(ESS: Earth System Sciences, ETS: Engineering Technology, LS: Life Sciences, PS: Physical Sciences)

California Next Generation Sciences Standard: K-5

- K-ESS3 Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* [Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]
- K-PS3-1. Make observations to determine the effect of sunlight on Earth's surface. [Clarification Statement: Examples of Earth's surface could include sand, soil, rocks, and water.] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]
- K-PS3-2. Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]
- K-2- Ask questions, make observations, and gather information about a situation people want to change ETS1-1. to define a simple problem that can be solved through the development of a new or improved object or tool.
- K-2- Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it ETS1-2. function as needed to solve a given problem.
- K-2- Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.
- **3-LS4-4.** Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]
- 4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
- 4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
- 4-ESS3- Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]

- **4-PS4-2.** Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]
- 5-ESS3- Obtain and combine information about ways individual communities use science ideas to protect the1. Earth's resources and environment.
- **3-5-** Define a simple design problem reflecting a need or a want that includes specified criteria for ETS1-1. success and constraints on materials, time, or cost.
- **3-5-** Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- **3-5-** Plan and carry out fair tests in which variables are controlled and failure points are considered to ETS1-3. identify aspects of a model or prototype that can be improved.

California Next Generation Sciences Standard: Middle School

- MS-PS3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
- MS-PS3- Plan an investigation to determine the relationships among the energy transferred, the type of matter,
 the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]
- MS-PS3- Construct, use, and present arguments to support the claim that when the kinetic energy of an object
 5. changes, energy is transferred to or from the object. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.]
- MS-LS2- Evaluate competing design solutions for maintaining biodiversity and ecosystem services.*
 5. [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]
- MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. [Clarification Statement: Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.]
- MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the

rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]

- MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]
- MS- Define the criteria and constraints of a design problem with sufficient precision to ensure a ETS1-1. successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
- MS- Evaluate competing design solutions using a systematic process to determine how well they meet ETS1-2. the criteria and constraints of the problem.
- MS- Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS- Develop a model to generate data for iterative testing and modification of a proposed object, tool, or ETS1-4. process such that an optimal design can be achieved.

California Next Generation Sciences Standard: High School

- HS-PS3- Create a computational model to calculate the change in the energy of one component in a system
 when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]
- HS-PS3- Design, build, and refine a device that works within given constraints to convert one form of energy
 into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]
- HS-PS3- Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). [Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.]
- HS-LS2 Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* [Clarification Statement: Examples of human activities can include urbanization, building dams, and dissemination of invasive species.]

- HS-LS4- Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.* [Clarification Statement: Emphasis is on designing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]
- HS-ESS3-2.
 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.* [Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.]
- HS Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multiparameter programs or constructing simplified spreadsheet calculations.]
- HS-ESS3-4.
 Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]
- HS- Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for ETS1-1. solutions that account for societal needs and wants.
- HS- Design a solution to a complex real-world problem by breaking it down into smaller, more ETS1-2. manageable problems that can be solved through engineering.
- HS-Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
- HS- Use a computer simulation to model the impact of proposed solutions to a complex real-world ETS1-4. problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.