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a b s t r a c t

We study the strong structural controllability (SSC) of networks, where the external control inputs are
injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the
dimension of strong structurally controllable subspace (SSCS), which is equal to the smallest possible
rank of controllability matrix under admissible coupling weights among the nodes In this paper, we
compare two tight lower bounds on the dimension of SSCS: one based on the distances of followers
to leaders, and the other based on the graph coloring process known as zero forcing. We first show
that each of these two bounds can be arbitrarily better than the other in some special cases. We then
show that the distance-based lower bound is usually better than the zero-forcing-based bound when
the value of the latter is less than the dimensionality of the overall network state, n. On the other hand,
we also show that any set of leaders that makes the distance-based bound equal to n necessarily makes
the zero-forcing-based bound equal to n (the converse is not true). These results indicate that while
the zero-forcing-based approach may be preferable when the focus is only on verifying complete SSC
(dimension of SSCS is equal to n), the distance-based approach usually yields a closer bound on the
dimension of SSCS when the bounds are both smaller than n. Furthermore, we also present a novel
bound based on combining these two approaches, which is always at least as good as, and in some
cases strictly greater than, the maximum of the two original bounds. Finally, we support our analysis
with numerical results on various graphs.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Networks where each node’s state is linearly influenced by
ts neighbors’ states appear in numerous systems such as sensor
etworks, distributed robotics, power grids, social networks, and
iological systems. Such systems are often modeled using their
nteraction graphs where the nodes represent the agents, and
he weighted edges denote the couplings among agents. One
ajor research question regarding such systems is whether a
esired global behavior can be induced by injecting external
nputs to only some agents, so-called leaders. This question has
otivated numerous studies on relating network controllability to

he structure of the interaction graph.

✩ This paper was recommended for publication in revised form by Associate
Editor Julien M. Hendrickx under the direction of Editor Christos G. Cassandras.
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Notions of network controllability can be broadly grouped into
three categories based on how they treat the coupling weights
among agents: (1) controllability under specific weights, (2) struc-
tural controllability under a set of admissible weights, (3) strong
structural controllability under a set of admissible weights. The
latter two approaches are motivated by the uncertainty in the
coupling weights of networks in real life, i.e., the weights belong
to some feasible set but their exact values are unknown. Such
a network is structurally controllable if there exist admissible
weights that make the system controllable. Furthermore, the
network is strong structurally controllable if it is controllable
under any admissible allocation of weights. In such cases, the ad-
missible weights may be arbitrary non-zero values (e.g., Chapman
& Mesbahi, 2013; Liu, Slotine, & Barabási, 2011; Monshizadeh,
Camlibel, & Trentelman, 2015; Monshizadeh, Zhang, & Camlibel,
2014; Mousavi, Haeri, & Mesbahi, 2018; Trefois & Delvenne, 2015;
Work et al., 2008) or may need to satisfy additional constraints
(e.g., Li, Chen, Pequito, Pappas, & Preciado, 2020; Mousavi, Haeri,
& Mesbahi, 2019; Van Waarde, Camlibel, & Trentelman, 2017;

Yazıcıoğlu, Abbas, & Egerstedt, 2016). Studies on structural or
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trong structural controllability also have some extensions to net-
orks with time-varying dynamics (e.g., Liu, Lin, & Chen, 2013;
ousavi, Haeri, & Mesbahi, 2020; Srighakollapu, Kalaimani, & Pa-
umarthy, 2021). Various graph-theoretic tools have been utilized
o provide topology-based characterizations of network control-
ability. Examples include equitable partitions (e.g., Rahmani, Ji,
esbahi, & Egerstedt, 2009), maximum matchings (e.g., Chapman
Mesbahi, 2013; Liu et al., 2011), centrality based measures

e.g., Liu, Slotine, & Barabási, 2012; Pan & Li, 2014), dominating
ets (e.g., Nacher & Akutsu, 2014), distances (e.g., Van Waarde
t al., 2017; Yazıcıoğlu et al., 2016; Zhang, Cao, & Camlibel,
013), and zero forcing (e.g., Jia, Trentelman, Baar, & Camlibel,
019; Monshizadeh et al., 2015, 2014; Mousavi et al., 2018;
refois & Delvenne, 2015; Work et al., 2008). Studies on net-
ork controllability have several important applications such as
electing a minimal set of leaders (e.g., Clark, Alomair, Bushnell,
Poovendran, 2017; Pasqualetti, Zampieri, & Bullo, 2014; Sum-
ers, Cortesi, & Lygeros, 2015; Tzoumas, Rahimian, Pappas, &

adbabaie, 2015) or designing/modifying the network topology
o achieve/maintain a desired level of controllability (e.g., Abbas,
habbir, Yazıcıoğlu, & Koutsoukos, 2021; de Badyn & Mesbahi,
016; Yazıcıoğlu & Egerstedt, 2013).
In this paper, we focus on the strong structural controllability

SSC) of networks. More specifically, we consider the dimension
f strong structurally controllable subspace (SSCS), i.e., the min-
mum possible rank of controllability matrix under admissible
oupling weights among the nodes, as the measure of control-
ability. The exact computation of the dimension of SSCS is a
hallenging problem that involves finding the minimum rank of
atrices with a given zero-nonzero or sign pattern, i.e., matri-
es whose specific entries are zero and the remaining non-zero
ntries can take any feasible value (e.g., Fallat & Hogben, 2007;
azel, Hindi, & Boyd, 2004; Mousavi et al., 2019). Motivated
y the intractability of exact computation, two graph-theoretic
oncepts have been utilized in the literature to yield a tight
ower bound on this controllability measure: distances and zero
orcing. While the zero-forcing-based bound is applicable to net-
orks with arbitrary linear dynamics, the distance-based bound

s applicable to an important subfamily which contains widely
tudied cases such as diffusively coupled networks (e.g., weighted
aplacian/adjacency dynamics) among others. In this paper, we
ocus on such systems where both lower bounds are applicable.
n the distance-based approach, the lengths of the shortest paths
rom the leaders to the followers are used to obtain a lower
ound on the dimension of SSCS. On the other hand, the zero-
orcing-based approach is based on a graph coloring process (zero
orcing process), where each node is initially colored black if it
s a leader and colored white if it is a follower. Starting with
his initial coloring, any white node becomes black if it is the
nly white out-neighbor of a black node. This color changing
ule is applied until no further color changes are possible and
he resulting number of black nodes yields a lower bound on
he dimension of SSCS. In this paper, we first compare these
wo approaches. Our comparative results indicate that while the
ero-forcing-based approach is better for verifying complete SSC
i.e., whether the controllability matrix has full rank under any
dmissible weighting of the edges), the distance-based approach
s usually more informative when the leaders do not constitute
zero forcing set, i.e., the zero forcing process starting with

nly the leaders colored black do not make all the nodes black.
e also propose a novel bound based on the combination of

hese two methods, which is always at least as good as, and
n some cases greater than, the maximum of the two original
ounds. Finally, we support our analysis with some numerical
esults. Some preliminary results of this paper were presented
n (Yazıcıoğlu, Shabbir, Abbas, & Koutsoukos, 2020). The main
ontributions of this paper are as follows:
2

(1) We first show that there exist networks where the distance-
based bound and the zero-forcing-based bound can signif-
icantly outperform each other (Theorem 3), motivating the
comparative analysis in this paper.

(2) We characterize some generic cases where the distance-
based bound is guaranteed to outperform the zero-forcing-
based bound. In particular, the distance-based approach
yields a better bound for networks where each leader has
multiple followers as out-neighbors (Theorem 5) and for
most networks with a single leader (Theorem 6).

