# A Block Cipher Containing an Attribute involved Key based Permutation and Substitution 

G. Sumalatha ${ }^{1}$, D.S.R. Murthy ${ }^{2}$<br>${ }^{1}$ SreeNidhi Institute of Science and Technology<br>${ }^{2}$ Geethanjali College of Engineering and Technology<br>(E-mail: sumalathagunnala23@gmail.com)


#### Abstract

In this analysis we have developed a block cipher, by introducing a pair of functions, namely (1) Permute(), and (2) Substitute (). The function Permute () depends upon the number in the serial order of the elements in the key, and the number corresponding to the ascending order of the numbers in the key. The function Substitute() is based upon the Matrix, containing the Key at the beginning and the rest of the numbers in subsequent positions in a serial order, and a set of rules which are applicable for replacing a pair of numbers in the plaintext. In the proposed scheme, the key is computed from the credentials of the user such as email or social security number. The iteration process involved in the analysis and the functions Permute() and Substitute() strengthen the cipher significantly.


Keywords- Attributes, Cipher, Information security, Key, Permute, Substitute.

## I. Introduction

Several years back, Charles Wheatstone[8] developed a multiple letter encryption cipher, called Playfair cipher. This cipher depends upon a 5X5 matrix of letters, consisting of the letters of the keyword at the beginning and the rest of the letters, in a sequential manner, at the subsequent positions of the matrix. The matrix is obtained in the following form.

| M | O | N | A | R |
| ---: | ---: | ---: | ---: | ---: |
| C | H | Y | B | D |
| E | F | G | I | K |
| L | P | Q | S | T |
| U | V | W | X | Z |

## Here MONARCHY is the keyword.

The set of rules governing the encryption of pairs of letters is as follows.

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x. For example balloon would be treated as balxloxon.
2. Two plaintext letters that fall in the same row of the matrix, each replaced by the successive letters to the right, circularly following the last if needed. For example AR is encrypted as RM.
3. Two plaintext letters that fall in the same column of the matrix, are replaced by the successive letters in the downward direction of the column, circularly following the column if needed. For example MU is encrypted as CM.
4. Each plaintext letter in a pair is replaced by the letter that lies in its own row and the column occupied by the other plaintext letter. For example HS is encrypted as BP and EA encrypted as IM (or JM, depending upon the wish of the encipher).

For quite a long time this cipher, called Playfair cipher, was found to be very strong as there were $26 \times 26=676$ digrams involved in the process. However, subsequently it could be broken by using the frequency distribution of letters.

In recent investigations [1, 6, 7], the Playfair cipher is modified to some extent by considering EBCDIC code instead of alphabet in the development of the matrix. In [3- 5], the block ciphers are developed by using the permutation process basing upon the key. The ciphers developed in [1, 3-7], uses the key contains the random values. Recently, Sumalatha Gunnala et al. [2] introduced the attribute involved keys in encryption process. Here the encryption process includes additional key element derived from the unique identity of the user such as email, social security number or Aadhaar etc. In this present analysis our objective is to study a modified Playfair cipher by using key involved permutation process. And the key is computed by using the attribute values of the user instead of random numbers. The attributes included as email or social security number etc. Thus this feature provides the authenticity of the sender.

The plan of the paper mentioned as follows. The Section 2 deals with the formulation of the problem, with the algorithms. The illustration of the problem is presented in section 3.The cryptanalysis is discussed in section 4 . Finally the results and conclusions drawn in section 5.

## II. FORMULATION OF THE PROBLEM

Corresponding to the EBCDIC code we have 256 numbers which can be written in the form of a square matrix of size 16 .

Let us consider a key K containing 16 numbers. Let the key be given by
$\mathrm{K}=\left[\begin{array}{llllllllllll}98 & 209 & 49 & 4 & 161 & 128 & 154 & 252 & 70 & 117 & 89 & 36 \\ & 22 & 153 & 182 & 197\end{array}\right]\left[\begin{array}{ll}153\end{array}\right.$
On placing the key at the beginning of the matrix, and the remaining numbers of the EBCDIC code $(0-255)$, one after another in a sequential manner, in the subsequent positions , we get a matrix M , having the following form.

