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Abstract 

This paper proposes a novel hybrid evolutionary algorithm using Particle Swarm assisted Bacterial 

Foraging Optimization algorithm for the closed loop automatic tuning of a set-point filter and PID 

controller for a class of chemical systems operating at unstable steady state. In this work, the PSO 

algorithm is employed in the optimization search to add the velocity parameter for the tumbling 

operation of the bacterial foraging algorithm, which can speed up the algorithm convergence. The need 

for a suitable PID controller structure for the evolutionary algorithm based search is discussed in detail. 

In the proposed work, the optimization process is focused to search the best possible controller 

parameters (Kp, Ki, Kd) and set-point filter parameter (Tf) by minimizing the multi objective 

performance index. The effectiveness of the proposed scheme has been confirmed through a 

comparative study with PSO, IPSO, BFO and the classical controller tuning methods proposed in the 

literature. The results show that, the proposed method provides enhanced performance in effective 

reference tracking with minimal ISE and IAE values. Finally the robustness of the proposed method is 

validated by operating the unstable systems in the presence of a measurement noise. The results testify 

that the PSO-BFO tuned set-point filter based PID performs well in tracking the change in reference 

signal even in the noisy environment. 

Keywords: Particle swarm optimisation; Bacterial foraging optimization; Hybrid algorithm, Unstable 

systems; PID controller. 

Introduction 

In chemical industry, important 

processing units such as jacketed Continuous 

Stirred Tank Reactor (CSTR), Continuous Stirred 

Tank Bioreactor (CSTB), fermenters, and 

polymerization reactor are inherently open-loop 

unstable by design and for economical and/or 

safety reasons, these process loops to be 

operated in unstable steady state [1].  During the 

closed loop operation, optimized controller 

parameters for such systems are essential to 

minimize the waste and to maximize the 

production rate. Fine tuning the controller 

parameters for unstable systems is highly 

complex than open loop stable systems.  

In recent years, many efforts have been 

attempted to design optimal and robust 

controllers for unstable chemical systems. Panda 

has proposed a synthesis method to design an 

Internal Model Controller based PID (IMC-PID) 

controller for a class of time delayed unstable 

process [2]. Chen et al. have discussed a set-

point weighted PID controller tuning for time 

delayed unstable systems [3]. Huang and Chen 

have examined an auto-tuning method based PID 

controller for a class of second order unstable 

process having dead time [4]. Lee et al. have 

proposed a PID controller tuning methodology 

for integrating and unstable processes with time 

delay [5]. Sreeet al. has discussed a classical PID 

controller tuning method for stable and unstable 

first order systems [6]. Visioli, have discussed a 

classical tuning method for unstable systems.  

Most of these classical approaches require an 

approximated first or second order transfer-

function model with a time delay [7]. In real 

time applications, the approximated model 
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parameter may be changing or subject to 

uncertainty. The tuning method proposed for a 

particular model does not provide a satisfactory 

result on the other models. The classical 

controller tuning procedures proposed for time 

delayed unstable system also requires complex 

computations to identify the optimal controller 

parameters. To overcome this, it is necessary to 

employ intelligent controller auto tuning 

methods to identify the best possible controller 

parameters for the unstable process loop. 

In recent years, evolutionary algorithm 

based optimization is emerged as a powerful tool 

for finding the solutions for a variety of control 

engineering applications. Soft computing based 

PID controller parameter optimization is widely 

addressed by the researchers. The literature gives 

the application details of soft computing in PID 

controller tuning for a class of stable systems [8-

13]. Hybridization based optimization techniques 

[14,15] have also been reported in PID controller 

tuning for stable process models. The above 

methods are proposed for stable systems only. 

For stable systems, the overshoot and the error 

value will be very small and it supports the PID 

controller tuning efficiently. For unstable 

systems, the controller parameter tuning seems 

to be difficult task and is limited due to‘d/τ’ 

ratio. Since the basic PID controller will not 

provide the optimised parameter and this may 

require a modified PID structure such as I-PD.            