(3) We show that the zero-forcing-based approach is a better
option when focusing only on complete SSC. In particu-
lar, we show that the distance-based bound can indicate
complete SSC only if the zero-forcing-based bound also
indicates complete SSC, i.e., the leader set is a zero forcing
set (Theorem 7). We also show that the inverse is not true
(e.g., see Fig. 5a).

(4) We derive a novel lower bound on the dimension of SSCS
by combining the distance-based and zero-forcing-based
methods. We show that this new bound is always at least
as good as (Theorem 8), and in some cases strictly greater
than (e.g., see Fig. 6), the original bounds. We show that
the combined bound outperforms the zero-forcing-based
bound on any strongly connected graph unless the leader
set is a zero forcing set (Theorem 11), equals the distance-
based bound on most single-leader networks (Theorem 12),
and outperforms the distance-based bound if the zero forc-
ing process can infect multiple nodes with identical dis-
tances to the leaders (Theorem 13).

(5) We compare the three bounds numerically for various ran-
domly generated networks and leader sets.

The organization of this paper is as follows: Section 2 provides
some preliminaries. Section 3 presents our results regarding the
comparison of the distance-based and zero-forcing-based bounds.
Section 4 provides a novel bound based on the combination of
these two previous methods. Some numerical results are given in
Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Graph basics

We consider a network represented by a simple directed graph
G = (V , E) where the node set V = {v1, v2, . . . , vn} rep-
resent agents, and the edge set E represents interconnections
between agents. An edge from a node vi ∈ V to a node vj ∈

V is denoted by eij = (vi, vj). The out-neighborhood of node
vi is N out

i ≜ {vj ∈ V : eij ∈ E}. The in-neighborhood of node vi is
N in

i ≜ {vj ∈ V : eji ∈ E}. The distance d(vi, vj), is the number of
edges on the shortest path from vi to vj. Accordingly, d(vi, vi) = 0
and d(vi, vj) = ∞ if there is no path from vi to vj. The graph is
strongly connected if there is a path from any node to any other
node.

2.2. System model

For the sake of simplicity, let each agent vi ∈ V have a scalar
state xi ∈ R.1 The overall state of the system is x =

1 The model and our results can easily be extended to agents with higher-
imensional states, where the vector of states in each dimension k, say xk =

xk1 xk2 · · · xkn
]T

∈ Rn , evolves under ẋk = Axk + Buk with uk
=

[uk , . . . , uk
].
1 m



Y. Yazıcıoğlu, M. Shabbir, W. Abbas et al. Automatica 146 (2022) 110562

A
c

[
i

x

Fig. 1. A graph G = (V , E) and the corresponding structure satisfied by any
∈ A(G). The entries marked as × are non-zero and the entries on the diagonal
an take any value.

x1 x2 · · · xn
]T

∈ Rn. The states evolve under the follow-
ng dynamics:

˙ = Ax + Bu. (1)

Here, the matrix B ∈ Rn×m is the input matrix, where m is the
number of leaders, i.e., the nodes to which an external control sig-
nal is applied. Let Vℓ = {ℓ1, ℓ2, . . . , ℓm} ⊆ V be the set of leaders,
then

Bij =

{
1 if vi = ℓj,

0 otherwise. (2)

Furthermore, the state matrix A is restricted by the structure of
the graph G = (V , E). Typically, each node is directly influenced
only by its in-neighbors. As such, any off-diagonal term Aij is non-
zero if and only if there is an edge from vj to vi, i.e., A belongs to

A(G) = {A ∈ Rn×n
| for i ̸= j, Aij ̸= 0 ⇔ eji ∈ E}, (3)

which is called the qualitative class of the graph G = (V , E) (Mon-
shizadeh et al., 2014; Trefois & Delvenne, 2015). Accordingly,
each Aij denotes the weight of eji and the edges in G define the
structure—location of zero and non-zero off-diagonal entries—for
any A ∈ A(G), for instance, see Fig. 1.

2.3. Strong structural controllability (SSC)

Controllability of the networked system in (1), where the input
matrix B is determined by the leaders Vℓ ⊆ V as in (2), can be
checked via the controllability matrix, i.e.,

Γ (A, Vℓ) =
[

B AB A2B · · · An−1B
]
. (4)

The network is completely controllable if and only if the rank of
Γ (A, Vℓ) is n. In that case, (A, B) is called a controllable pair and the
system in (1) can be driven from any initial state to any desired
state in finite time via a properly designed u. A network G =

(V , E) with Vℓ leaders is strong structurally controllable if (A, B) is
a controllable pair for any feasible A. In that case, the dimension
of strong structurally controllable subspace (SSCS), i.e., the smallest
possible rank of Γ (A, Vℓ) under feasible values of A, is equal to n.
In this paper, we will focus on cases where A belongs to the set of
distance-information preserving matrices, which is a subset of A(G)
in (3):

Ad(G) = {A ∈ A | [Ad(vj,vi)]ij ̸= 0, ∀vi, vj ∈ V : d(vj, vi) < ∞}, (5)

where [Ad(vj,vi)]ij is the (i, j)th entry in the d(vj, vi)th power of A.
Although Ad(G) is more restrictive than A(G) as per (5), it is
an important and rich subset of A(G). For example, the widely
studied weighted Laplacian/adjacency matrices are contained in
Ad(G) (e.g., see Van Waarde et al., 2017; Yazıcıoğlu et al., 2016).
In fact, any A ∈ A(G) is also contained in Ad(G) if all of its off-
diagonal non-zero entries have the same sign. Such a uniform sign
of off-diagonal non-zero entries is sufficient but not necessary to
be a contained in Ad(G). In fact, there are even networks where
every matrix in A(G) is also contained in A (G). For example,
d

3

Ad(G) = A(G) when G is a geodetic graph, i.e., an undirected
graph where there is a unique shortest path between any two
nodes (e.g., any tree, any cycle with an odd number of nodes, or
any complete graph).

Since we focus on systems with A ∈ Ad(G), we define the
dimension of SSCS accordingly as

γ (G, Vℓ) = min
A∈Ad(G)

rank Γ (A, Vℓ). (6)

Roughly, γ (G, Vℓ) quantifies how much of the network can be
controlled via the leaders Vℓ under any A ∈ Ad. Computing
γ (G, Vℓ) requires finding the minimum rank of Γ (A, Vℓ) that can
result from any A ∈ Ad(G), i.e., any A that has a pattern of
non-zeros determined by G as per (3) and also satisfies the addi-
tional property in (5). Such minimum rank problems are typically
very challenging (e.g., Fallat & Hogben, 2007; Fazel et al., 2004;
Mousavi et al., 2019) and there is no algorithm for computing the
exact value of γ (G, Vℓ) for arbitrary G and Vℓ. This has motivated
the investigation of bounds that can be used to approximate (or
determine exactly in some special cases) γ (G, Vℓ). We will next
present two such tight lower bounds on γ (G, Vℓ), which will be
the main focus of our analysis in the following sections.

2.4. Distance-based Lower Bound: δ(G, Vℓ)

We first present the distance-based bound, which was orig-
inally proposed in Yazıcıoğlu et al. (2016) for the SSC of net-
works under consensus (weighted Laplacian) dynamics. While
the weighted Laplacian matrices constitute a subset of Ad, this
distance-based bound actually holds for every A ∈ Ad as we will
show. We will first provide some definitions and then provide
the bound, which is obtained from the distances of nodes to the
leaders on G = (V , E).

