
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2311 | P a g e

An Investigation of Entropy Based Models for Measuring

Reliability Growth of Open Source Software Projects and

Related Release Time Planning

Kamlesh Kumar Raghuvanshi1, Anil Rajput2, Meera Sharma3
1Ramanujan College, University of Delhi, Delhi, India

2Chandra Shekhar Azad Government P.G. Nodal College, Sehore, MP, India
3Swami Shraddhanand College, University of Delhi, Delhi, India

Abstract - Open Source Software (OSS) projects have wide

applications in different domains. Software Reliability Growth

Models (SRGMs) are proven to successful in the reliability

growth measurement of close source projects. In this paper, we

have investigated the applicability of SRGMs in measuring

the reliability growth of open source projects. During bug

fixing process, software source code need to be changed. As a

result of these code changes, uncertainty increases in the

software and a measure of this is called entropy. In this paper,

entropy based models have been used to predict the potential

number of bugs lying dormant in the software. The

performance of the models has been evaluated on the basis of
Rsquared (R2), Mean Squared Error (MSE) and Sum of

Squared Error (SSE). The goodness of fit has been tested for

Avro product of Apache open source project.

Keywords Entropy, Software reliability, Bugs, Open Source

Software

Notations

m(t) Expected number of software failures detected at
time t, also called the mean value function

N Expected number of initial faults that exist in the

software before testing

b(t) Time dependent logistic function per quantity
per unit time (i.e., fault detection rate per fault

per unit of time).

β Constant
b Constant

H(t) Entropy at time t

I. INTRODUCTION

Due to automation of different activities and penetration of

information technology, the quality of software products can

not compromised. It is important to understand the software

quality and also to measure it. The quantitative quality

evaluation of the software products is an important aspect of

software development life cycle. However, the software

development process can be time consuming and expensive this

is because of the complexity of software systems. Enhancing

the reliability of software systems and reducing cost to

acceptable levels have became the main focus of the software

industry [1]. Meanwhile, many SRGMs have been proposed

and research has long been performed in software reliability.

The quantitative quality evaluation based software

reliability growth models [1-15] have been developed to

estimate reliability metrics such as the number of residual

faults, failure rate and reliability of software. Over the past

three decades many SRGMs have been formulated under Non
Homogeneous Poisson Process (NHPP) modeling framework.

Many researchers have used NHPP based SRGMs to capture

the reliability growth of a software from the processes of testing

and debugging. These models include Goel and Okumoto

model [2] which describes the fault detection rate, as an NHPP

assuming the hazard rate is proportional to remaining fault

number. Ohba and Yamada [5] proposed the delayed s-shaped

SRGM and the inflection s-shaped SRGMs describe an error

detection process in which the detectability of an error increases

with the progress of software testing. Pham et. al [6] proposed

PNZ-SRGM that accounts the impact of both the imperfect
debugging and the learning effects. Pham et. al [7] discussed an

imperfect debugging fault detection dependent-parameter

model with a common parameter metric used in both the fault

content rate function and fault detection rate function. In the

area of software reliability modeling, many models [1-3, 5-7,

15-17] have been developed in the past three decades based on

logistic growth function to estimate the reliability metrics such

as the number of residual faults, failure rate and reliability of

software. In this paper, we have discussed the models proposed

in [23] and then proposed entropy based models to predict the

potential bugs over a long run in the software. The models

given in Table 1 have been discussed in [23].

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2312 | P a g e

Table 1. Existing software growth logistic models

Software Growth Logistic Models

Goel-Okumoto(GO) [2]

Delayed S-shaped [5]

Pham Dependent-parameter[7]

Inflexion S-shaped[4]

II. DATA COLLECTION AND MODEL

BUILDING

The proposed mathematical models have been validated on

dataset of Avro product of Apache open source project

[18]. The time period of data collection is from April 2009 to

April 2014. Figure 1 shows sample of different feature reports

(bugs, new features and feature improvements) for Avro

product.

Figure 1. Sample features (bugs, new features and feature improvements) reports for Avro product

GitHub tool [19] has been used to collect the code change

history of Avro product. We have downloaded fixed bugs on

monthly basis. Entropy calculation has been discussed below.

