vertices in each subset of P induce a clique in Ck
n.

Also, the cardinality of P is ⌈ n
k+1⌉. This gives a clique cover

number of Ck
n , i.e. θ(Ck

n) = ⌈ n
k+1⌉. σ

(k)
1 (Cn) ≤ ⌈ n

k+1⌉ is

then directly implied by Theorem 4.1.

An example illustrating the above proof is shown in the

Fig. 7.

(a) (b)

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

Fig. 7. (a) C8 with vertices labelled consecutively {1, 2, · · · , 8}. (b)
In C2

8 , the vertices in each of the subsets, {1, 2, 3}, {4, 5, 6} and {7, 8},
induce a complete subgraph, highlighted in grey. Note that there is a guard
for each complete subgraph in C2

8 .

Following result is a direct consequence of the Theorem

6.2.

Corollary 6.3: Every hamiltonian graph4 has,

σ
(k)
1 (G) ≤

⌈

n

k + 1

⌉

Another useful result directly follows from the Theorem

6.2 and Corollary 6.3.

Corollary 6.4: For k ≥ 2, every 2-connected graph5 has,

σ
(k)
1 (G) ≤

⌈

n

k + 1

⌉

Proof: If G is 2-connected, then G2 is hamiltonian [16].

Corollary 6.3 directly implies the required result.

4A hamiltonian cycle in a graph G, is a cycle that passes through each
vertex exactly once. A graph containing such a cycle is a hamiltonian graph.

5A graph is 2-connected if there does not exist a single vertex whose
removal disconnects the graph.

VII. CONCLUSIONS

In this work, we investigated the issue of security in

multiagent systems from a graph theoretic view point. We

proposed a framework, where a certain minimum number

of guards secure a multiagent system against an infinite

sequence of intruder attacks over a graph that models the

underlying inter-connections among agents. Under this setup,

we analysed the number of guards required for securing a

graph structure, with a given sensing and response range

of an individual guard. This also allowed us to relate the

maximum distance a guard needs to move to counter an

intruder attack when the number of guards is fixed. More-

over, an analysis performed for various classes of graphs is

helpful for designing secure and reliable network topologies

for multiagent systems.
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