Recently, Rajinikanth and Latha [10-12] 

has attempted evolutionary algorithm based PID 

and I-PD tuning for a class of unstable process 

models. In this work, error minimization is 

highly prioritized as a performance measure and 

it monitors the algorithm, until the controller 

parameters converge to an optimized value. 

From their work it has been demonstrated that a 

BFO based PID controller tuning can be 

performed for the unstable system when the ‘d/τ’ 

ratio is below 0.2. PID based tuning results large 

overshoot which tends to increase the error and 

overshoot value, when the d/τ ratio is greater 

than 0.2. This phenomenon disrupts the 

convergence of soft computing based search.  

In the present work,  the  PID  controller  

parameter  tuning  is  proposed  for a class of 

unstable chemical systems  using  Particle 

Swarm assisted Bacterial Foraging Optimization 

(PSO-BFO) algorithm. A set-point filter based 

PID controller proposed by Jung et al. [16] is 

considered in this study to evaluate the 

performance of the proposed method.  A 

comparative study also carried out with basic 

Particle Swarm Optimization (PSO), Improved 

PSO Algorithm (IPSO), Bacterial Foraging 

Optimization (BFO) and the classical controller 

tuning methods. 

Methodology 

Particle Swarm Optimization 

 PSO is a population based stochastic 

optimization technique inspired by social 

behaviour of bird flocking or fish schooling, 

and it is widely used in engineering 

applications due to its high computational 

efficiency  [17,18]. PSO algorithm is easy to 

implement and there are few parameters to 

adjust compared to other heuristic methods.  It 

is a population based evolutionary computation 

technique, attempts to mimic the natural 

process of group communication of individual 

knowledge, to achieve some optimum property. 

In this method, a population of swarm is 

initialized with random positions ‘Si’ and 

velocities ‘Vi’. At the beginning, each particle 

of the population is scattered randomly 

throughout the entire search space and with the 

guidance of the performance criterion, the 

flying particles dynamically adjust their 

velocities according to their own flying 

experience and their companions flying 

experience. Each particle remembers its best 

position obtained so far, which is denoted pbest 

)(P t
i

. It also receives the globally best position 

achieved by any particle in the population, 

which is denoted as gbest )(G t
i

.  The updated 

velocity of each particle can be calculated using 

the present velocity and the distances from 

pbest and gbest. The updated velocity and the 

position are given in eq. (1) and (2) respectively 

[19]. 
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Where, C1, C2 are positive constants. C1 is the 

cognitive learning rate and C2 is the global 

learning rate. R1, R2 are random numbers in the 

range 0-1. The parameter ‘W’ is inertia weight 

that increases the overall performance of PSO. 

The larger value of ‘W’ can favour the global 
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wide-range search and lower value of ‘W’ 

implies a higher ability for local nearby search. 

Improved PSO Algorithm 

 Chang and Shih [20] have developed an 

IPSO algorithm to tune the PID controller for a 

non-linear inverted pendulum system. In this, an 

improved velocity updating equation is proposed 

to improve the algorithm convergence and it is 

given in eq. (4). 

Vi
(t+1)

 = W
t
 .Vi

t 
+ C1 . R1 . (pbest - Si

t
) + C2.  

R2. (gbest -Si
t
) + C3 . R3 . (ibest - Si

t
)     (4) 

Where, ‘ibest’ represents the best particle’s 

position among all particles in the sub-

population that the i
th

 particle belongs to. C3 and 

R3 are positive constant and random number 

respectively.  

Bacterial Foraging Optimization 

 Bacteria Foraging Optimization (BFO) 

algorithm is a biologically inspired stochastic 

search technique based on mimicking the 

foraging (methods for locating, handling and 

ingesting food) behavior of E. coli bacteria [21-

23]. During foraging, a bacterium can exhibit 

two different actions: Tumbling or swimming. 