In [20], the authors have defined Shannon entropy as

where, pk is the probability of change occurrence and defined as

the ratio of the number of times kth file changed during a

period and the total number of changes for all files in that

period. Normalized Static Entropy, H is defined in [21] as

The entropy, H, depends on the number of files, i.e. ‘n’ in a

software system. To avoid the rarely modified files from

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2313 | P a g e

reducing the entropy measure, we have divided by the number

of recently modified files rather than the actual current number

of files [21, 22]. Table 2 Show the monthly data of Avro

product of Apache open source project, which has been used to

validate the proposed models.

Table 2. Avro Dataset

Time

(month)
Bugs Entropy

1 7 .9767

2 10 .9768

3 11 .9744

4 10 .9718

5 17 .9662

6 8 .9430

7 26 .9413

8 18 .9724

9 9 .9533

10 14 .9558

11 4 .9806

12 5 .9656

13 4 .9617

14 17 .9507

15 7 .9924

16 5 .9902

17 4 .9695

18 9 .9874

19 16 .9382

20 7 .9641

21 4 .9939

22 3 1

23 6 .9902

24 4 .9808

25 6 .9859

26 1 .9832

27 3 .9856

28 27 .9692

Time

(month)
Bugs Entropy

29 3 1

30 6 .9867

31 8 .9823

32 14 .9837

33 6 1

34 3 .9971

35 25 .9616

36 6 .9647

37 5 1

38 3 1

39 20 .9694

40 1 1

41 11 .9794

42 3 1

43 4 .9609

44 13 .9906

45 1 .9859

46 6 .9862

47 6 .9884

48 6 .9672

49 2 .9844

50 4 1

51 1 1

52 0 .9848

53 9 .9935

54 11 .9901

55 1 1

56 5 .9165

57 0 1

58 3 1

59 6 1

60 5 1

Figure 2 shows the monthly bug distribution for Avro product.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2314 | P a g e

Figure 2. Monthly bug distribution of Avro

Figure 3 shows the monthly entropy distribution for Avro

product.

Many existing reliability models [1-15] assume that the rate of

change of the number of software faults is proportional to the

residual fault contents. Let m(t) denote the number of faults at

time t also called the mean value function. Assume that the rate

of change of quantity function m(t) is directly proportional to its

remaining quantity for growth by the time-dependent three-
parameter logistic function per quantity per unit time b(t). We

can obtain the differential equation as follows:

At time t = 0, m(0) = 0 then the solution for the function m(t)

can be obtained by solving the above differential equation :

By considering the entropy in modeling for reliability growth of

the software products, we can derive the following models

given in Table 3.

 Figure 3. Monthly bug distribution of Avro

Table 3. Entropy based software reliability growth models

Entropy based Software Reliability Growth Models

Model-1       (1 expm H t a b H t  

Model-2           (1 1 expm H t a b H t b H t   

Model-3             (1 exp 1m H t H t H t H t       

Model-4   
   
    

(1 exp

1 exp

a b H t
m H t

b H t

 


 

In this paper, we have validated the new entropy based models

using Avro failure data based on some common goodness of fit

criteria such as R2, Mean Squared Error (MSE), Sum of

Squared Error (SSE).

III. MODEL COMPARISON

To compare the goodness of fit for all models, we have used

performance measures, namely Sum of Squared Error (SSE)

and Mean Squared Error (MSE) as described below.

Sum of Squared Error (SSE)

The criterion we use to judge the performance of the models is

the sum of squared error (SSE), which sum up the squares of

the residuals of the actual data and the mean value function

m(tk) of each model in terms of the number of actual faults at

any time points.

The SSE function can be expressed as follows:

where yk is the total number of faults observed at time tk

according to the testing data and m(tk) is the estimated

cumulative number of faults at time tk obtained from the fitted

mean value function, k = 1, 2 ... n.

Mean Squared Error (MSE)

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2315 | P a g e

The Mean Squared Error (MSE) refers to the mean value of the

deviation between the prediction value and the observation

value as follows:

where yi is the total number of faults observed at time ti
according to the testing data and m(tk) is the estimated

cumulative number of faults at time ti obtained from the. fitted

mean value function, n and N are the number of observations

and the number of parameters, respectively.

IV. MODEL RESULTS

The entropy based models mentioned in Table 3 have been

evaluated using given Avro dataset (Table 2). Various
comparison criteria, namely MSE, SSE and R2 have been used

to validate the models. Table 4 presents the values of the

estimated parameters of the models mentioned in the Table 3.