Given any G = (V , E) with m leaders, Vℓ = {ℓ1, . . . , ℓm}, the
distance-to-leaders (DL) vector of each vi ∈ V is

Di =
[

d(ℓ1, vi) d(ℓ2, vi) · · · d(ℓm, vi)
]T

∈ Zm,

where the jth component of Di, denoted by [Di]j, is equal to
the length of the shortest path from ℓj to vi. Next, we provide
the definition of pseudo-monotonically increasing sequences of DL
vectors.

Definition 1 (Pseudo-monotonically Increasing (PMI) Sequence). A
sequence of distance-to-leaders vectors D is PMI if for any vector
Di in the sequence, there exists some π (i) ∈ {1, 2, . . . ,m} such
that

[Di]π (i) < [Dj]π (i), ∀j > i. (7)

We say that Di satisfies the PMI property at coordinate π (i)
whenever [Di]π (i) < [Dj]π (i), ∀j > i.

An example of DL vectors is illustrated in Fig. 2, where a PMI
sequence of length six can be constructed as

D =

{[
3
0⃝

]
,

[
0⃝

4

]
,

[
1⃝
4

]
,

[
2
1⃝

]
,

[
3⃝
2

]
,

[
4
3

]}
,

where the coordinates, π (i), satisfying the PMI property in (7) are
circled.

We next provide an extension of Yazıcıoğlu et al. (2016, Thm.
3.2), where the distance-based bound on the dimension of SSCS
was derived for networks with weighted Laplacian dynamics.

Proposition 1. Consider any network G = (V , E) with the leaders
Vℓ ⊆ V . Let δ(G, Vℓ) be the length of longest PMI sequence of
distance-to-leaders vectors with at least one finite entry. Then,

δ(G, V ) ≤ γ (G, V ).
ℓ ℓ
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Fig. 2. A network with two leaders, Vℓ = {v1, v6}, and the corresponding
distance-to-leaders (DL) vectors.

Proof. It can be shown that for any A ∈ A(G) and any vi, vp ∈ V ,
[Ar

]ip = 0 for every positive integer r < d(vp, vi) (e.g., see Van
Waarde et al. (2017, Lem. 1)). Using this together with (5), for
any A ∈ Ad(G) ⊆ A(G) and any vi, vp ∈ V ,

[Ar
]ip

{
= 0 if 0 < r < d(vp, vi),
̸= 0 if r = d(vp, vi).

(8)

Given G = (V , E) and the leaders Vℓ, let D = {D1,D2, . . . ,Dk}

be a PMI sequence of maximum length that can be constructed
with the DL vectors with at least one finite entry. Accordingly,
δ(G, Vℓ) = k. Without any loss of generality, let us re-label the
nodes based on the sequence D such that Di is the DL vector of
vi ∈ V for all i ∈ {1, 2, . . . , k}. Now, for any A ∈ Ad(G), consider
the following n × k matrix:[

A[D1]π (1)bπ (1) A[D2]π (2)bπ (2) . . . A[Dk]π (k)bπ (k)
]
, (9)

where π (1), . . . , π (k−1) are the coordinates of D1, . . . ,Dk−1 that
satisfy the rule in (7), π (k) is the coordinate of any finite entry of
Dk, and each bπ (i) denotes the π (i)th column of the input matrix
B in (2). Accordingly, [D1]π (1), . . . , [Dk]π (k) are all finite values in
{0, 1, . . . , n − 1} due to the definition of distance. Hence, every
column of the matrix in (9) is also a column of the controllability
matrix Γ (A, Vℓ). In the remainder of the proof, we will show
that (9) has full column rank, which implies Γ (A, Vℓ) ≥ δ(G, Vℓ).
For any i ∈ {1, 2, . . . , k}, let vp = ℓπ (i) be the π (i)th leader.
Accordingly, the ith column of (9) is

A[Di]π (i)bπ (i) =
[

[A[Di]π (i) ]1p [A[Di]π (i) ]2p . . . [A[Di]π (i) ]np
]T

.

Since [Di]π (i) = d(vp, vi), (8) implies that the ith entry of
A[Di]π (i)bπ (i) is non-zero. Furthermore, for every j ∈ {i + 1, . . . , k},
the jth entry of A[Di]π (i)bπ (i) is zero, i.e., [A[Di]π (i) ]jp = 0, since
[Di]π (i) < [Dj]π (i) = d(vp, vj) due to the PMI rule in (7). Accord-
ingly, each column of (9) contains the left-most non-zero entry in
at least one row. Hence, (9) has full rank and Γ (A, Vℓ) ≥ δ(G, Vℓ)
for any A ∈ Ad(G). Consequently, γ (G, Vℓ) ≥ δ(G, Vℓ). ■

2.5. Zero-forcing-based Lower Bound: ζ (G, Vℓ)

We next present the zero-forcing-based lower bound on
γ (G, Vℓ), which follows from the earlier studies in Monshizadeh
et al. (2015, 2014). We first give the definitions of the zero forcing
process and the derived set.

Definition 2 (Zero Forcing Process). Given a graph G = (V , E)
where each node is initially colored either white or black, zero
forcing process is defined by the following coloring rule: if vi ∈ V
is colored black and has exactly one white out-neighbor vj, then
the color of vj is changed to black and vj is said to be infected

by vi.

4

Fig. 3. Zero forcing process. (a) {v1, v4} is the input set. (b) v1 infects v3 (as v3
is the only out-neighbor of v1). (c) v3 infects v5 . (d) Finally, v5 and v4 infect v6
and v2 , respectively.

Definition 3 (Derived Set). Given an initial set of black nodes
V ′

⊆ V (called the input set) in a graph G = (V , E), there exists
a unique derived set, dset(G, V ′) ⊆ V , which is the resulting set
of black nodes when no further color changes are possible under
the zero forcing process. An input set V ′ is called a zero forcing
set (ZFS) if dset(G, V ′) = V .

These notions are illustrated in Fig. 3. Here, V ′
= {v1, v4} is

the set of input nodes. As a result of zero forcing process, we get
dset(G, V ′) = V (as shown in Fig. 3(d)), which means that V ′ is a
ZFS.

Proposition 2. For any network G = (V , E) with the leaders
Vℓ ⊆ V ,

ζ (G, Vℓ) ≤ γ (G, Vℓ),

where ζ (G, Vℓ) = |dset(G, Vℓ)| is the size of the derived set corre-
sponding to the input set Vℓ.

Proof. Proof mainly follows from Monshizadeh et al. (2015,
Lem. 6.2), which shows that for any A ∈ A(G) and Vℓ ⊆ V ,
the reachable/controllable subspace, i.e., the range space of the
controllability matrix, remains the same when the leader set is
expanded to include all the nodes in the derived set dset(Vℓ).
More specifically,

range(Γ (A, Vℓ)) = range(Γ (A, dset(G, Vℓ))),

which implies

rank(Γ (A, Vℓ)) = rank(Γ (A, dset(G, Vℓ))). (10)

Furthermore, using (2) and (4), it can be shown that the rank of
the controllability matrix is always lower bounded by the number
of leaders. Hence,

|Vℓ| ≤ rank(Γ (A, Vℓ)), (11)

|dset(G, Vℓ)| ≤ rank(Γ (A, dset(G, Vℓ))). (12)

Using (10), (11), and (12), we obtain

ζ (G, Vℓ) ≤ rank(Γ (A, Vℓ)), ∀A ∈ A(G). (13)

Since Ad(G) ⊆ A(G), (13) implies

ζ (G, Vℓ) ≤ min rank Γ (A, Vℓ) ≤ γ (G, Vℓ). ■ (14)

A∈A(G)
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.6. Computational aspects

The investigation of graph theoretic bounds on γ (G, Vℓ) is
mainly motivated by the intractability of the exact computation
of γ (G, Vℓ). Hence, while the main focus of this paper is on the
comparison of the values of two tight lower bounds, ζ (G, Vℓ) and
δ(G, Vℓ), we also briefly discuss their computational aspects prior
to our analysis.