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)
number will be substituted by the ith row sth column element, and the second number will be substituted by $\mathrm{r}^{\text {th }}$ row $\mathrm{j}^{\text {th }}$ column element.

The basic steps involved in the process of the encryption are
$\mathrm{P}=\operatorname{Permute}(\mathrm{P}, \mathrm{K})$,
$\mathrm{P}=\operatorname{Substitute}(\mathrm{P}, \mathrm{M})$,
$\mathrm{C}=\mathrm{P}$.

TABLE 1. Substitution Table

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 98 | 209 | 49 | 4 | 161 | 128 | 154 | 252 | 70 | 117 | 89 | 36 | 22 | 153 | 182 | 197 |
| $\mathbf{2}$ | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| $\mathbf{3}$ | 17 | 18 | 19 | 20 | 21 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| $\mathbf{4}$ | 34 | 35 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 50 | 51 |
| $\mathbf{5}$ | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
| $\mathbf{6}$ | 68 | 69 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
| $\mathbf{7}$ | 85 | 86 | 87 | 88 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 99 | 100 | 101 | 102 |
| $\mathbf{8}$ | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 118 | 119 |
| $\mathbf{9}$ | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 |
| $\mathbf{1 0}$ | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 |
| $\mathbf{1 1}$ | 155 | 156 | 157 | 158 | 159 | 160 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 |
| $\mathbf{1 2}$ | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 183 | 184 | 185 | 186 | 187 | 188 |
| $\mathbf{1 3}$ | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 |
| $\mathbf{1 4}$ | 206 | 207 | 208 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 |
| $\mathbf{1 5}$ | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 |
| $\mathbf{1 6}$ | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 253 | 254 | 255 |

In the process of encryption, the set of rules used for substitution of pairs of numbers are as follows.

1. If both the numbers in a pair of numbers are the same, both are replaced by the adjacent number either following the row or column in the matrix.
2. If two numbers are distinct and fall in the same row of the matrix, then each one is replaced by the number to its right, with the first element of the row circularly following the last, if required.
3. If two numbers are distinct and fall in the same column of the matrix, then each one is replaced by the successive numbers in the downward direction of the column, circularly following the column, if needed.
4. Otherwise, each number in a pair is replaced by the number that lies in its own row and the column occupied by the other number. That is, if we have the first number in a pair is ith row jth column element, and the second number is $r^{\text {th }}$ row sth column element, then the first

The corresponding decryption process is given by

$$
\mathrm{C}=\text { ISubstitute }(\mathrm{C}, \mathrm{M}),
$$

$$
\mathrm{C}=\mathrm{IPermute}(\mathrm{C}, \mathrm{~K}),
$$

$$
\mathrm{P}=\mathrm{C}
$$

Here P denotes the plaintext, and C denotes the ciphertext. The function Permute() represents a process of interchange of the numbers corresponding to the characters of the plaintext. This interchange depends upon the key K. The function Substitute() depends upon the matrix M , and the numbers corresponding to the characters in the plaintext.
IPermute () and ISubstitute () denote the reverse processes of Permute() and Substitute() respectively.

Now let us have a clear insight into the process of the function Permute().

We consider a plaintext $P$ given by
P = Dear Sir! Many.

IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)
On writing this in terms of the EBCDIC code, we have
$\mathrm{P}=6419613312915364226137153796412$
12914916864.

By introducing a serial number (SN), and a number (NA), corresponding to the ascending order of the numbers in the key, K can be written as shown in the following Table.

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)
3. $\mathrm{P}=\mathrm{Permute}(\mathrm{P}, \mathrm{K})$
$\mathrm{P}=$ Substitute $(\mathrm{P}, \mathrm{M})$
\}
4. $\mathrm{C}=\mathrm{P}$
5. Write(C)

TABLE 2. Permutation Table

| SN | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Key | 98 | 209 | 49 | 4 | 161 | 128 | 154 | 252 | 70 | 117 | 89 | 36 | 22 | 153 | 182 | 197 |
| NA | 7 | 15 | 4 | 1 | 12 | 9 | 11 | 16 | 5 | 8 | 6 | 3 | 2 | 10 | 13 | 14 |

