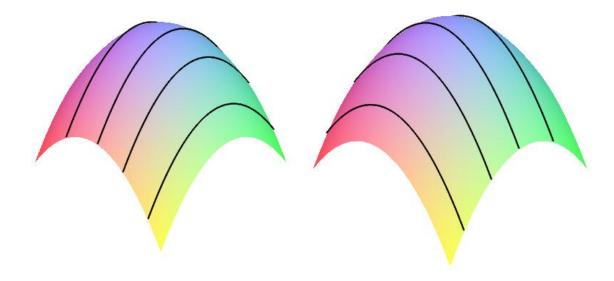
Calculus 3 - Parametric Surfaces

When we first introduced surfaces, say z = f(x, y), one way to draw them is to fix y to a certain value, say y = c, and then sketch the space curve z = f(x, c). As we vary c, we get different spacecurves and together, they give a graph of the surface. Similarly, fix x = k and sketch the space curve z = f(k, y).



These two together sketches the entire surface



When we first introduced vector functions

$$\vec{r}(t) = \left\langle f(t), g(t), h(t) \right\rangle \tag{1}$$

we found that the tip of the vector touched a space curve given by

$$x = f(t), y = g(t), z = h(t).$$

Parametric Surfaces

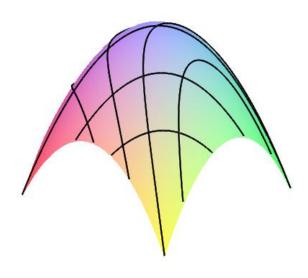
Let x, y and z be functions of u and v that are continuous in some domain D. The set of points (x, y, z) given by

$$\vec{r}(u,v) = \left\langle x(u,v), y(u,v), z(u,v) \right\rangle \tag{2}$$

is called a parametric surface and

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v)$$
 (3)

are the parametric equations of the surface. In this figure, we fix v and vary



u and then fix u and vary v.

Example 1.

Consider the parametric surface

$$\vec{r}(u,v) = \left\langle u, v, \sqrt{u^2 + v^2} \right\rangle \tag{4}$$

If we identify that

$$x = u, \quad y = v, \quad z = \sqrt{u^2 + v^2},$$
 (5)

then we see that

$$z = \sqrt{x^2 + y^2} \tag{6}$$

the equation of the cone (top half). However, consider

$$\vec{r}(u,v) = \langle v \cos u, v \sin u, v \rangle. \tag{7}$$

If we identify that

$$x = v\cos u, \quad y = v\sin u, \quad z = v \tag{8}$$

then eliminating u and v we get (6), the same cone. If we specify intervals, say

$$0 \le u \le 2\pi, \quad 0 \le v \le 1 \tag{9}$$

we will get a specific part of the cone (of course, letting u go beyond 2π would just repeat what we already have).

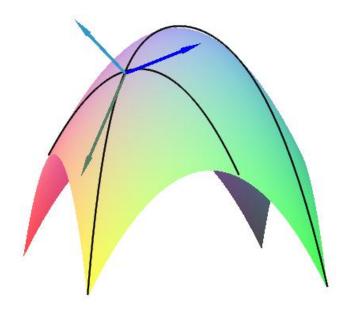
Normal Vectors and Tangent Planes

Given the parametric surface

$$\vec{r}(u,v) = \left\langle x(u,v), y(u,v), z(u,v) \right\rangle \tag{10}$$

if we fix v (or u) we create a spacecurve. To that curve we can create a tangent vector. This is obtained by differentiating with respect to the varying variable. Thus, we have two tangent vectors (green and blue)

$$\vec{r}_u = \langle x_u, y_u, z_u \rangle, \quad \vec{r}_v = \langle x_v, y_v, z_v \rangle \tag{11}$$



The normal vector \overrightarrow{N} is given by (evaluated at some (u_0, v_0))

$$\vec{N} = \vec{r}_u \times \vec{r}_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix}$$
 (12)

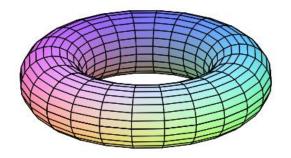
Example 2.