In general, ζ (G, Vℓ) can be computed in O(n2) time by recur-
sively applying the coloring rule of the zero forcing process to
the out-neighbors of infected nodes until no further color change
is possible. Accordingly, the computation of ζ (G, Vℓ) remains
tractable as the network size or the number of leaders increases.

In comparison to ζ (G, Vℓ), the exact computation of δ(G, Vℓ)
is significantly more demanding. For any given network with n
nodes and m leaders, all pair-wise distances can be computed in
O(n3) time (e.g., Floyd, 1962). Then, given the distances, δ(G, Vℓ)
can be computed in O(m(n log n + nm)) time (Shabbir, Abbas, &
Yazıcıoğlu, 2019). While this computational load scales well with
increasing network size when the number of leaders is constant,
it becomes intractable when the number of leaders also increases.
To overcome this computational challenge, an approximation that
can be obtained in O(mn log n) time was presented in Shabbir
et al. (2019). In a nutshell, this is a greedy algorithm that iter-
atively builds a PMI sequence of DL vectors by starting with an
empty sequence and, in each iteration, adding a DL vector that
minimally reduces the number of DL vectors that can be added
to the sequence in the following iterations under the rule in (7).
Since this approximation algorithm is based on constructing a
feasible PMI sequence, the resulting value, δ̂(G, Vℓ), never exceeds
δ(G, Vℓ). Accordingly, δ̂(G, Vℓ) can be used as a lower bound on
γ (G, Vℓ), i.e.,

δ̂(G, Vℓ) ≤ δ(G, Vℓ) ≤ γ (G, Vℓ),

Numerical results with randomly generated networks and leader
sets suggest that δ̂(G, Vℓ) is usually very close to δ(G, Vℓ) (Shabbir
et al., 2019). Furthermore, if the distance-based bound indicates
complete strong structural controllablility, i.e., δ(G, Vℓ) = n,
hen the approximation algorithm is also guaranteed to return
ˆ(G, Vℓ) = n. We refer interested readers to Shabbir et al. (2019)
or further details on the computational aspects of δ(G, Vℓ).

. Comparison of bounds

In this section, we compare the distance-based bound, δ(G, Vℓ),
nd the zero-forcing-based bound, ζ (G, Vℓ). It is worth mention-
ng that both δ(G, Vℓ) and ζ (G, Vℓ) are tight bounds. For instance,
n the case of undirected graphs, any path graph in which one of
he end nodes is a leader, or any cycle graph in which two adja-
ent nodes are leaders satisfy ζ (G, Vℓ) = δ(G, Vℓ) = γ (G, Vℓ) = n.
urthermore, neither of these two tight bounds is guaranteed
o be at least as good as the other in all possible cases. We
rovide one example for ζ (G, Vℓ) > δ(G, Vℓ) and one example for
(G, Vℓ) > ζ (G, Vℓ) in Fig. 4. In fact, as we will show in Theorem 3,
or each bound there exist examples of networks where it is
rbitrarily better than the other bound. Accordingly, our main
oal in this section is to identify the networks when one bound
ay be preferable to the other.

heorem 3. For any α ≥ 1, there exist graphs G = (V , E),
G′

= (V ′, E ′) and leader sets Vℓ ⊆ V , V ′

ℓ ⊆ V ′ such that

ζ (G, Vℓ)
≥ α,

δ(G′, V ′

ℓ)
′ ′

≥ α. (15)

δ(G, Vℓ) ζ (G , Vℓ)

5

Fig. 4. Two networks and their leaders show in gray. For the network in (a),
δ(G, Vℓ) = 3, ζ (G, Vℓ) = 1. For the network in (b), δ(G, Vℓ) = 5, ζ (G, Vℓ) = 6.

Fig. 5. Examples where the bounds ζ and δ become arbitrarily larger than each
other as the network size n increases.

Proof. While one can find many different networks and leader
sets that satisfy the claim, we prove it by providing two spe-
cific network structures as shown in Fig. 5. These two net-
works achieve an arbitrarily large ζ (G, Vℓ)/δ(G, Vℓ) (Fig. 5a) or
δ(G′, V ′

ℓ)/ζ (G
′, V ′

ℓ) (Fig. 5b) as their sizes increase. Accordingly, for
any α ≥ 1 these networks can be built with a sufficiently large
size n to obtain the pairs (G, Vℓ) and (G′, V ′

ℓ) that satisfy (15). In
the remainder of the proof, we derive the ratios of bounds and
determine the sufficient size for each of these two networks to
satisfy (15) for any given α ≥ 1.

Network in Fig. 5a: This network has two leaders, Vℓ = {v1, v2}.
The graph G = (V , E) has its edge set as

E = {(v2, v1)} ∪ {(v1, vi) | i ≥ 3} ∪ {(vi−1, vi) | i ≥ 3}.

It can be shown that the zero forcing process starting with the
input set {v1, v2} infects all the nodes in this graph. In particular,
first v3 gets infected (only white out-neighbor of v2), then v4 gets
infected (only white out-neighbor of v3) and so on. Accordingly,
ζ (G, Vℓ) = n. Furthermore, in this structure the DL vectors are

D1 =

[
0
1

]
, D2 =

[
∞

0

]
, D3 =

[
1
1

]
, Di =

[
1
2

]
, ∀i ≥ 4.

It can be shown that the longest PMI sequence of such DL
vectors contains four vectors, i.e., δ(G, Vℓ) = 4. Accordingly, this
network satisfies ζ (G, Vℓ)/δ(G, Vℓ) = n/4, which can be made
arbitrarily large to satisfy (15) for any given α ≥ 1.

Network in Fig. 5b: This network has a single leader, V ′

ℓ = {v1}.
The graph G′

= (V ′, E ′) has its edge set as

E ′
= {(v1, v2), (v1, v3)} ∪ {(vi−1, vi) | i ≥ 4}.

The zero forcing process starting with the input set {v1} does
not infect any other node since v1 has two followers as out-
neighbors. Accordingly, ζ (G′, V ′

ℓ) = 1. Furthermore, the DL vec-
tors in this network are

D =
[

0
]
, D = D =

[
1

]
, D =

[
i − 2

]
, ∀i ≥ 4.
1 2 3 i
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t can be shown that the longest PMI sequence of such DL vectors
s {[0], [1], . . . , [n − 2]}. Accordingly, δ(G′, V ′

ℓ) = n − 1 and
his network satisfies δ(G′, V ′

ℓ)/ζ (G
′, V ′

ℓ) = n − 1, which can
et arbitrarily large by increasing n to satisfy (15) for any given
≥ 1. ■

One important implication of Theorem 3 is that although
(G, Vℓ) and δ(G, Vℓ) are both tight lower bounds on the di-
ension of SSCS, i.e., there exist networks such that δ(G, Vℓ) =

(G, Vℓ) or ζ (G, Vℓ) = γ (G, Vℓ), these lower bounds can also be
rbitrarily smaller than γ (G, Vℓ) in some cases. How well these
wo lower bounds typically approximate γ (G, Vℓ) for arbitrary
etworks and leader sets is currently an open problem.

orollary 4. For any α ≥ 0, there exist graphs G = (V , E),
′
= (V ′, E ′) and leader sets Vℓ ⊆ V , V ′

ℓ ⊆ V ′ such that

γ (G, Vℓ)
δ(G, Vℓ)

≥ α,
γ (G′, V ′

ℓ)
ζ (G′, V ′

ℓ)
≥ α.