This Table suggests that we can permute $1^{\text {st }}$ number with the $7^{\text {th }}$ number, $2^{\text {nd }}$ with the $15^{\text {th }}, 3^{\text {rd }}$ with $4^{\text {th }}, 5^{\text {th }}$ with $12^{\text {th }}$, $6^{\text {th }}$ with $9^{\text {th }}, 8^{\text {th }}$ with $16^{\text {th }}$, and $14^{\text {th }}$ with $10^{\text {th }}$. Further, we notice that the numbers in the $11^{\text {th }}$ and $13^{\text {th }}$ positions will not undergo any change. Here it is to be noted that a number once interchanged will not undergo any change further. In the light of this, the plaintext P , given by (3) , assumes the form, P $\begin{array}{lllllllllllll}= & 226 & 168 & 129 & 133 & 212 & 153 & 64 & 64 & 64 & 149 & 64 & 153\end{array}$ 12979196137.

It is worth noticing that the function Permute( ) and IPermute( ) will lead to the interchange of the same numbers, and hence they can be taken as the same.

Now let us consider the process of substitution ():
In the couple of numbers $(226,168), 226$ is the element of $15^{\text {th }}$ row $4^{\text {th }}$ column of the Matrix M , and 168 is the element of $11^{\text {th }}$ row $13^{\text {th }}$ column. Thus according to the rule (4), 226 will be replaced by the element of $15^{\text {th }}$ row $13^{\text {th }}$ column of the Matrix, i.e. by 235 , and 168 will be replaced by the element of $11^{\text {th }}$ row $4^{\text {th }}$ column of the Matrix, i.e by 158 .Similarly the pairs $(212,153),(64,153)(129,79),(196,137)$ will be replaced by the corresponding pairs. In accordance with the rule $(1)$, the pair $(64,64)$ will be replaced by the pair $(65,65)$. The numbers in the pair $(129,133)$ are in the same row. Hence according to rule (2), they will be replaced by the corresponding adjacent numbers 130 and 134 respectively. The numbers 64 and 149 are in the same column. Hence according to rule (3), they will be replaced by 81 and 168 respectively. Hence after substitution, we obtain the plaintext in the form

P = 235158130134220128656581168652213177189 144

This process is repeated $r$ number of times, where $r$ is taken as 16 , in the present analysis. On performing decryption we get back the plaintext P , if it is not interrupted in between.
The algorithms of Encryption and Decryption are given below. Algorithm for Encryption:

1. $\operatorname{Read} \mathrm{P}, \mathrm{K}, \mathrm{M}, \mathrm{r}$
2. for $\mathrm{i}=1$ to r do \{

Algorithm for Decryption:

1. Read C, E, M, r
2. for $\mathrm{i}=1$ to r
\{
3. $\mathrm{C}=$ ISubstitute $(\mathrm{C}, \mathrm{M})$

C= IPermute(C,K)
\}
4. $\mathrm{P}=\mathrm{C}$

## III. ILLUSTRATION OF THE PROBLEM

Consider the plaintext given below.
Dear Sir! Many changes are coming in Kashmir. Several Hindus are migrating to other parts of the India, so that they and their families can comfortably reside along with all the other Hindus. This sort of migration is a matter of encouragement for all Muslims. We can send some of our Pakistanis into Kashmir by offering them some encouragement whole heartedly. We can request some of our Muslim friends, staying in India, to come to Kashmir by providing them some facilities for their stay and business. This process will definitely help us in occupying Kashmir. All the while struggling with weapons is not the appropriate solution. Please take necessary decision in respect of this issue. Yours sincerely, XXX.
(6)

On focusing our attention on the first 16 characters, we have a block of plaintext given by

$$
\begin{equation*}
\mathrm{P}=\text { Dear Sir! Many } . \tag{7}
\end{equation*}
$$

After completing the first round of the iteration process, the plaintext assumes the form,

$$
\begin{equation*}
P=235158130134220128656581168652213177 \tag{8}
\end{equation*}
$$ 189144

Following the same procedure, on performing the sixteenth round of the iteration, i.e. at the end of the encryption, we obtain
$\mathrm{C}=129,224,133,129,31,133,48,203,65,113,99$, 6, 164, 219, 193, 100

IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)
On performing decryption of the ciphertext given in (9), we get the corresponding plaintext P .