Table 4. Estimates of different parameters for entropy based models

 Models Parameter estimates

Model-1 a=944.787, b=0.012

Model-2 a=501.462, b=0.065

Model-3 α=431, γ=0.023

Model-4 a=639.492, b=0.03, β=1.000

In Table 5 we have given the values for different performance

measures of the models mentioned in the Table 3.

Table 5. Estimation for the goodness of fit of entropy based models

 Models

MSE

SSE

R2

Model-1 115.349 7304.349 0.994

Model-2 346.697 21841.92 0.983

Model-3 11839.253 745872.985 0.475

Model-4 103.923 6547.181 0.995

From the above table we observed that R2 for entropy based

models are giving significant values except for Pham

Dependent-parameter model where R2 is 0.475.

Figures 4 to 7 show goodness of fit curves for different entropy

based models given in Table 3.

Figure 4. Goodness of fit curve for GO Model

Figure 5. Goodness of fit curve for Delay S-shaped model

Figure 6. Goodness of fit curve for Pham dependent parameter model

Figure 7. Goodness of fit curve for inflexion S-Shaped Model

We observed that the predicted bug values are close to the

observed values for bug.

Modeling for Unresolved Bugs for Different Releases

Let ‘a’ denote the expected number of faults that would be

detected given infinite testing time in case of finite failure

NHPP models. Then, the mean value function of the finite

failure NHPP models can also be written as (Musa et al. [24]):

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2316 | P a g e

 ()X t aF t

where  F t is a distribution function.

Each time a failure is observed, an immediate debugging effort

takes place to find the cause of the failure in order to remove

it; the instantaneous failure intensity  t in case of the finite

failure NHPP models is given by:

 taFt ')(

The above equation can be rewritten as:

 
 

 
   

'

() () ()
1

F t
t a X t a X t s t

F t
    



Where  s t is the failure occurrence/observation/detection

rate per remaining fault of the software, or the rate at which the

individual faults manifest themselves as failures during testing

or hazard rate.  ()a X t denotes the expected number of

faults remaining in the software at time t. Since  ()a X t is

monotonically non-increasing function of time, the nature of

the overall failure intensity,  t , is governed by the nature of

failure occurrence rate per fault  s t .

In software, different issues, namely bugs, new features and

feature improvements are reported and get fixed in the current

release. The remaining unresolved issues which are leftover

move to the next release. During our empirical investigation,

we found that the issues, namely, new features and feature

improvements are fixed in the current release and the

unresolved are fixed in next release, means next release

considers the leftover new features and feature improvements

of the just released version of the software. But, in case of

issues, namely bugs, leftover bugs of Release1 are fixed in

Release 2, Release 3 and Release 4. It means, in an open
source development environment leftover bugs of different

releases are passed on to higher releases (up to next three-four

releases). Here, we consider that leftover bugs of Release 1 can

pass up to Release 4. Based on this empirical evidence, the

different mean value functions for different releases have been

modeled as follows:

We consider that in the first release different bugs are reported

and get fixed are modeled by the following equation

   1 1 10X t a F t t t  

where
1a is the potential bugs to be fixed in the first release at

time t1. The leftover bugs of first release, i.e.   1 1 11a F t

are added to the potential bugs of second release with fixing

rate  2 1F t t . Therefore, the mathematical equation

representing the cumulative number of bugs fixed in the

second release is given by

        2 12 2 1 1 1 1 22 1
,1t a F t t a F tFX t tt tt   

In above equation
2a are the potential bugs to be fixed in the

second release. In the line of modeling for the second release

and along with taking into consideration the fact that the next

release will contain the remaining bugs of all the previous
releases, we can write the expressions for Release 3 and

Release 4.

        

       
3 3 2 2 2 2 3 2

1 1 1 2 2 3 2

3

2 3
1 ,

1

1

t a F t t a F t F t t

a F t F t F t

X

t t tt





   

    

        

       

          

4 4 3 3 3 3 4 3

2 2 2 3 3 4 3

1 1 1

4

3 42 2 3 3 4 3

1

1 1

1 1 1 ,

X t a F t t a F t F t t

a F t F t F t t

a F t F t F t F t t t t t







   

 

  



 

V. CONCLUSION

Software reliability growth models are proven to be very

useful in measuring the reliability growth of the software

products. The open source software products are also getting

an edge over the closed source software. In this paper an
empirical validation of entropy based and without entropy

based approach has been discussed. The estimated parameters

have been also presented in the paper with their performance

measure. The models presented in the paper are quite useful

for real world applications. The presented models will be

useful in measuring the reliability growth of the software

products.