The tumble action modifies the orientation of the 

bacterium. During swimming (chemotactic step) 

the bacterium will move in its current direction. 

Chemotactic movement is continued until a 

bacterium goes in the direction of positive 

nutrient gradient. After a certain number of 

complete swims, the best half of the population 

undergoes reproduction, eliminating the rest of 

the population. In order to escape local optima, 

an elimination-dispersion event is carried out 

where, some bacteria are liquidated at random 

with a very small probability and the new 

replacements are initialized at random locations 

of the search space. 

Chemo-taxis 

 This is the initial stage of BFO search. 

During this process, the bacteria can move 

towards the food location with the action of 

swimming and tumbling via flagella. Through 

swimming, it can move in a specified direction 

and during tumbling action, the bacteria can 

modify the direction of search. These two modes 

of operation is continuously executed to move in 

random paths to find adequate amount of 

positive nutrient gradient. These operations are 

performed in its whole lifetime. 

Swarming 

 In this process, after the success towards 

the best food location, the bacterium which has 

the knowledge about the optimum path will 

attempt to communicate to other bacteria by 

using an attraction signal.  The signal 

communication between cells in E. coli bacteria 

is represented by the following eq. (5). 

Jcc (θ, P (j, k, l)) =


n

1i

ccJ (θ, θ
i 
(j, k, l)) = A + B    (5) 

Where   

A = 
 


n

1i

P

1m

2
m

i

mattractantattractant )])θ(θW( exp d[  

B= 
 


n

1i

P

1m

2
m

i

mrepellantrepellant )])θ(θW( exp[h  

Where Jcc (θ, P (j, k, l)) represents objective 

function value, ‘n’ is the total number of 

bacterium, ‘P’ the total parameters to be 

optimised. The other parameters such as 

‘dattractant’ are the depth of attractant signal 

released by a bacteria and ‘Wattractant’ is the width 

of attaractant signal.  The signals ‘hrepellant’ and 

‘Wrepellent’ are the height and width of repellent 

signals between bacterium. Attractant is the 

signal for food source and repellent is the signal 

for noxious substance. 

Reproduction 

 In swarming process, the bacteria 

accumulated as groups in the positive nutrient 

gradient and which may increase the bacterial 

density. Later, the bacteria are sorted in 

descending order based on its health values. The 

bacteria which have the least health will expire 

and the bacteria with the most health value will 

split into two and breed to maintain a constant 

population. 

Elimination-dispersal 

 Based on the environmental conditions 

such as change in temperature, noxious 

surroundings, and availability of food, the 

population of a bacteria may change either 

gradually or suddenly. During this stage, a group 

of the bacteria in a restricted region (local 

optima) will be eliminated or a group may be 

scattered (dispersed) into a new food location in 

the search space.  The dispersal possibly flattens 

the chemo-taxis advancement. After dispersal, 

sometimes the bacteria may be placed near the 

good nutrient source and it may support the 

chemo-taxis, to identify the availability of other 
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food sources. The above procedure is repeated 

until the optimized solutions are achieved.  

Hybrid Optimization Algorithm 

 This algorithm was proposed by Korani 

et al. [23] to improve the performance of BFO. 

In this method, the cost function (ISE) is applied 

for both the PSO and BFO algorithm. The PSO 

algorithm monitors the BFO to achieve a 

minimum convergence time with optimized 

parameters. In hybrid algorithm, after 

undergoing a chemotactic step, each bacterium 

gets mutated by a PSO operator. The PSO 

operator considers only the ‘social’ component 

and eliminates the ‘cognitive’ component. In this 

algorithm, due to the information sharing 

between the PSO and BFO (Tumble – step 4.3), 

the hybrid algorithm can provide the optimized 

solutions with minimal convergence time 

compared to a conventional BFO algorithm.  