Proof. As per Theorem 3, there exist graphs G = (V , E), G′
=

V ′, E ′) and leader sets Vℓ ⊆ V , V ′

ℓ ⊆ V ′ such that ζ (G, Vℓ)/δ(G, Vℓ)
and δ(G′, V ′

ℓ)/ζ (G
′, V ′

ℓ) are arbitrarily large. Since ζ and δ are both
lower bounds on γ , i.e., ζ (G, Vℓ) ≤ γ (G, Vℓ) and δ(G′, V ′

ℓ) ≤

γ (G′, V ′

ℓ), such networks also yield arbitrarily large values for
γ (G, Vℓ)/δ(G, Vℓ) and γ (G′, V ′

ℓ)/ζ (G
′, V ′

ℓ). ■

Our focus in the remainder of this paper will be on comparing
δ(G, Vℓ) and ζ (G, Vℓ) and developing a novel lower bound on
γ (G, Vℓ) that combines the strengths of these two state-of-the-art
bounds.

3.1. Advantages of using the distance-based bound

We will present two results, Theorems 5 and 6, identifying
some rich families of cases where δ(G, Vℓ) > ζ (G, Vℓ). Later in
Section 5, we will also provide numerical results showing that
δ(G, Vℓ) is actually significantly greater than ζ (G, Vℓ) in many
cases that are not limited to those captured by Theorems 5 and 6.
Our first result in this section shows that δ(G, Vℓ) is greater than
(G, Vℓ) whenever each leader has at least two followers as out-
eighbors. Note that this condition is very likely to occur when a
mall number of leaders are scattered over a large graph where
ost nodes have an in-degree of two or more (e.g., most regular
raphs, random graphs, scale-free networks).

heorem 5. Consider any graph G = (V , E) with n nodes and
leaders Vℓ ⊆ V . If each leader has at least two followers as

ut-neighbors, then δ(G, Vℓ) > ζ (G, Vℓ).

roof. If every leader has outgoing links to at least two fol-
owers, then none of the followers will be forced when only the
eaders are the black nodes. Accordingly, the dset(G, Vℓ) = Vℓ

nd ζ (G, Vℓ) = m. On the other hand, we can always find a PMI
equence of DL vectors whose length is greater than m in such
case. As an example, consider the following sequence that has
length of m + 1: 1) start with the DL vectors of leaders in any
rder, 2) add the DL vector of a follower who has a distance of
ne to one of the leaders. Since each leader is the only node who
as a distance of zero to itself, those self-distance entries can be
elected as the entries that satisfy the PMI rule. Hence, the longest
ossible PMI sequence would have a length of at least m + 1,
hich implies δ(G, Vℓ) > ζ (G, Vℓ). ■

Our next result shows that for any single-leader network
here each follower has a finite distance to the leader, δ(G, Vℓ) <

ensures that δ(G, V ) > ζ (G, V ).
ℓ ℓ

6

Theorem 6. For any G = (V , E) with n nodes and a single leader
Vℓ = {vℓ} such that d(vℓ, vi) < ∞ for all vi ∈ V ,

δ(G, Vℓ) < n ⇒ δ(G, Vℓ) > ζ (G, Vℓ). (16)

Proof. Since the left side of (16) can never be true for n = 1, we
focus on networks with n ≥ 2 and we will prove the claim via
contradiction. Suppose that δ(G, Vℓ) < n and ζ (G, Vℓ) ≥ δ(G, Vℓ).
Note that if vℓ has more than one follower as out-neighbor, then
the zero forcing process starting with the input set {vℓ} would
not propagate and we would have ζ (G, Vℓ) = 1. Furthermore, for
any network with a single leader vℓ ∈ V such that d(vℓ, vi) < ∞

for all vi ∈ V ,

δ(G, {vℓ}) = max
vi∈V

d(vℓ, vi) + 1, (17)

which is always greater than one. Hence, if ζ (G, Vℓ) ≥ δ(G, Vℓ),
then vℓ must have only one out-neighbor, say vi, who will be
infected by vℓ under the zero forcing process. Now, if n = 2
(there are no other followers), then we end up with δ(G, Vℓ) =

ζ (G, Vℓ) = 2, which contradicts with δ(G, Vℓ) < n. On the
other hand, if n > 2 then we can repeat the same reasoning by
removing vℓ from the network, since vℓ has no impact on the
infection of nodes at distance of two or more from itself, and
treating the remaining network as a system with a single leader
vi with d(vi, vj) < ∞ for every vj ̸= vℓ (vi being the only out-
neighbor of vℓ implies that the paths from vℓ to all other nodes go
through vi, hence d(vi, vj) < ∞). Accordingly, we can show that
if ζ (G, Vℓ) ≥ δ(G, Vℓ), then each follower must have a distinct
distance to vℓ, which implies δ(G, Vℓ) = ζ (G, Vℓ) = n and results
in a contradiction with δ(G, Vℓ) < n. ■

Remark 1. In light of (17), the only connected undirected
network with a single-leader that yields δ(G, Vℓ) = n is a path
graph with a terminal node being the leader. Hence, Theorem 6
implies that δ(G, Vℓ) > ζ (G, Vℓ) for all other connected undirected
networks with a single-leader.

3.2. Advantages of using the zero-forcing-based bound

One advantage of using a zero-forcing-based approach is that
ζ (G, Vℓ) is actually a lower bound on rank(Γ (A, Vℓ)) for every
A ∈ A(G) as per (14). In this regard, it differs from δ(G, Vℓ),
which is a lower bound on rank(Γ (A, Vℓ)) only for A ∈ Ad(G) ⊆

A(G). Furthermore, as we will formally show below, ζ (G, Vℓ) is
better at verifying complete SSC. More specifically, we show that
if δ(G, Vℓ) = n, then Vℓ must be a zero forcing set. Note that
the converse is not true in general, i.e., it is possible to have a
zero forcing set Vℓ such that δ(G, Vℓ) < n, as already shown by
the example in Fig. 4b. Clearly, such examples do not exist for
single-leader networks due to Theorem 6.

Theorem 7. For any graph G = (V , E) with n nodes and any set
of m leaders Vℓ ⊆ V ,

δ(G, Vℓ) = n ⇒ ζ (G, Vℓ) = n.

Proof. The claim is trivial for the cases when Vℓ = V since
δ(G, V ) = ζ (G, V ) = n. Hence we focus on Vℓ ⊂ V (n > m) in the
proof. Let D = [D1 D2 · · · Dn] be a PMI sequence consisting of
all the distance-to-leaders (DL) vectors such the first |Vℓ| vectors
belong to the leaders. Note that there is no loss of generality here
since for any PMI sequence of DL vectors, the vectors belonging
to the leaders can be moved to the beginning of the sequence and
the distance of each leader to itself (zero) satisfies the PMI rule.
Without any loss of generality, let the nodes be re-labeled based
on the order of their DL vectors in the sequence, i.e., D is the
i
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L vector of vi ∈ V for all i = 1, 2, . . . , n. Furthermore, let π (i)
enote the dimension of Di that satisfies the PMI rule, i.e.,

Di]π (i) < [Dj]π (i), ∀j > i. (18)

ue to Yazıcıoğlu et al. (2016, Lem. 4.1), if D is the longest
possible PMI sequence of DL vectors, then it must satisfy

[Di]π (i) = min
j≥i

[Dj]π (i), ∀i ∈ {1, . . . , n − 1}.