## IV. CRYPTANALYSIS

The validity of a cipher can be determined by examining cryptanalysis. The various types of approaches in the cryptanalysis are
a) Ciphertext only attack ( brute force attack),
b) Known plaintext attack,
c) Chosen plaintext attack,
d) Chosen ciphertext attack.

In the development of every cipher, one has to take care of that it sustains at least the brute force attack, and the known plaintext attack [7].

The key is containing 16 decimal numbers. Thus the size of the key space is $2^{128}$.
Let us assume that the time required for the computation of the cipher with one value of the key is $10^{-7}$ seconds. Then the time required for the computation with all the possible values of the key in the key space is

As this number is enormously large, it is not possible to break the cipher by the brute force attack.

Let us now examine the known plaintext attack.
If we confine our attention to only one round of the iteration process (i.e when $r=1$ ), we have the equations describing the cipher in the form .

$$
\begin{align*}
& \mathrm{P}=\operatorname{Permute}(\mathrm{P}, \mathrm{~K})  \tag{11}\\
& \mathrm{P}=\operatorname{Substitute}(\mathrm{P}, \mathrm{M})  \tag{12}\\
& \mathrm{C}=\mathrm{P} \tag{13}
\end{align*}
$$

In the known plaintext attack, the pair of the ciphertext and the plaintext are known to us. Even then we cannot determine the key K by any means. Thus this cipher cannot be broken by the known plaintext attack.
Here it is not possible to choose a plaintext and/or ciphertext to break the cipher. From the above analysis we conclude that the cipher is unbreakable.

## V. RESULTS AND CONCLUSIONS

In this investigation we have developed a block cipher, cipher, by using the functions Permute( ) and Substitute( ). Due to the function Permute ( ), the numbers in the plaintext undergo several interchanges and this process is developed based on the key. Here the key is calculated from the credentials, called attributes of the user such as email or social security number. With this feature the sender's authenticity is provided at receiver side. On account of Substitute ( ), the adjacent

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)
numbers change in an appropriate manner. In this scheme there are 256 numbers, thus 256 X 256 (i.e. $2^{16}$ ) pairs of numbers are replaced appropriately. As there are 16 rounds in the development the procedure for the encryption, the strength of the cipher is expected to be commendable.

The plaintext given (6) is divided into 45 blocks, wherein each block is of size 16 characters. As the last block is having 3 characters, we have appended 13 characters, of our choice, so that it becomes a complete block. Here we have appended the string sumalathasuma. The ciphertext of each block , presented in(14).
Here it is to be noted that the strength of the cipher enhances due to the functions Permute( ) and Substitute( ), and the number of rounds in the iteration process.

## References

[1] P. Murali, and G. Senthilkumar, Modified version of playfair cipher using linear feedback shift register, International Journal of Computer Science and Network Security, vol. 8, no.12, pp. 26-29, 2008.
[2] Sumalatha Gunnala, Shirisha Kakarla and Sreerama Chandra Murthy Dasika, "An Attribute Involved Public Key Cryptosystem Based on p-Sylow Subgroups and Randomization", Journal of Applied Computer Science \& Mathematics, vol. 12, Issue 1/2018, pp 34-38, 2018.
[3] V.U.K. Sastry, K.Shirisha, "A Novel Block Cipher Involving a Key bunch Matrix and a Key-based Permutation and Substitution", International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 3, No. 12, pp. 116122, 2012.
[4] V.U.K. Sastry, K.Shirisha, "A Block Cipher Involving a Key Bunch Matrix and an Additional Key Matrix, Supplemented with XOR Operation and Supported by Key-Based Permutation and Substitution", International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 4, No. 1, pp. 187-194 , 2013.
[5] V.U.K. Sastry, K.Shirisha, "A Block Cipher Involving a Key Bunch Matrix and an Additional Key Matrix, Supplemented with Modular Arithmetic Addition and supported by Key-based Substitution", International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 3, No. 12, pp. 110115, 2012,
[6] V. U. K. Sastry, N. R. Shankar, and S. D. Bhavani, A modified playfair cipher for a large block of plaintext, International Journal of Computer Theory and Engineering, vol. 1, no. 5, pp. 592-596, 2009.
[7] V. U. K. Sastry, N. R. Shankar, and S. D. Bhavani, A modified playfair cipher involving interweaving and iteration, International Journal of Computer Theory and Engineering, vol. 1, no. 5, pp. 597-601, 2009.
[8] William Stallings, "Cryptography and Network Security", Fourth Edition, Pearson ,2007.
G. Sumalatha is currently working as Associate Professor in the Department of Information Technology, SreeNidhi Institute of Science and Technology (SNIST), Hyderabad, India. She is pursuing PhD in JNTUH. Her research interests include Information security, cryptography, data analytics and compilers. She published thirteen research papers in reputed International Journals.
Dr. D.S.R. Murthy is presently working as Professor in the Department of Computer Science and Engineering (CSE),

IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018)
Geethanjali College of Engineering and Technology, Hyderabad, India. He published a text book on $\mathbf{C}$ and Data structures. He also published number of research papers in various international journals.

| 129 | 224 | 133 | 129 | 31 | 133 | 48 | 203 | 65 | 113 | 99 | 6 | 164 | 219 | 193 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 122 | 123 | 129 | 149 | 143 | 135 | 166 | 52 | 151 | 46 | 166 | 100 | 172 | 151 | 152 | 145 |
| 143 | 125 | 64 | 137 | 163 | 86 | 222 | 135 | 205 | 151 | 174 | 189 | 15 | 111 | 53 | 234 |
| 129 | 202 | 133 | 153 | 130 | 152 | 65 | 235 | 138 | 149 | 134 | 160 | 171 | 65 | 183 | 44 |
| 169 | 94 | 148 | 137 | 155 | 21 | 203 | 237 | 158 | 139 | 169 | 86 | 156 | 158 | 95 | 186 |
| 163 | 129 | 133 | 153 | 102 | 155 | 136 | 252 | 171 | 198 | 84 | 137 | 189 | 96 | 169 | 136 |
| 185 | 133 | 201 | 149 | 131 | 152 | 137 | 137 | 56 | 170 | 151 | 53 | 171 | 123 | 131 | 165 |
| 100 | 222 | 136 | 133 | 180 | 106 | 206 | 217 | 203 | 135 | 173 | 188 | 157 | 188 | 102 | 136 |
| 125 | 133 | 148 | 137 | 149 | 139 | 120 | 166 | 118 | 185 | 131 | 170 | 83 | 133 | 138 | 140 |
| 238 | 169 | 153 | 163 | 129 | 130 | 237 | 221 | 66 | 197 | 122 | 171 | 137 | 129 | 169 | 138 |
| 131 | 149 | 150 | 149 | 120 | 64 | 171 | 147 | 165 | 136 | 87 | 166 | 137 | 149 | 65 | 158 |
| 136 | 130 | 64 | 150 | 155 | 164 | 137 | 1 | 99 | 200 | 137 | 185 | 134 | 198 | 181 | 101 |
| 114 | 236 | 136 | 137 | 182 | 134 | 189 | 179 | 118 | 10 | 204 | 15 | 230 | 134 | 150 | 193 |
| 180 | 22 | 129 | 163 | 188 | 151 | 179 | 101 | 158 | 175 | 130 | 166 | 55 | 152 | 133 | 220 |
| 222 | 172 | 153 | 64 | 221 | 187 | 86 | 167 | 167 | 172 | 165 | 168 | 31 | 136 | 155 | 155 |
| 156 | 171 | 149 | 163 | 100 | 165 | 187 | 0 | 116 | 187 | 201 | 201 | 151 | 25 | 205 | 164 |
| 149 | 141 | 148 | 162 | 111 | 118 | 8 | 155 | 132 | 186 | 144 | 186 | 82 | 199 | 159 | 157 |
| 169 | 101 | 162 | 150 | 137 | 141 | 99 | 146 | 152 | 66 | 171 | 200 | 32 | 118 | 253 | 130 |
| 140 | 143 | 162 | 163 | 166 | 192 | 146 | 167 | 69 | 188 | 183 | 188 | 204 | 135 | 218 | 122 |
| 202 | 150 | 148 | 137 | 66 | 135 | 151 | 174 | 101 | 186 | 187 | 169 | 187 | 67 | 139 | 171 |
| 131 | 64 | 163 | 136 | 174 | 155 | 65 | 170 | 210 | 172 | 17 | 239 | 177 | 173 | 126 | 149 |
| 153 | 65 | 129 | 135 | 135 | 149 | 235 | 198 | 171 | 53 | 165 | 135 | 152 | 147 | 187 | 100 |
| 159 | 159 | 129 | 153 | 230 | 202 | 172 | 189 | 235 | 143 | 133 | 25 | 202 | 133 | 169 | 160 |
| 222 | 146 | 153 | 133 | 152 | 164 | 205 | 221 | 163 | 64 | 162 | 150 | 148 | 133 | 171 | 222 |
| 134 | 57 | 150 | 164 | 13 | 60 | 206 | 169 | 170 | 171 | 170 | 148 | 83 | 121 | 70 | 149 |
| 184 | 192 | 132 | 162 | 108 | 61 | 221 | 188 | 136 | 156 | 139 | 137 | 136 | 63 | 199 | 171 |
| 101 | 197 | 149 | 132 | 167 | 151 | 151 | 110 | 172 | 149 | 61 | 150 | 150 | 143 | 170 | 84 |
| 155 | 138 | 64 | 210 | 145 | 186 | 121 | 146 | 137 | 153 | 115 | 181 | 185 | 76 | 137 | 182 |
| 190 | 210 | 137 | 132 | 152 | 151 | 137 | 99 | 165 | 136 | 157 | 174 | 83 | 180 | 152 | 156 |
| 222 | 151 | 134 | 129 | 122 | 141 | 173 | 238 | 201 | 188 | 120 | 158 | 72 | 147 | 187 | 84 |
| 56 | 171 | 136 | 133 | 166 | 12 | 52 | 166 | 158 | 148 | 205 | 102 | 171 | 157 | 136 | 52 |
| 130 | 171 | 162 | 137 | 219 | 168 | 168 | 162 | 116 | 127 | 5 | 152 | 196 | 173 | 53 | 149 |
| 51 | 170 | 131 | 133 | 166 | 170 | 122 | 205 | 141 | 139 | 151 | 52 | 123 | 124 | 170 | 184 |