 Hybrid optimization algorithm is defined 

as follows: 

Step 1  % Assign values for the BFO parameters 

%: Initialize: dimension of search space (D); 

number of bacteria (n); No. of  chemo tactic 

steps (Nc); No. of reproduction steps (Nre ); No. 

of elimination-dispersal events (Ned); No. of 

bacteria reproduction (nr); Probability for 

elimination – dispersal (Ped);  Random swim 

direction vector (Δi); run length vector (Ci). % 

Assign values for the PSO parameters %: 

Initialize: swarm (N) and step size; learning rate 

(C1, C2 ) ;inertia weight (Wmin, Wmax); Initialize 

random values (R1, R2). 

% Iterative algorithm for optimization %: 

Generate initial values for  Kp, Ki, Kd  and Tf . 

Begin with the calculation of the cost function 

(J1).  For any i
th

  bacteria at the j
th

 chemotactic, 

k
th 

reproduction and i
th

 elimination stage is 

θ
i
(j,k,l) and its cost function value is given by J 

(i, j, k, l). 

Step 2 Elimination-dispersal loop: l = l + 1 

Step 3 Reproduction loop : k = k+1 

Step 4  Chemotaxis loop: j = j+1 

4.1 For bacteria (i) = 1,2, . . . n; calculate J 

(Kp, Ki, Kd) and compute fitness function  

 J [(w1.CF) + (w2 . ts) + (w3 . Ess) +(w4. 

Mp)]        

4.2  Let, J last  = J (Kp, Ki, Kd) 

4.3 Tumble (PSO-Velocity Update): 
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4.5 Swim  

 Let m=0 (counter for swim length) 

  While m < Ns 

   m =m+1 

If J (Kp, Ki, Kd) < Jlast , then Jlast = J1 (i, 

j+1, k, l)  and  

θ
i
 (j+1, k, l) = θ
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 (j, k, l) + Ci 

i
T
i

i

Δ x  Δ

Δ
 

Calculate J (i, j+1, k, l) using θ
i
 (j+1, 

k, l) 

Else m =Ns 

4.6 Repeat the above procedures for the 

bacterium (i+1) till all the bacterium 

undergo chemotaxis. 

Step 5 If j < Nc go to step 4.3 and continue 

 chemotaxis      

Step 6 % Reproduction % 

a) For the given k and i , and for each i = 

1,2 ,… ,n, let  

ITAE
i
health 





1

1

),,,(
Nc

j

lkjiJ  is the health of i
th

 

bacterium. 

All the bacteria are sorted according J
i
health 

(Ascending order) 

b) The bacteria with the highest Jhealth die 

and the other bacteria with minimum 

values split and the copies that are 

made are placed at the same location 

as their parent 

Step 7 If k < Nre  

go to Step 4.2 to start the next generation in 

the chemotactic loop.   Else go to Step 3 

Step 8 % Elimination – Dispersal % 

For I = 1,2,…,n; a random number is 

generated and if rand   Ped ,      Then 

eliminate the bacteria and disperse it to a 

random location. 

Else do not eliminate the bacteria 

Step 9 If  l < Ned go to Step 2       Else  STOP. 

PID Tuning Procedure  

Preliminaries 

 A generalized close loop control system 

is depicted in fig. 1. The controller ‘Gc(s)’ has to 
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provide closed loop stability, smooth reference 

tracking and load disturbance rejection [24]. 
 

Gc  (s) Gp (s) 
R(s) E(s) Uc(s) 

D(s) 
Y(s) 

Ym(s) 

- 

 
Fig. 1. Block diagram of a closed loop control 

system 

 Closed loop response of the above 

system with set point ‘R(s)’ and disturbance 

‘D(s)’ can be expressed as; 
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The final steady state response of the system for 

the reference tracking and the disturbance 

rejection is presented in eq. (3) and eq. (4) 

correspondingly. 
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Where:         A = amplitude of reference signal   

                     D = disturbance 

 To achieve a satisfactory YR (∞) and YD (∞), it 

is necessary to have optimally tuned values for 

Kp, Ki and Kd.  In this study, a non-interacting 

form of parallel PID controller is considered to 

achieve the preferred response.  

