Calculus 3 - Parametric Surfaces

When we first introduced surfaces, say z = f(x,y), one way to draw them
is to fix y to a certain value, say y = ¢, and then sketch the space curve
z = f(x,c). As we vary ¢, we get different spacecurves and together, they

give a graph of the surface. Similarly, fix x = k and sketch the space curve

z= f(ky).

These two together sketches the entire surface




When we first introduced vector functions
7(6) = (f(1), g(t), h(t)) 1)
we found that the tip of the vector touched a space curve given by

x=f(t), y=g(t), z=nh(t).

Parametric Surfaces
Let x, y and z be functions of u and v that are continuous in some domain

D. The set of points (x, y, z) given by
7(u,v) = <x(u,v), y(u,0), z(u,v)> 2)
is called a parametric surface and
x=x(u,9v), y=y(uv), z=z(uno) (3)

are the parametric equations of the surface. In this figure, we fix v and vary




u and then fix u and vary v.
Example 1.

Consider the parametric surface

If we identify that
xX=u, y=v, z=Vu>+1%

then we see that
z = 1\/X%+ 12

the equation of the cone (top half). However, consider
7 (u,v) = <v cos i, vsin, v>.
If we identify that

X =7vcosu, y=ovsinu, z=270

(4)
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(6)

)

(8)

then eliminating u and v we get (6), the same cone. If we specify intervals,

say
O0<u<2m, 0<v<1

©)

we will get a specific part of the cone (of course, letting u go beyond 27

would just repeat what we already have).



Normal Vectors and Tangent Planes

Given the parametric surface

7(u,v) = <x(u,v), y(u,0), z(u,v)> (10)

if we fix v (or u) we create a spacecurve. To that curve we can create a tan-
gent vector. This is obtained by differentiating with respect to the varying

variable. Thus, we have two tangent vectors (green and blue)

= <xu, Yu, Zu>/ o= <xv, Yo, Zv> (11)

The normal vector N is given by (evaluated at some (uo, vp))
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Example 2.
Find the equation of the tangent plane to the parametric surface
7 (u,v) = <(3 + cos(v)) cos (1), (3 + cos(v)) sin(u), sin(v)>
(13)
0<u<?2r, 0<ov<2n1

at the point (3,0, 1). The sketch is below.

Soln.

We will first find the corresponding u and v. So

(3 + cos(v)> cos(u) =3, (3 + cos(v)) sin(u) =0, sin(v)=1. (14)
Solving gives

u=0, v=rm/2.

(15)
Next we find derivatives so
Tu={—(3+ ' 3+ , 0
r < ( Cos(v)) sin(u) ( Cos(v)) cos(u) > 6
e < — sin(v) cos(u), — sin(v) sin(u), cos(v)>
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Next we evaluate these at the point given in (15) so

Py = <0, 3, 0>, 7, = < ~1,0, 0> (17)
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N=7ux7o=| 0 0l=1(0,0,3) (18)
0

oS W =

—1

The equation of the tangent plane is therefore
0(x—3)+0(y—0)+3(z—1)=0 (19)

so simply z = 1.
Surface Area

We would like to find the surface area of a given the parametric surface

7(u,v) = <x(u,v), y(u,0), z(u,v)> (20)

If we scale each tangent vector by a small amount say du and dv then we
have

7, du, 7,do, (21)

the area of a small parallelogram is given by

dS = || 7y x 7 ||dudo (22)



the the required surface is (on adding the small areas)

sa= [[|[7ux 7. dudo (23)

RM’U

where R, is some region in the uv plane which maps out the surface.
Example 3.

Find the surface area of the ramp function given by the parametric surface

7(u,v) = <u COS U, USIND, U>
(24)
0<u<l 0<ov<2m1
Soln.

We first calculate derivatives

—> .
ry= <cosv, sin v, O>

(25)
7, < — usinv, UCoSD, 1>



then cross them
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Then take the magnitude so

= (sinv, —cos v, u)

H?u X ?vH = \/Sin20+coszv+u2 =1+ u2

So, the surface area is

SA =

1 271
// V1 4+ u?dodu
0o Jo
1
/vl—l—uzv
0
1
27r/ V17 du
0

271
du
0

277-%(u\/1+u2—|—ln|u+\/1—|—u2{> ‘

(V2+In(14v2)) 7

1
0

(26)

(27)

(28)



Surface Integrals

Here we will return to a problem we considered once before. Evaluate

/ / yds. (29)
S

where S is the surface of the cylinder x> + > =1 (x,y > 0) for0 < z < 1.

0.8

0.6

Here we parametrize the surface by

N .
r(u,v) = <cos u, sinu, v>

(30)
0<u<mn/2, 0<v<l1
We first calculate derivatives
7, = < —sinv, cosv, 0>
(31)
7, = <0, 0, 1>



We cross them so

|70 x 70| = Vsin?o + cos?v = 1 (32)
and our surface integral (29) becomes

1 /2
/ / sinu dudo = 1 (33)
0 0

Flux

We return to where we first considered flux integrals where we introduced

/ / T . Nds (34)
S

Now, in terms of a parametric surface we have

N = % ds = || 7 x 7| dudv (35)

so (34) becomes
/ F-(Fux 7o) dudo (36)
Ruw

Example 4
Find the flux over the unit sphere x2 + y2 + z2 = 1 where F is given by
F = (x, Y,Z).
Soln.

We first parametrize the surface. Here we will use spherical polar coordi-
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nates so

7(0,p) = <cos@sin ¢, sin0sin ¢, cos 4>>

0<0<2nr, 0<¢p<m

Next we take derivatives so

—
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Next we cross them so

ToX Ty= < — cos fsin” ¢, — sin 6 sin’ ¢,—sin9coscp>

< —sinfsin ¢, cos 0 sin ¢, 0>

< cos 0 cos ¢, sin 6 cos ¢, — sin 4>>

As this normal points outward we multiply by —1.

ToX Ty= < cos 0sin® ¢, sin 6 sin® ¢, sin 6 cos gb>

Next

f—»

and the flux is given by

(FPuxTy) = <cos€sincp, sin 0 sin ¢, cos<])>

- < cos §sin® ¢, sin 6 sin’ ¢, sin 6 cos 4>>

= sin¢

2n
/ / singdpdf = 4
0 0
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