IJRECE VOL. 6 ISSUE 3 ( JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

| 149 | 139 | 163 | 133 | 155 | 164 | 56 | 125 | 173 | 151 | 187 | 121 | 155 | 162 | 56 | 145 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 169 | 103 | 150 | 131 | 126 | 205 | 173 | 204 | 141 | 151 | 121 | 57 | 250 | 201 | 237 | 163 |
| 148 | 137 | 153 | 75 | 99 | 21 | 143 | 147 | 168 | 196 | 171 | 235 | 99 | 89 | 136 | 141 |
| 139 | 124 | 64 | 162 | 165 | 197 | 155 | 126 | 120 | 149 | 139 | 151 | 120 | 66 | 157 | 145 |
| 224 | 140 | 64 | 166 | 167 | 169 | 151 | 151 | 152 | 176 | 81 | 137 | 191 | 102 | 148 | 190 |
| 167 | 52 | 163 | 136 | 139 | 102 | 133 | 139 | 157 | 13 | 143 | 138 | 51 | 206 | 120 | 171 |
| 171 | 140 | 162 | 150 | 149 | 166 | 238 | 233 | 152 | 151 | 77 | 66 | 217 | 149 | 222 | 188 |
| 188 | 184 | 64 | 163 | 135 | 152 | 171 | 145 | 254 | 171 | 152 | 217 | 170 | 170 | 137 | 32 |
| 253 | 92 | 132 | 133 | 176 | 221 | 22 | 202 | 150 | 149 | 106 | 187 | 139 | 102 | 34 | 185 |
| 195 | 168 | 133 | 131 | 157 | 66 | 174 | 168 | 55 | 165 | 131 | 152 | 170 | 56 | 158 | 190 |
| 170 | 164 | 133 | 75 | 67 | 234 | 152 | 157 | 16 | 164 | 102 | 215 | 139 | 151 | 135 | 124 |
| 197 | 132 | 147 | 168 | 132 | 62 | 52 | 238 | 223 | 223 | 127 | 85 | 56 | 64 | 64 | 52 |
| 97 | 145 | 64 | 162 | 168 | 152 | 184 | 202 | 120 | 171 | 123 | 129 | 162 | 168 | 232 | 168 |