Find the equation of the tangent plane to the parametric surface

$$\vec{r}(u,v) = \left\langle \left(3 + \cos(v)\right) \cos(u), \left(3 + \cos(v)\right) \sin(u), \sin(v) \right\rangle$$

$$0 \le u \le 2\pi, \quad 0 \le v \le 2\pi$$
(13)

at the point (3,0,1). The sketch is below.



Soln.

We will first find the corresponding u and v. So

$$(3 + \cos(v))\cos(u) = 3$$
, $(3 + \cos(v))\sin(u) = 0$, $\sin(v) = 1$. (14)

Solving gives

$$u = 0, \quad v = \pi/2.$$
 (15)

Next we find derivatives so

$$\vec{r}_{u} = \left\langle -\left(3 + \cos(v)\right)\sin(u), \left(3 + \cos(v)\right)\cos(u), 0\right\rangle$$

$$\vec{r}_{v} = \left\langle -\sin(v)\cos(u), -\sin(v)\sin(u), \cos(v)\right\rangle$$
(16)

Next we evaluate these at the point given in (15) so

$$\vec{r}_u = \langle 0, 3, 0 \rangle, \quad \vec{r}_v = \langle -1, 0, 0 \rangle \tag{17}$$

SO

$$\vec{N} = \vec{r}_u \times \vec{r}_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 3 & 0 \\ -1 & 0 & 0 \end{vmatrix} = \langle 0, 0, 3 \rangle$$
 (18)

The equation of the tangent plane is therefore

$$0(x-3) + 0(y-0) + 3(z-1) = 0 (19)$$

so simply z = 1.

Surface Area

We would like to find the surface area of a given the parametric surface

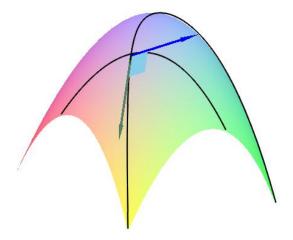
$$\vec{r}(u,v) = \left\langle x(u,v), y(u,v), z(u,v) \right\rangle \tag{20}$$

If we scale each tangent vector by a small amount say du and dv then we have

$$\vec{r}_u du, \quad \vec{r}_v dv,$$
 (21)

the area of a small parallelogram is given by

$$dS = \| \overrightarrow{r}_u \times \overrightarrow{r}_v \| dudv \tag{22}$$



the the required surface is (on adding the small areas)

$$SA = \iint\limits_{R_{uv}} \| \overrightarrow{r}_u \times \overrightarrow{r}_v \| \, du dv \tag{23}$$

where R_{uv} is some region in the uv plane which maps out the surface. *Example 3.*

Find the surface area of the ramp function given by the parametric surface

$$\overrightarrow{r}(u,v) = \left\langle u\cos v, u\sin v, v \right\rangle$$

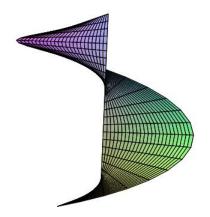
$$0 \le u \le 1, \quad 0 \le v \le 2\pi$$
(24)

Soln.

We first calculate derivatives

$$\vec{r}_{u} = \left\langle \cos v, \sin v, 0 \right\rangle$$

$$\vec{r}_{v} = \left\langle -u \sin v, u \cos v, 1 \right\rangle$$
(25)



then cross them

$$\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos v & \sin v & 0 \\ -u \sin v & u \cos v & 1 \end{vmatrix} = \langle \sin v, -\cos v, u \rangle$$
 (26)

Then take the magnitude so

$$\|\vec{r}_u \times \vec{r}_v\| = \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2}$$
 (27)