The parallel PID structure is given below: 

 
T 

0  
dipC

dt

de(t)
K dt  e(t)K  e(t) K  (s)G   (9) 









 s T

s T

1
 1  K  (s)G d

i
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Where:  Kp / Ti = Ki; Kp*Td = Kd.  

Performance Criterion 

 In closed loop systems, the main 

objective of the controller is to make the peak 

overshoot (Mp), settling time (ts) and final steady 

state error (Ess), as small as possible. In soft 

computing based approach, the Cost Function 

(CF) is used to appraise the performance of the 

closed loop system during the optimization 

search. Integral Time Absolute Error (ITAE) 

criterion shown in eq. (11) is preferred as the 

‘CF’. 

  
t

0

t

0
dt  y(t) - r(t) .  t  dt  e(t) . t ITAE  (11) 

Where e(t) = error, r(t) = reference input, and 

y(t) = process output. 

 The multiple objective functions for 

controller optimization was first proposed by 

Zamani et al. [25] for stable systems. In this 

method, along with CF, values like Mp, ts, Ess, 
rise time (tr), Gain Margin (GM) and Phase 

Margin (PM) were considered in the 

performance criterion. This approach can work 

good for stable system models. For unstable 

models, the peak overshoot (Mp) is unavoidable  

and also the values like GM and PM cannot be 

obtained during the optimization search. Since, 

in this work we proposed a simple performance 

criterion with four functions, such as CF, Mp, ts, 

and Ess as presented in eq. (12).  

J (Kp, Ki, Kd) = (w1.CF) + (w2.ts) + (w3.Ess) + 

(w4. Mp)   (12) 

Where:  

w1. w2, w3, w4- weighting parameters (range is 

from 0 - 1), 

 CF  - ITAE 

 Mp, Ts and Ess are additional performance 

index obtained from the process output as 

in fig. 2. 

Eq. (12) shows a multi objective criterion and 

has four terms accompanied by a weighting 

factor ‘w’. The above equation can work fine for 

a class of stable and unstable process models.  

PID controller tuning 

 The PID tuning process is employed to 

find the best possible values for Kp, Ki and Kd  

and the set-point filter parameter ‘Tf’ form the 

three dimensional search space by minimizing 

the objective function (Eq. 12). During this 

search, the performance criterion ‘J (Kp, Ki, Kd)’ 

guides the hybrid algorithm to get appropriate 

values for the controller parameters. In the 

literature, there is no clear guide line to assign 

the algorithm parameters for the evolutionary 

algorithm. In this study, we propose a simple 

method to assign the parameters for BFO 

algorithm in order to reduce the convergence 

time during the optimization search. 

Optimal algorithm parameters for optimization 

search 

 The best possible value for number of 

bacteria (Nb) is between 10 – 20 (for 

stable and unstable systems) 
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 Number of chemotactic steps (Nc) = Nb 

/2 

 Length of swim (Ns) = number of 

reproduction steps (Nr) = number of 

elimination-dispersal events (Ned) ≈ Nc / 

2 

 Number of bacteria reproductions (Nsr) = 

Nb/2 

 probability for bacteria 

eliminated/dispersed (Ped) = 0.25 

 The three dimensional search space is 

defined as:   Kp: ± 30%; Ki : ± 30% and 

Kd : ± 30% . If the search does not 

converge with an optimal Kp, Ki, Kd 

values, increase the search range by 5% 

and begin a new search. 

 The steady state error (Ess) in the process 

output is assigned as zero. 

 There is no guideline to specify the 

values for CF, Overshoot (Mp) and 

settling time (ts). In this, ‘ts’ is preferred 

as <75% of the maximum simulation 

time and the ‘Mp’ as <50% of the 

reference signal. 
 

