DRESSER-RAND

Example

Find net gear shaft power output, net generator power, fuel consumption, exhaust mass flow and recoverable exhaust heat at 25°C, base rating. Assume 50 mm $\rm H_2O$ intake loss, 75 mm $\rm H_2O$ exhaust loss, a generator efficiency of 95% and site location 500 meters above sea level.

	From Figure 1:	Gear shaft power output at 25°C, Fuel Consumption,			P = 1430 kW Qf = 8.97 MJ/s	
	From Figure 2:	Exhau	st mass	flow rate,		Mex = 12.3 kg/s
	From Figure 3:	Recoverable exhaust heat,				Qex = 5650 kW
	From Figure 4:	Correc	tion for	DPin = 18 kW		
	From Figure 5:	Correc	tion for	exhaust loss of 75 mm $\rm H_2O$,		DPex = 15 kW
	From Figure 6:	Correc	tion for	site altitude of 500 m,		δ = 0.938
1)	Net gear shaft power	output	=	1430 x 0.938 - 18 - 15	= ,	1310 kW
2)	Net generator power		=	1310 x 0.95	=	1240 kWe
3)	Fuel consumption		=	8.97 x 0.938	=	8.41 MJ/s
4)	Exhaust mass flow		=	12.3 x 0.938	=	11.5 kg/s
5)	Recoverable exhaus	t heat	=	5650 x 0.938	=	5300 kW

If the stack temperature, $T_{stack} = 170$ °C:

Conversion factors:

1 kg	=	2.205 lbs
1 MJ	=	947.9 BTU
1 kW	=	1.341 SHP
1 mm	=	0.03937 in

^{**} Cp - mean for the range of 160°C to 170°C stack temperature