So, the surface area is

$$SA = \int_{0}^{1} \int_{0}^{2\pi} \sqrt{1 + u^{2}} dv du$$

$$= \int_{0}^{1} \sqrt{1 + u^{2}} v \Big|_{0}^{2\pi} du$$

$$= 2\pi \int_{0}^{1} \sqrt{1 + u^{2}} du$$

$$= 2\pi \cdot \frac{1}{2} \left(u \sqrt{1 + u^{2}} + \ln |u + \sqrt{1 + u^{2}}| \right) \Big|_{0}^{1}$$

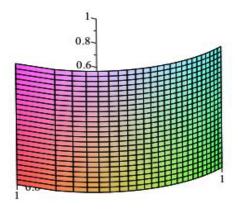
$$= \left(\sqrt{2} + \ln \left(1 + \sqrt{2} \right) \right) \pi$$
(28)

Surface Integrals

Here we will return to a problem we considered once before. Evaluate

$$\iint\limits_{S} y dS. \tag{29}$$

where *S* is the surface of the cylinder $x^2 + y^2 = 1$ ($x, y \ge 0$) for $0 \le z \le 1$.



Here we parametrize the surface by

$$\vec{r}(u,v) = \left\langle \cos u, \sin u, v \right\rangle$$

$$0 \le u \le \pi/2, \quad 0 \le v \le 1$$
(30)

We first calculate derivatives

$$\vec{r}_{u} = \left\langle -\sin v, \cos v, 0 \right\rangle$$

$$\vec{r}_{v} = \left\langle 0, 0, 1 \right\rangle$$
(31)

We cross them so

$$\|\vec{r}_u \times \vec{r}_v\| = \sqrt{\sin^2 v + \cos^2 v} = 1 \tag{32}$$

and our surface integral (29) becomes

$$\int_0^1 \int_0^{\pi/2} \sin u \, du \, dv = 1 \tag{33}$$

Flux

We return to where we first considered flux integrals where we introduced

$$\iint\limits_{S} \overrightarrow{F} \cdot \overrightarrow{N} dS \tag{34}$$

Now, in terms of a parametric surface we have

$$\vec{N} = \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|}, \quad dS = \|\vec{r}_u \times \vec{r}_v\| dudv \tag{35}$$

so (34) becomes

$$\iint\limits_{R_{uv}} \overrightarrow{F} \cdot (\overrightarrow{r}_u \times \overrightarrow{r}_v) \, du dv \tag{36}$$

Example 4

Find the flux over the unit sphere $x^2 + y^2 + z^2 = 1$ where \vec{F} is given by $\vec{F} = \langle x, y, z \rangle$.

Soln.

We first parametrize the surface. Here we will use spherical polar coordi-

nates so

$$\vec{r}(\theta,\phi) = \left\langle \cos\theta \sin\phi, \sin\theta \sin\phi, \cos\phi \right\rangle$$

$$0 \le \theta \le 2\pi, \quad 0 \le \phi \le \pi$$
(37)

Next we take derivatives so

$$\vec{r}_{\theta} = \left\langle -\sin\theta \sin\phi, \cos\theta \sin\phi, 0 \right\rangle$$

$$\vec{r}_{\phi} = \left\langle \cos\theta \cos\phi, \sin\theta \cos\phi, -\sin\phi \right\rangle$$
(38)

Next we cross them so

$$\vec{r}_{\theta} \times \vec{r}_{\phi} = \left\langle -\cos\theta \sin^2\phi, -\sin\theta \sin^2\phi, -\sin\theta \cos\phi \right\rangle \tag{39}$$

As this normal points outward we multiply by -1.

$$\vec{r}_{\theta} \times \vec{r}_{\phi} = \left\langle \cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \sin \theta \cos \phi \right\rangle \tag{40}$$

Next

$$\vec{F} \cdot (\vec{r}_u \times \vec{r}_v) = \left\langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \right\rangle$$

$$\cdot \left\langle \cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \sin \theta \cos \phi \right\rangle$$

$$= \sin \phi$$
(41)

and the flux is given by

$$\int_0^{2\pi} \int_0^{\pi} \sin\phi \, d\phi \, d\theta = 4\pi \tag{42}$$