For each i ∈ {m + 1, . . . , n}, let Wi = {vi, . . . , vn} ⊆ V be the
wners of the DL vectors in the subsequence of D starting with
he ith entry. We will show that

i > m, ∃k < i : Nk ∩ Wi = {vi}, (19)

here Nk is the set of out-neighbors of vk. Note that (19) would
imply that if all the nodes {v1, . . . , vi−1} are infected, then vi
becomes infected under the zero forcing process. Accordingly,
we can conclude that ζ (G, Vℓ) = n since starting with all the
leaders being infected, all the followers would eventually become
infected.

Note that (19) clearly holds for i = n since Wn = {vn}

and vn must have at least one in-neighbor in {v1, . . . , vn−1} as
otherwise its DL vector would be all ∞ and not included in any
PMI sequence, leading to the contradiction δ(G, Vℓ) < n. Now, for
the sake of contradiction, suppose that (19) is not true for some
i ∈ {m + 1, . . . , n − 1}. Let vk be any in-neighbor of vi such that

[Dk]π (i) = [Di]π (i) − 1.

Clearly such a neighbor always exists: vk is either the leader
ℓπ (i) or another follower on the shortest path from ℓπ (i) to vi .
Furthermore, k < i due to (18). Now suppose that vk has another
out-neighbor vj such that j > i. Then,

[Dj]π (i) ≤ [Dk]π (i) + 1 = [Di]π (i),

which contradicts with (18). Hence, (19) must be true, and it
implies that ζ (G, Vℓ) = n. ■

In light of Theorem 7, the zero-forcing-based approach is a
better choice for verifying complete strong structural controlla-
bility, especially since there exist cases such as the example in
Fig. 5a, where complete SSC can be inferred via the zero-forcing-
based bound but not via the distance-based bound, i.e., δ(G, Vℓ) <
ζ (G, Vℓ) = n.

It should be noted that having a zero forcing set as the leaders,
i.e., ζ (G, Vℓ) = n, is not necessary for the zero-forcing-based to
outperform the distance-based bound. For instance, the example
in Fig. 4b shows a network where δ(G, Vℓ) < ζ (G, Vℓ) < n.
However, whether there exists a rich family of such examples
remains as an open question. Our numerical results in Section 5
suggest that δ(G, Vℓ) < ζ (G, Vℓ) < n may occur in rare cases since
none of the randomly generated graphs and leader sets therein
resulted in such an inequality.

4. Combined Bound: δ(G, dset(G,Vℓ))

Our analysis so far has shown that both the distance-based
bound, δ(G, Vℓ), and the zero-forcing-based bound, ζ (G, Vℓ), have
their own merits. Given these results, it is only natural to ask if
it is possible to find a novel bound that combines the strengths
of distance-based and zero-forcing-based methods. In this regard,
one trivial approach is taking the maximum of the two bounds.
While guaranteed to be at least as good as either of the bounds
alone, this approach does not reveal any additional information
compared to the two original bounds. In this section, we present
a novel bound that fuses the strengths of distance-based and
zero-forcing-based approaches and sometimes outperforms both
original bounds. More specifically, we show that the length of the
7

Fig. 6. Two networks and their leaders (gray). In (a): δ(G, dset(G, Vℓ)) = 5,
δ(G, Vℓ) = 4, ζ (G, Vℓ) = 3. In (b): δ(G, dset(G, Vℓ)) = 9, δ(G, Vℓ) = 6, ζ (G, Vℓ) = 5.

longest PMI sequence of distances to the derived set of leaders
provides a tight lower bound on the dimension of SSCS, i.e.,

δ(G, dset(G, Vℓ)) ≤ γ (G, Vℓ).

We show that this novel bound is always at least as good as, and
sometimes better than, the individual bounds.

Theorem 8. Consider any network G = (V , E) with the leaders
Vℓ ⊆ V . Then,

δ(G, Vℓ), ζ (G, Vℓ) ≤ δ(G, dset(G, Vℓ)) ≤ γ (G, Vℓ).

Proof. First, we show that δ(G, dset(G, Vℓ)) ≤ γ (G, Vℓ). In light
of (6) and (10),

γ (G, dset(G, Vℓ)) = γ (G, Vℓ). (20)

Due to Proposition 1,

δ(G, dset(G, Vℓ)) ≤ γ (G, dset(G, Vℓ)). (21)

Using (20) and (21), we get δ(G, dset(G, Vℓ)) ≤ γ (G, Vℓ).
Next, we show that δ(G, dset(G, Vℓ)) ≥ ζ (G, Vℓ). Since the DL

vectors of leaders can always be included in the beginning of a
PMI sequence (self-distances are uniquely zero), δ(G, V ′) ≥ |V ′

|

for any V ′
⊆ V . Hence,

δ(G, dset(G, Vℓ)) ≥ |dset(G, Vℓ)| = ζ (G, Vℓ).

Finally, we show that δ(G, dset(G, Vℓ)) ≥ δ(G, Vℓ). Since the
initial set of infected nodes (input nodes) are always contained
in the derived set, we have Vℓ ⊆ dset(G, Vℓ). Accordingly, for any
PMI sequence D of DL vectors under the leader set Vℓ, there is
an equally long PMI sequence of DL vectors D′ under the leader
set dset(G, Vℓ), which has the DL vectors of the same nodes in the
same order as D. Hence, the longest possible PMI sequence of DL
vectors with the additional leaders cannot be shorter, i.e.,

δ(G, dset(G, Vℓ)) ≥ δ(G, Vℓ). ■

Remark 2. While Theorem 8 shows that the combined bound
is at least as good as the distance-based and zero-forcing-based
bounds, it should also be emphasized that there exist cases
where the combined bound is strictly better than the two original
bounds, i.e., δ(G, dset(G, Vℓ)) > δ(G, Vℓ), ζ (G, Vℓ). We provide two
such examples in Fig. 6.

4.1. Comparison with the original bounds

We conclude this section by presenting some results that
compare δ(G, dset(G, Vℓ)) to δ(G, Vℓ) and ζ (G, Vℓ). Our first result
is a corollary showing that if each leader has two followers
as out-neighbors, then the combined bound is equal to the
distance-based bound and strictly larger than the zero-forcing-

based bound.
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orollary 9. Consider any graph G = (V , E) with the leaders
ℓ ⊆ V . If each leader has at least two followers as out-neighbors,
hen δ(G, dset(G, Vℓ)) = δ(G, Vℓ) > ζ (G, Vℓ).

roof. If each leader has at least two followers as out-neighbors,
hen none of the followers are infected by the leaders, i.e.,
set(G, Vℓ) = Vℓ. Accordingly, δ(G, dset(G, Vℓ)) = δ(G, Vℓ) and
he strict inequality δ(G, dset(G, Vℓ)) > ζ (G, Vℓ) follows from
heorem 5. ■

Next, we show that the combined bound can verify complete
SC, i.e., δ(G, dset(G, Vℓ)) = n, if and only if the leader set is a zero
orcing set, i.e., ζ (G, Vℓ) = n. Accordingly, the combined bound
s better than the distance-based bound and equivalent to the
ero-forcing-based bound for verifying complete SSC.

orollary 10. For any graph G = (V , E) with n nodes and any set
of leaders Vℓ ⊆ V ,

δ(G, dset(G, Vℓ)) = n ⇐⇒ ζ (G, Vℓ) = n.

roof (⇒:). In light of Theorem 7, we have

(G, dset(G, Vℓ)) = n ⇒ ζ (G, dset(G, Vℓ)) = n. (22)

ince dset(G, Vℓ) is the equilibrium of zero forcing process,

ζ (G, dset(G, Vℓ)) = |dset(G, Vℓ)| = ζ (G, Vℓ). (23)

ccordingly, (22) and (23) together imply

(G, dset(G, Vℓ)) = n ⇒ ζ (G, Vℓ) = n.

