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Abstract: Exact solution of an incompressible fluid of 

second order type by causing forced oscillations in the liquid 
of finite depth bounded by a porous bottom has been obtained 
in this paper.  The results presented are in terms of non-

dimensional elastic- viscosity parameter (  ) which depends 

on the non-Newtonian coefficient and the frequency of 

excitation ( ) of the external disturbance while considering 

the porosity (K), magnetic parameter ( m ) and angle of 

inclination )(   of the medium into account. The flow 

parameters are found to be identical with that of Newtonian 

case as 0 , 0m , 0    and K .  It is 

seen that the effect of elastico viscosity parameter, magnetic 
parameter, angle of inclination and the porosity of the 
bounding surface has significant effect on the velocity 
parameter.  Further, the nature of the paths of the fluid 
particles have also been studied with reference to the elastico 
viscosity parameter, magnetic parameter, angle of inclination 
and the porosity of the bounding surface. 

Index Terms:Elastico- viscous fluid, second order fluid, 
electico-viscous parameter, porous media, magnetic 
parameter, angle of inclination 

 

I. INTRODUCTION 

HEN a conductive fluid moves through a magnetic 
field, an ionized gas is electrically conductive, and the 

fluid is influenced by the magnetic field. Natural convection 
and transfer of heat is of considerable interest in problems that 
arises in magneto hydrodynamic (MHD) especially in the 
technical field due to its frequent occurrence in industrial 
technology and geothermal applications. The applications are 
wide in variety of situations where the high – temperature 
plasmas are applicable in nuclear fusion energy conversion, 
liquid metal fluids, and (MHD) power generation systems. 
Further, in several problems related to geophysical, petroleum, 
chemical and biomechanical that are usually bounded by 
porous medium, the problem assumes greater significance. 
Convective boundary layer flows are often controlled by fluid 
suction or injection through a porous heated wall. This process 
can lead to enhancement of the heat transfer coefficient or 
cooling of the system. Due to several applications in the fields 
of geo physics, metallurgy, petroleum engineering, chemical 
engineering, composite metal engineering and heat exchanges, 

the problem of mass transfer and radiation effects are unsteady 
MHD flows. Free convective flow embedded in a porous 
medium with a heat generation or absorption assumes greater 
significant over the last two decades. Porous media has been 
the subject of considerable research activity in recent years 
because of its several important applications notably in the 
flow of oil through porous rock, the extraction of geothermal 
energy from the deep interior of the earth to the shallow 
layers, the evaluation of the capability of heat removal from 
particulate nuclear fuel debris that may result from a 
hypothetical accident in a nuclear reactor, the filtration of 
solids from liquids, flow of liquids through ion exchange beds, 
drug permeation through human skin, chemical reactor for 
economical separation or purification of mixtures and so on. 
Because of the great diversity in the physical structure of non-
Newtonian fluids, it is not possible to recommend a single 
constitutive equation. For this reason, many non-Newtonian 
models or constitutive equations have been proposed and most 
of them are empirical or semi-empirical. For more general 
three dimensional representation, the method of continuum 
mechanics is needed [1]. Although many constitutive 
equations have been suggested, many questions are still 
unsolved. Some of the continuum models do not give 
satisfactory results in accordance with available experimental 
data. For this reason, in many practical applications, empirical 
or semi-empirical equations have been used.It has been shown 
that for many types of problems in which the flow is slow 
enough in the visco-elastic sense, the results given by 
Oldroyd’s constitutive equations will be substantially equal to 
those of the second or third order Rivilin – Ericksen 
constitutive equations[2]. Thus if this is the sense in which the 
solutions to which problems are to be interpreted, it would 
seem reasonable to use the second or third order constitutive 
equations in carrying out the calculations. This is particularly 
so in view of the fact that, the calculation will generally be 
still simpler. For this reason, in this paper, the second order 
fluid model is used. The constitutive equation for the fluids of 
second grade (or second order fluids) is a linear relationship 
between the stress, the first Rivlin - Ericksen tensor, its square 
and the second Rivlin – Ericksen tensor. The constitutive 
equation has three coefficients. There are some restrictions on 
these coefficients due to the Clausius – Duhem inequality and 
the assumption that the Helmholtz free energy is a minimum 
in equilibrium. A comprehensive discussion on the restrictions 
for these coefficients has been given in [3], [4]. One of these 
coefficients represents the viscosity coefficient in a way 
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similar to that of a Newtonian fluid in the absence of the other 
two coefficients. The restrictions on these two coefficients 
have not been confirmed by experiments and the sign of these 
material moduli is the subject of much controversy [5]. The 
equation of the motion of incompressible second grade fluids, 
in general, is of higher order than the Navier – Stokes 
equation. The Navier - Stokes equation is second order partial 
differential equation, but the equation of motion of a second 
order fluid is a third order partial differential equation. A 
marked difference between the case of the Navier – Stokes 
theory and that for fluids of second grade is that ignoring the 
nonlinearity in the Navier – Stokes equation does not lower 
the order of the equation however, ignoring the higher order 
nonlinearities in the case of the second grade fluid, reduces the 
order of the equation. Exact solutions are very important for 
many reasons. They provide a standard for checking the 
accuracies of many approximate methods such as numerical 
and empirical. Although computer techniques make the 
complete numerical integration of the non-linear equations 
feasible, the accuracy of the results can be established by a 
comparison with an exact solution. Many attempts to collect 
the exact solution of the nonlinear equations for unsteady flow 
of second grade fluid have been by different researcher for 
different geometries.In view of several industrial and 
technological importance,[6] studied the problem of the exact 
solutions of two dimensional flows of a second order 
incompressible fluid by considering the rigid boundaries. 
Later, a linear analysis of the compressible boundary layer 
flow over a wall was presented by [7]. Subsequently, [8] 
studied the problem of Rayleigh for wavy wall while [9] 
examined the effect of small amplitude wall waviness upon 
the stability of the laminar boundary layer. Further, the 
problem of free convective heat transfer in a viscous 
incompressible fluid confined between vertical wavy wall and 
a particle flat wall was examined by [10], [11].Later, [12] 
studied the free convective flow of a viscous incompressible 
fluid in porous medium between two long vertical wavy walls. 
Subsequently, [13] had examined the problem of MHD flow 
with slip effects and temperature dependent heat source in a 
viscous incompressible fluid confined between a long vertical 
wall and a parallel flat plate. Later, [14] examined the problem 
of elastico-viscous fluid of second order type where the 
bounding surface is porous and subjected to sinusoidal 
disturbances. Subsequently, [21], [22] studied the unsteady 
poiseuille flow of second order fluid in a tube of elliptical 
cross section and uniform cross section. [15] studied elliptical 
cross section on the porous boundary. Later, [23] had 
examined the problem of unsteady flow of an incompressible 
viscous electrically conducting fluid in the tube of elliptical 
cross section under the influence of the magnetic field. 
Subsequently, [24] studied the unsteady flow of an 
incompressible viscous fluid in a tube of spherical cross 
section on a porous boundary. Recently, [25], [26] had 
examined the problem of unsteady MHD flow of elastico – 
viscous incompressible fluid through a porous media between 
two parallel plates and spherical cross section under the 
influence of magnetic field.In all above investigations, the 
fluid under consideration was viscous incompressible fluid 
and one of the bounding surfaces has a wavy character or 
bounding surface subjected to sinusoidal disturbances. In all of 