VI. REFERENCES

[1] Garg, R., Sharma, K., Kumar, R., & Garg, R. K. (2010).

Performance analysis of software reliability models using

matrix method. World Academy of Science, Engineering

and Technology, 71, 31-38.

[2] Goel, A. L., & Okumoto, K. (1979). Time-dependent

error-detection rate model for software reliability and

other performance measures. IEEE Transactions on
Reliability, 28(3), 206-211.

[3] Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped

reliability growth modeling for software error

detection. IEEE Transactions on reliability, 32(5), 475-

484.

[4] Osaki, S., & Hatoyama, Y. (1984). Inflexion S-shaped

software reliability growth models. In Stochastic Models

in Reliability Theory (pp. 144-162). Springer-Verlag

Merlin.

[5] Ohba, M., & Yamada, S. (1984). S-shaped software

reliability growth models. In International Colloquium on

Reliability and Maintainability, 4th, Tregastel,
France (pp. 430-436).

[6] Pham, H., Nordmann, L., & Zhang, Z. (1999). A general

imperfect-software-debugging model with S-shaped fault-

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2317 | P a g e

detection rate. IEEE Transactions on reliability, 48(2),

169-175.

[7] Pham, H. (2007). An imperfect-debugging fault-detection

dependent-parameter software. International Journal of

Automation and Computing, 4(4), 325.

[8] Kapur, P. K., Pham, H., Anand, S., & Yadav, K. (2011). A
unified approach for developing software reliability

growth models in the presence of imperfect debugging and

error generation. IEEE Transactions on Reliability, 60(1),

331-340.

[9] Kapur, P. K., Pham, H., Aggarwal, A. G., & Kaur, G.

(2012). Two dimensional multi-release software reliability

modeling and optimal release planning. IEEE

Transactions on Reliability, 61(3), 758-768.

[10] Keilman, N. (2001). Demography: uncertain population

forecasts. Nature, 412(6846), 490.

[11] Persona, A., Pham, H., & Sgarbossa, F. (2010). Age

replacement policy in a random environment using
systemability. International Journal of Systems

Science, 41(11), 1383-1397.

[12] Pham, H. (1993). Software reliability assessment:

imperfect debugging and multiple failure types in software

development. EG&GRAMM-10737, Idaho National

Engineering Laboratory.

[13] Pham, H. (1996). A software cost model with imperfect

debugging, random life cycle and penalty

cost. International Journal of Systems Science, 27(5), 455-

463.

[14] Pham, H., & Zhang, X. (1997). An NHPP software
reliability model and its comparison. International Journal

of Reliability, Quality and Safety Engineering, 4(03), 269-

282.

[15] Pham, H., Nordmann, L., & Zhang, Z. (1999). A general

imperfect-software-debugging model with S-shaped fault-

detection rate. IEEE Transactions on reliability, 48(2),

169-175.

[16] Pham, H., & Deng, C. (2003, August). Predictive-ratio

risk criterion for selecting software reliability models.

In Proceedings of the 9th International Conference on

Reliability and Quality in Design (pp. 17-21).
[17] Pham, H., & Zhang, X. (2003). NHPP software reliability

and cost models with testing coverage. European Journal

of Operational Research, 145(2), 443-454.

[18] http://www.apache.org/

[19] https://github.com/

[20] Shannon, C. E. (1948). A mathematical theory of

communication, bell System technical Journal 27: pp.

379–423 and 623–656. Mathematical Reviews

(MathSciNet): MR10, 133e.

[21] Hassan, A. E. (2009, May). Predicting faults using the

complexity of code changes. In Proceedings of the 31st

International Conference on Software Engineering (pp.
78-88). IEEE Computer Society.

[22] Chaturvedi, K. K., Kapur, P. K., Anand, S., & Singh, V.

B. (2014). Predicting the complexity of code changes

using entropy based measures. International Journal of

System Assurance Engineering and Management, 5(2),

155-164.

[23] Pham, H., Pham, D. H., & Pham Jr, H. (2014). A new

mathematical logistic model and its

applications. International Journal of Information and

Management Sciences, 25(2), 79-99.

[24] John D.. Musa, Iannino, A., & Okumoto, K.
(1987). Software reliability: measurement, prediction,

application. McGraw-Hill.