⇐:) If ζ (G, Vℓ) = n, then dset(G, Vℓ) = V . Note that
(G, dset(G, Vℓ)) = δ(G, V ) = n since any sequence of the
orresponding DL vectors would be a PMI sequence as the unique
ero in each vector (distance of the node to itself) would satisfy
he rule in (7). ■

In the following result, we provide a sufficient condition
or the combined bound to outperform the zero-forcing-based
ound. More specifically, δ(G, dset(G, Vℓ)) > ζ (G, Vℓ) for any
trongly connected network and any leader set such that ζ (G, Vℓ)

< n. Since these are mild conditions on the network and the
leader set, the combined bound is likely to outperform the zero-
forcing-based bound in most cases, which is also supported by
the numerical results in Section 5.

Theorem 11. For any strongly connected G = (V , E) with n nodes
and any set of leaders Vℓ ⊆ V ,

ζ (G, Vℓ) < n ⇒ δ(G, dset(G, Vℓ)) > ζ (G, Vℓ).

Proof. If ζ (G, Vℓ) < n, then dset(G, Vℓ) ⊂ V . Note that on a
strongly connected graph, for any such dset(G, Vℓ) ⊂ V there
exists some vi ∈ dset(G, Vℓ) who has an out-neighbor vj /∈
dset(G, Vℓ), i.e., d(vi, vj) = 1. Accordingly, given the vectors of
distances to the nodes in dset(G, Vℓ), one can always construct a
PMI sequence of length at least |dset(G, Vℓ)| + 1 by starting with
the distance vectors of all the nodes in dset(G, Vℓ) in any order
self-distances of zero satisfy the PMI rule) and continuing with
he distance vector of vj. Hence,

ζ (G, Vℓ)⟨n ⇒ δ(G, dset(G, Vℓ))⟩|dset(G, Vℓ)| = ζ (G, Vℓ). ■

We will conclude this section with a couple of results compar-
ng the combined bound with the distance-based bound. First, we
how that these two bounds are typically equal in single-leader
etworks.

heorem 12. For any G = (V , E) with a single leader vℓ ∈ V such
that d(vℓ, vi) < ∞ for all vi ∈ V , we have δ(G, dset(G, Vℓ)) =

(G, V ).
ℓ

8

Proof. Since Vℓ ⊆ dset(G, Vℓ), it can be easily shown that
δ(G, dset(G, Vℓ)) ≥ δ(G, Vℓ), i.e., adding more leaders cannot
reduce the length of the longest PMI sequence of DL vectors. Ac-
cordingly, in the remainder of the proof we will show that it must
also be true that δ(G, Vℓ) ≥ δ(G, dset(G, Vℓ)), which together with
δ(G, dset(G, Vℓ)) ≥ δ(G, Vℓ) implies δ(G, dset(G, Vℓ)) = δ(G, Vℓ).
There are three possible cases depending on dset(G, Vℓ), and we
analyze them separately:

Case 1: If dset(G, Vℓ) = Vℓ, then clearly δ(G, dset(G, Vℓ)) =

δ(G, Vℓ).
Case 2: If dset(G, Vℓ) = V , then clearly δ(G, dset(G, Vℓ)) = |V |.

Furthermore, in that case (16) implies δ(G, Vℓ) = |dset(G, Vℓ)| =

|V | as otherwise δ(G, Vℓ) would have to be larger than |V |, which
is not possible. Hence, δ(G, dset(G, Vℓ)) = δ(G, Vℓ).

Case 3: If Vℓ ⊂ δ(G, dset(G, Vℓ)) ⊂ V , then vℓ must have only
one out-neighbor, say vj, as otherwise δ(G, dset(G, Vℓ)) = Vℓ.
Since vj is the only out-neighbor of vℓ, it is also the only node
with a distance of one to vℓ and any path from vℓ to any other
node vk has to go through vj. Accordingly,

d(vℓ, vk) = d(vj, vk) + 1, ∀vk /∈ {vℓ, vj}.

Once vj is infected, another node becomes infected only if vj has a
unique uninfected out-neighbor, say vi ̸= vℓ. Note that vi would
also be the only node with a distance of two to vℓ and

d(vℓ, vk) = d(vi, vk) + 2, ∀vk /∈ {vℓ, vj, vi}.

By following this induction, we can show that each node in
dset(G, Vℓ) has a distinct distance to vℓ. Furthermore, for every
vq ∈ dset(G, Vℓ) we have

d(vℓ, vk) = d(vq, vk) + d(vℓ, vq), ∀vk /∈ dset(G, Vℓ). (24)

In light of (24), d(vℓ, vk) > d(vℓ, vq) for every vq ∈ dset(G, Vℓ)
and vk /∈ dset(G, Vℓ). Furthermore, for any vk, v

′

k /∈ dset(G, Vℓ),
if d(vℓ, vk) = d(vℓ, v

′

k), then d(vq, vk) = d(vq, v
′

k) for any vq ∈

dset(G, Vℓ). Hence, such vk, v
′

k would have identical DL vectors
under the leader set dset(G, Vℓ), which cannot be included to-
gether in a PMI sequence as per the rule in (18). Accordingly,
every DL vector in the longest PMI sequence under the leader
set dset(G, Vℓ) must have a distinct entry as the distance to
vℓ. Hence, an equally long PMI sequence can be constructed
by only using the distances to vℓ, which implies δ(G, Vℓ) ≥

δ(G, dset(G, Vℓ)). ■

Finally, we provide a sufficient condition for the combined
bound to outperform the distance-based bound.

Theorem 13. For any G = (V , E) with a leader set Vℓ ⊆ V , if
dset(G, Vℓ) contains any two nodes with identical DL vectors, then
δ(G, dset(G, Vℓ)) > δ(G, Vℓ).

Proof. Any PMI seq under the leader set Vℓ is also a valid
PMI seq under the leader set δ(G, dset(G, Vℓ)). Let Di = Dj for
some vi, vj ∈ V . Consider the longest PMI seq under Vℓ, D,
which cannot contain both Di and Dj due the PMI rule. With-
out loss of generality let Di be the vector not contained in D.
By appending Di to the beginning of D we obtain a sequence
D′

= {Di,D1,D2, . . .D|D|}. Note that D′ is a valid PMI seq under
dset(G, Vℓ) since the self-distance of vi satisfies the rule. As such,
we obtain δ(G, dset(G, Vℓ)) > δ(G, Vℓ). ■

Note that the condition in Theorem 13 is sufficient but not
necessary for the combined bound to outperform the distance-
based bound. For example, while δ(G, dset(G, Vℓ)) > δ(G, Vℓ) for
both examples in Fig. 6, only the one in Fig. 6b satisfies this

sufficient condition.
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. Numerical results

In this section, we present two sets of numerical results.
n the first part, we compare the bounds numerically for ran-
omly generated networks and leader sets. In the second part,
e demonstrate an application of the bounds where the goal is
o select a minimal set of leaders that guarantee a desired level
f SSC.

.1. Comparison of the bounds

We compare the lower bounds on the dimension of strong
tructurally controllable subspace on Erdös–Rényi (ER) and
arabási–Albert (BA) graphs. ER graphs are the ones in which
ny two nodes are adjacent with a probability p. BA graphs are
btained by adding nodes to an existing graph one at a time. Each
ew node is adjacent to ε existing nodes that are chosen with
robabilities proportional to their degrees.
In all the simulations, we consider undirected graphs with

= 100 nodes. In Figs. 7 and 8, we plot the distance-based, zero-
orcing-based, and combined lower bounds on the dimension of
SCS as a function of number of leaders |Vℓ| = m. We select the
eader nodes randomly. Each point on the plots corresponds to
he average of 100 randomly generated instances. For each graph
and leader set Vℓ, we compute the exact value of ζ (G, Vℓ), and
e use the greedy approximation algorithm (underestimation)

n Shabbir et al. (2019) for the distance-based computations,
.e., δ̂(G, Vℓ) and δ̂(G, dset(G, Vℓ)), due to the large number of
eaders. While this approximation was numerically shown to be
ery close to the actual value in most cases (Shabbir et al., 2019),
he gap between δ(G, Vℓ) and ζ (G, Vℓ) may be larger than shown
n Figs. 7 and 8.