 Kp      Ki,   Kd 

Algorithm 

 
CF 

PID 

Controller 

R (s) 

- 

Mp, tr, ts , Ess 

 

Process 
Y (s) 

Filter 

 Tf       

 

Fig. 2. Optimization algorithm based controller 

tuning 

 The following parameters are assigned 

for the algorithm parameters: 

PSO: Dimension of search space is three (ie. Kp, 

Ki, Kd); number of swarm and bird step is 

considered as twelve; the cognitive (C1) and 

global (C2) search parameter is assigned the 

value of 2, the minimum (Wmin) and maximum 

(Wmax) inertia weight is set to be 0.2 and 14 

respectively. For IPSO the parameter C3 is set as 

2. 

BFO: Dimension of search space is three; 

number of bacteria is chosen as twelve; number 

of chemotactic steps is set to six; number of 

reproduction steps, length of a swim and number 

of elimination-dispersal events are considered as 

three; number of bacterial reproduction is 

assigned as six, probability for bacteria 

eliminated/dispersed  is set as ‘0.25’. 

Other parameters are assigned as follows: 

dattractant = 0.3, Wattractant = 0.5, hrepellant =0.5 and 

Wrepellent = 0.5. 

Results and discussion 

 The results of simulations of five 

examples to illustrate the effectiveness of the 

proposed hybrid optimization algorithm tuned 

set-point filter with PID control design method 

are given in this section. 

Process 1   

 The first order plus delayed time unstable 

process with the following transfer function 

model is considered (Eq. 13). 

                           
14s

4e
sG

2s

p





                       (13) 

The process has a gain (K) = 4, process time 

constant (τ) = 4 and time delay (d) =2. For this 

process d/τ is 0.5. Many studies have proposed 

different PID settings for the above model and 

the values are clearly presented in the literature. 

The classical PID settings are presented in table 

1.  The evolutionary algorithm based controller 

tuning is proposed for the system as in fig. 2.  

 The final convergence of the controller 

parameters for the hybrid algorithm is shown in 

fig. 3 and the optimised Kp, Ki, Kd values are 

tabulated in Table 1. Fig. 4 shows the 

convergence of the CF for the various 

evolutionary search algorithms. Fig. 5 depicts 

the servo response of the process with classical 

PID settings proposed in the literature. Fig. 6 

shows the reference tracking performance of the 

evolutionary methods. The observation is that, 

the hybrid method provides a good result for 

reference tracking performance.   
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Fig. 3. Convergence of PID parameters with 

hybrid algorithm  

 From table 1, it is observed that, the 

hybrid algorithm based tuning has less number 

of iteration (67) and it also shows a good 

performance measure  in reference tracking 

(such as: ISE, IAE, Mp and Ts) compared to 

PSO, IPSO and BFO algorithms. 
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Fig. 4. Convergence of cost function 
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Fig. 5 Servo responses for process 1 with 

classical PID parameters  
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Fig. 6. Servo responses for process 1 with 

optimized PID parameters 

Process 2 

 The second order delayed unstable 

process with the following transfer function is 

considered (Eq. 14). It has one unstable pole and 

a stable pole.  

)1s5.0)(1s2(

exp
)s(G

s

p





       (14) 

Previous studies have proposed different PID 

settings for the above model. Fig. 7 shows the 

servo response of the previous work reported in 

literature. In this diagram, the method proposed 

by LLP provides the smooth reference tracking 

performance compared to PC and HC.  Fig. 8 

shows the reference tracking performance of the 

present study. The response produced by the 

PSO and IPSO algorithm is more oscillatory 

compared to BFO and PSO-BFO methods.   

 From fig. 8 and table 1, it is inferred that, 

the proposed hybrid method can be used to get 

an optimal controller parameter with lesser 

convergence time to provide a smooth reference 

tracking performance than other optimization 

algorithms. 
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Fig. 7. Servo responses for Process 2 with 

conventional PID parameters  
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Fig. 8. Servo responses for Process 2 with soft 

computing based PID parameters (see online 

version for colours)  

Process 3 

The third order delayed unstable process with the 

following transfer function is considered (Eq. 

15). It has one unstable pole and two stable 

poles.  