the above situations, not much of attention has been paid on 
the study of unsteady flow of second order fluid in an 
infinitely long tube of circular, elliptical or spherical cross 
section on the porous boundary. Therefore, an attempt has 
been made to study the effects of the transverse magnetic field 
and angle of inclination on the flow of incompressible viscous 
electrically conducting fluid of second order type creating 
forced oscillations on the porous boundary. Hence the present 
investigation this aspect is also studied and during the course 
of discussion both non–magnetic and magnetic cases are 
compared. The results are expressed in terms of a non-
dimensional porosity parameter, which depends on the non-
Newtonian coefficient. It is noticed that the flow properties are 
identical with those in the Newtonian case (  K,0 and 

0m ). Mathematical Formulation of the Problem 

In the sense of Noll[16], a simple material is a substance 
for which stress can be determined with entire knowledge of 
the history of the strain. This is called simple fluid, if it has 
property that at all local states, with the same mass density, are 
intrinsically equal in response, with all observable differences 
in response being due to definite differences in the history. For 

any given history )(sg , a retarded history )(sg can be 

defined as: :)()( sgsg   .0  s 10 

      (1)        being termed as a retardation factor. 

Assuming that the stress is more sensitive to recent 
deformation than to the deformations at distant past, it has 
been  established by Coleman and Noll[17]that the theory of 
simple fluids yields the theory of perfect fluids as 0  

and that of Newtonian Fluids as a correction (up to the order 
of   ) to the theory of the perfect fluids. Neglecting all the 

terms of the order higher than two in  , we have 

incompressible elastico viscous fluid of second order type 
whose constitutive relation is  governed by: 

2)1(

3

)2(

2

)1(

1 EEEPIS     (2) 

where 

ijjiij UUE ,,

1                                     (3) and

   

jmimijjiij UUAAE ,,,,

2 2            (4) 

In the above equations, S is the stress-tensor, iU   and  iA  

are the components of velocity and acceleration in the 

direction of the 
thi  coordinate iX  while P  is indeterminate 

hydrostatic pressure. The coefficients 
21,  and 3  are 

material constants. The constitutive relation for general Rivlin 
– Ericksen[18]  fluid  also reduces to eqn (2) when the squares 

and higher orders of 
2E  are neglected,  with the coefficients 

being constants. Also, the non-Newtonian models considered 

by Reiner[19]  could be obtained from eqn (2) when 02   
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and  naming 3  as the coefficient of cross viscosity. With 

reference to the Rivlin - Ericksen fluids, 
2 may be called as 

the coefficient of elastico  viscosity.  