In all the plots in Figs. 7 and 8, we observe that the distance-
ased bound δ(G, Vℓ) starts above the zero-forcing-based bound
(G, Vℓ), which is expected due to Theorem 6 (or Remark 1).
urthermore, δ(G, Vℓ) is usually significantly larger than ζ (G, Vℓ),
specially when the number of leaders is small. This can be ex-
lained by Theorem 5 since most of the nodes in these networks
ave degrees of two or more. In the ER graphs the expected
egree of each node is approximately pn, and each node in the
A graphs has a degree of ε or more. Indeed, all the plots show a

linear trend in ζ (G, Vℓ) when the number of leaders is small, in-
dicating ζ (G, Vℓ) ≈ |Vℓ|. Note that when ζ (G, Vℓ) = |Vℓ|, trivially
(V , dset(G, Vℓ)) = δ(G, Vℓ), which explains why the distance-
ased and combined bounds mostly overlap until the number of
eaders is sufficiently large and the zero-forcing-based bound de-
arts from the initial linear regime where ζ (G, Vℓ) ≈ |Vℓ|. While
he difference between the combined bound δ(V , dset(G, Vℓ)) and
(G, Vℓ) was observed to be small in these simulations, it is worth
mphasizing that δ(V , dset(G, Vℓ)) is the only bound guaranteed

to be at least as good as the other two in all possible cases
(Theorem 8) and the improvement with respect to δ(G, Vℓ) may
e significant for other families of networks (e.g., networks where
(G, Vℓ) is arbitrarily larger than δ(G, Vℓ) as given in Theorem 3).
inally, we see in all the plots that the three bounds approach
ach other as they all increase toward n, which is expected due
o Theorem 7 and Corollary 10.

.2. Using the bounds for leader selection

One standard problem in networked dynamical systems is
o find an optimal set of leaders (actuation nodes) to achieve
roperties such as controllability or robustness (e.g., Clark et al.,
017; Pasqualetti et al., 2014; Summers et al., 2015; Tzoumas
t al., 2015). In this part, we demonstrate the performance of the

ower bounds in such an application. Given a network G = (V , E)

9

Fig. 7. Comparison of the zero-forcing-based bound ζ (G, Vℓ) and the approx-
imate values of the distance-based δ(G, Vℓ) and combined δ(G, dset(G, Vℓ))
bounds in ER graphs.

Fig. 8. Comparison of the zero-forcing-based bound ζ (G, Vℓ) and the approx-
imate values of the distance-based δ(G, Vℓ) and combined δ(G, dset(G, Vℓ))
bounds in BA graphs.

of n agents, we consider the problem of finding a minimal set of
leaders, Vℓ ⊆ V , such that γ (G, Vℓ) is at least k, i.e.,

minimize
Vℓ⊆V

|Vℓ|

subject to γ (G, Vℓ) ≥ k,
(25)

where k ∈ {1, 2, . . . , n} encodes the required minimum level
of SSC. Here, the special case k = n corresponds to imposing
complete SSC, whereas smaller values of k can be used in applica-
tions where complete SSC is unnecessary (e.g., Li et al., 2020; Van
Waarde et al., 2017). There are two major challenges to solving
(25): 1) it is an intractable combinatorial optimization problem in
general, 2) there is no algorithm for determining the exact value
of γ (G, Vℓ) for arbitrary G and Vℓ. Here, we discuss one possible
way of using the tight lower bounds on γ (G, Vℓ) to address
these challenges and approximately solve (25). The approach is
to choose one of the bounds and use it with a standard greedy
algorithm to select a minimal set of leaders. More specifically,
an initially empty leader set is grown by adding the node that
maximally improves the selected bound in each iteration until the
value of the bound is at least k, which implies that the resulting
leader set Vℓ satisfies γ (G, Vℓ) ≥ k. We test this approach on
various networks and report the results in Fig. 9.

Each data point in Fig. 9 corresponds to an average of 35
randomly generated instances of the corresponding type of graph
with n = 50 nodes. For Erdös–Rényi (ER) random graphs, p = 0.1,
and for Barabási–Albert (BA) graphs ε = 3. The value of required
minimum γ (G, Vℓ), k in (25), varies from 5 to 50. Similar to
the previous set of simulations, the approximations δ̂(G, Vℓ) and
δ̂(G, dset(G, Vℓ)) are used for the distance-based computations.
Among the two original bounds, in alignment with the compar-
ison results in Figs. 7 and 8, we observe that the greedy leader
selection algorithm performs better (selects fewer leaders) with
δ̂(G, Vℓ) for a wide range of k, whereas it performs better with
ζ (G, Vℓ) when k gets close to n. On the other hand, when the
combined bound δ̂(G, dset(G, V )) is used, the resulting number
ℓ
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Fig. 9. Number of leaders selected by the greedy heuristic is shown for each
bound as a function of the required minimum value of γ (G, Vℓ) in (25) for ER
and BA graphs with 50 nodes.

of leaders is similar to δ̂(G, Vℓ) for small values of k and similar to
ζ (G, Vℓ) for large values of k. Accordingly, using δ̂(G, dset(G, Vℓ))
is observed to result in the smallest number of leaders in most
cases as shown in Fig. 9.

6. Conclusion

In this paper, we focused on the dimension of the strong struc-
turally controllable subspace (SSCS) of networks. We compared two
tight lower bounds on the dimension of SSCS: one based on the
distances of nodes to the leaders and the other based on the
zero forcing process. We showed that for each bound there exist
networks where it is arbitrarily better than the other bound. We
then characterized various cases where the distance-based lower
bound is guaranteed to be greater than the zero-forcing-based
bound. On the other hand, we also showed that, for any network
of n nodes, any set of leaders that makes the distance-based
bound equal to n is necessarily a zero forcing set. These results
indicate that while the zero-forcing-based approach may be a
better choice for verifying complete strong structural controlla-
bility (SSC), the distance-based approach is usually better when
the leaders do not constitute a zero forcing set. We also derived a
novel bound by combining these two approaches. This new bound
is always at least as good as, and in some cases strictly better
than, the maximum of the two previous bounds. We showed that
the combined bound outperforms the zero-forcing-based bound
on any strongly connected graph unless the leader set is a zero
forcing set, equals the distance-based bound on most single-
leader networks, and outperforms the distance-based bound if
the derived set, dset(G, Vℓ), contains multiple nodes with iden-
tical distances to the leaders. Finally, we numerically compared
the bounds on various networks.

As a future direction, we plan to improve the proposed com-
bined bound, for example, by utilizing the invariance of control-
lable subspace to the addition/removal of links between the lead-
ers (Yazıcıoğlu & Egerstedt, 2013). Obtaining a formal characteri-
zation of cases where the zero-forcing-based bound is guaranteed
to be greater than the distance-based bound is another direc-
tion we plan to explore. Furthermore, the distance-based bound
was recently utilized for analyzing the robustness-controllability
trade-off in networks (Abbas, Shabbir, Yazıcıoğlu, & Akber, 2020).
We intend to use the combined bound for further exploration of
such trade-offs.
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