 
)12)(15.0)(15(

exp
)(

5.0






sss
sG

s

p        (15) 

 The classical PID parameters proposed 

by previous studies are presented in Table 1. The 

PSO- BFO tuned controller and filter gains and 

the final iteration numbers are provided in table 

1. The hybrid algorithm based controller 

parameter search value is converging at 59
th

 

iteration.  Fig. 9 and 10 shows the servo response 

of the process 3 with classical and algorithm 

based set-point filter based PID controller 

respectively.  

 From table 1, it is noted that, the result by 

the proposed method  performs superior than the 

classical and other optimization algorithm with a 

lesser value of ISE, IAE and settling time (Ts) 

values. 
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Fig. 9. Servo responses for process 3 with 

optimized PID parameters 
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Fig. 10. Servo responses for Process 3 with 

optimized PID parameters 

Table 1.  Controller parameters, filter parameters and the performance measure for the simulation study  

Process Method Iteration Kp Ki Kd Tf ISE IAE Mp Ts 

Process 1 

HC - 0.5650 0.0460 0.3435 12.276 29.27 5.410 0.000 21.4 

SSC - 0.5480 0.0493 0.5611 11.117 25.60 5.060 0.033 20.7 

Visioli - 0.6240 0.0540 0.7245 11.551 21.30 4.615 0.000 23.7 

JSH - 0.3840 0.0127 0.0000 30.301 293.9 17.14 0.000 35.3 

PSO 76 0.4403 0.0217 0.3133 20.290 122.0 11.04 0.016 28.4 

IPSO 68 0.5110 0.0230 0.5887 22.217 103.6 10.18 0.000 27.1 

BFO 82 0.5190 0.0302 0.5017 17.185 65.30 8.081 0.000 35.4 

Hybrid 67 0.6361 0.0471 0.3257 13.505 27.66 5.260 0.000 24.6 

Process 2 

HC - 1.7920 0.1442 0.8602 12.425 47.71 6.907 0.000 24.8 

PC - 1.5860 0.1322 0.7597 12.000 56.89 7.542 0.146 29.4 

LLP - 1.9490 0.1616 1.6099 12.063 38.03 6.167 0.000 23.1 

PSO 61 1.6502 0.2161 1.0061 7.6363 21.39 4.625 0.345 27.7 

IPSO 53 1.4462 0.1142 1.0644 12.664 74.91 8.655 0.221 28.3 

BFO 78 2.0772 0.1865 1.2290 11.138 28.25 5.316 0.000 23.9 

Hybrid 49 1.9518 0.2103 1.0643 9.2810 22.49 4.742 0.024 21.1 

Process 3 

HC - 6.1860 0.8628 9.1058 7.1700 1.336 1.156 0.000 37.8 

LLP - 7.1440 1.0688 11.823 6.6840 0.873 0.934 0.000 36.2 

PSO 64 8.4588 1.3620 10.545 6.2106 0.541 0.735 0.008 42.7 

IPSO 59 9.0323 2.1186 13.056 4.2633 0.224 0.474 0.051 34.7 

BFO 75 6.2270 1.5474 10.595 4.0242 0.418 0.646 0.065 19.7 

Hybrid 59 6.9045 2.0603 15.036 3.3512 0.235 0.485 0.061 19.1 

Conclusions 

In the present work, an attempt has been made 

for tuning  a set-point filter (pre-filter) based PID 

controller structure for a class of unstable 

process models using Particle Swarm 

Optimization assisted Bacterial Foraging 

Optimization (PSO-BFO) based hybrid 

optimization algorithm with minimizing the 

multiple objective performance criterion. A 

comparative study with the basic PSO, IPSO, 

BFO and classical PID tuning methods proposed 

in the literature has been discussed. The hybrid 

method tuned controller provides an enhanced 

reference tracking performance with minimal 

cost function. It also provides improved time 

domain specifications and robust performance 

for the unstable system with perturbed process 

parameters uncertainty. 
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