 It has been reported that a solution of poly - iso - 
butylene in cetane behaves as a second order fluid. In many of 
the chemical processing industries, slurry adheres to the 
reactor vessels and gets consolidated.  As a result of this, the 
chemical compounds within the reactor vessel percolates 
through the boundaries causing loss of production and 
consuming more reaction time.  In view of such technological 
and industrial importance wherein the heat and mass transfer 
takes place in the chemical industry, the problem of 
considering the permeability of the bounding surfaces in the 
reactors attracts the attention of several investigators.  

If V ),,( 321 UUU  is the velocity component and F

),,( zyx FFF  are the body forces acting on the system, then 

the equation of motion in  X, Y  and Z directions are given by 
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If the bounding surface is porous, then the rate of 
percolation of the fluid is directly proportional to the cross 
sectional area of the filter bed and the total force, say the sum 
of the pressure gradient and the gravity force.  In the sense of 
Darcy[20] 

)(
21
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where A is the cross sectional area of the filter bed, G is 

the gravitational force and  


k
C   in which k  is the 

permeability of the material and   is the coefficient of 

viscosity and q  is the flux of the fluid. Since this law is 

empirical, therefore to generalize this result we must have the 
relation for variable thickness of the porous material.  A 
straight forward generalization of the eqn (8) yields 

][ 


GP
k
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whereV  is the velocity vector and   is the unit vector 

along the gravitational force taken in the -ve direction.  If any 

other external forces are acting on the system, instead of 

gravitational force, then we have ][ FP
k

V 


   (10) 

In the absence of external forces, P
k
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Therefore, the net resulting equation (in the dimensional 
form) of motions in the X, Y and Z directions are 

1
1 U

kZ

S

Y

S

X

S
F

DT

DU XZXYXX
X


 














 (11) 

2
2 U

kZ

S

Y

S

X

S
F

DT

DU YZYYYX
Y


 














      

(12) 

3
3 U

kZ

S

Y

S

X

S
F

DT

DU ZZZYZX
Z


 
















  (13) 

 Introducing the following non dimensional variables as:
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 where T  is the (dimensional) 

time variable,  and    the mass density and L  a 

characteristic length.  The non-dimensional form of Eq (10) 
will now be: 

)( fpKv  (14) 

In the absence of external forces pKv   which yields   

K

v
p   (15) 

We consider a class of plane flows given by the velocity 
components  

),(1 tyuu  and 02 u (16) 

in the directions of rectangular Cartesian coordinates x and 
y. The velocity field given by eq.(16) identically satisfies the 
incompressibility condition. The stress can  now be obtained 
in a non-dimensional form as: 
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In view of the above, the equation of motion in th x - 
direction is given by : 
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where xf  is the  external force acting along the x - 

direction. 

 

The equation of motion in the  y - direction in the 

absence of any external forces is given by :                                           
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The pressure gradient in eqn (20) can only be a function of 
time for this flow. 

Using Eq. (20) if 
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where )(0 tp  is the initial pressure. 

From Eq(21)  
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which on integration w.r.t y  yields: 
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Using Eq.(22) and Eq.(23) 
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Using Eq.(24) in Eq.(23) 

xttpp )()(0  (25) 

Considering 0)( t , and using eq.(25) in Eq (20)  the 

flow characterized by the velocity is given by: 

xfum
Ky

u

ty

u

t

u



















)

1
()(

2

2

2

2

  

(26)                     

where K is the non-dimensional porosity constant and xf  

is the  external force (non-dimensional) acting along the x - 
direction. It may be noted that the presence of    changes 

the order of differential from two to three.  

Forced Oscillations of a liquid of finite depth bounded 
by a rigid bottom 

Let the fluid of the depth    bounded by the rigid 

bottom  be influenced by the (non - dimensional) 

external force   in the  direction. A magnetic field of 

constant strength is supposed to be applied parallel to y 
direction. The induced magnetic field is negligible as 
comparing with applied magnetic field, the flow is laminar it 
is valid for magnetic Reynolds number less than unity 

 In such a situation eqn (26) will now get modified as: 
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with the no-slip condition at the bottom 

(28) 

and the free surface condition on the top 

at   (29) 

Assuming the trial solution as:                                  
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Also the conditions satisfied by are  
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This yields the solution: 
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In view of eqn (30) 
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on , the velocity is:                  
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The paths of particles may be obtained by integrating eqn 
(36) with respect to t 
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the constant of integration may be conveniently taken to be 
zero for particles starting from the same point (taken as origin) 
on the bottom  

For the case of  large h 
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where  

  The paths of the particles in this case are given by 
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Phase parameter in this case  is given by : 

          (50) 

 

Conclusion 

As , 0m  the results obtained for the 
velocity field, paths of the particles are in agreement with 
those of PattabhiRamacharyulu [6]. In the absence of external 
forces, the results coincide with that of Ramana Murthy and 
Kulkarni [14].  The case of Newtonian fluid can be realized as

0 , 0K , 0 & 0m .  
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