
IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3072 | P a g e

Implementation of Blacklist Strategy for Faulty Node

Detection to improve the Efficiency of A Hadoop Cluster

using Big Data Analysis
Deepak Kumar1, Saurabh Charaya2

1M.Tech Research Scholar, Department of Computer Science & Engineering, OM Institute of Technology and

Management Hisar(Haryana)
2Assistant Professor, Head of Department of Computer Science & Engineering, OM Institute of Technology and

Management Hisar(Haryana)

Abstract- Analyzing the data and extracting the information

has acquired a lot of importance now a days from the vast

store house of data. A strategy to improve the performance of

such systems to make them more tolerant to failures is thus

the need of hour. A lot of research work has been done so far

in this field. We are here analyzing and purposing a fault

tolerance mechanism to improve the efficiency. Fault

tolerance here doesn’t mean a system to be completely free of

faults but how a system overcome and deal with the failures.

Hadoop uses a several measures to minimize faults such as

storing replica of a file at several nodes, executing map and
reduce tasks repeatedly if failure occurs. However, this

process results in decreased efficiency. One solution to this

problem is finding the faulty nodes and removing them. This

will result in increased efficiency. We are proposing the same

technique and experimentally show the efficiency of the

system.

Key Words- MapReduce, HDFS, Fault tolerance, Hadoop,

I. INTRODUCTION

With the increase of continuous advancement in

technologies like huge knowledge and cloud computing, the

design of high performance computing and distributed

systems became even additional difficult. Fault-tolerant

computing involves tangled algorithms that create it

extraordinarily laborious. It’s merely impracticable to
construct actually foolproof, 100% reliable fault tolerant

machines or code. Therefore the task to that we must

always specialize in is to cut back the incidence of failure

to AN “acceptable” level.

Distributed systems have capability of enormous scale

process and MapReduce[1] provides a straightforward

thanks to bring home the bacon it. Hadoop[2] has already

been with success applied as an open supply
implementation of MapReduce. Hadoop is primarily

working with 2 major components: MapReduce (execution

engine) and HDFS (hadoop distributed file system). Each

of these parts give fault tolerance[3] to some extent.

Firstly, HDFS[4] replicates file copies over several nodes by

splitting them into equal sized blocks. In this way, if, any

node shows any type of failure in rendering the result, it can

be recovered from other nodes. Thereafter, the failed tasks

are re-assigned and re-scheduled to alternative nodes by
MapReduce so that they are re-executed. We can say, in

simple words , HDFS give storage level fault tolerance and

MapReduce give job level fault tolerance.

One of the explanations of the degradation in potency of a

hadoop cluster is that the repetitive failure of some faulty

nodes, that stop smooth execution of jobs. These failed tasks

must be re-executed which adds overheads to the cluster.

In this paper, we've proposed a mechanism to find these

faulty nodes of the cluster and reset the cluster by removing
such nodes to extend the general performance of the cluster.

we have a tendency to plan a blacklist based most faulty

node detection technique within which performance of a

node is monitored and in keeping with the amount of task

failures, a node is classified as a full of life node or a

blacklisted node. By observance the standing of a node i.e.

however usually a node has been blacklisted, we will think

about a poorly performing art node to be a faulty node. In

the end, our empirical experiment shows the rise in

performance because of our planned technique.

The remaining paper contain the subsequent sections:
Section 2 contains some background of hadoop. Section 3

review previous work done. Our planned technique is

explained in Section 4.Section 5 discuss our conducted

experiments, then result and conclusions at last.

II. GROUNDWORK

In this part, we will discuss the background of hadoop. It is an

Apache software foundation’s open source project.[5]

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3073 | P a g e

Fig.1: Hadoop Architecture

Hadoop has two major components:

a. A File System (HDFS)

b. Map Reduce

A. Hadoop Distributed File System:

A typical Hadoop consists of two types of nodes - Namenode

and Datanode. HDFS follows master – slave design where

namenode acts as a master and datanode acts as a slave.

Namenode acts as manager of the datanodes and responsible

for node management. Datanode accepts commands from the
namenode and performs execution and retrieval of task blocks

assigned. HDFS knowledge blocks are a lot of larger in size

(64 MB by default) than that of the conventional file

system[6]. The dimensions of information blocks is unbroken

this huge so as to scale back the quantity of disk seeks.

In case of any task failure or node failure, copy of that block

can be obtained from any other node as copies are already

replicated to all nodes [7]. To make this execution smooth,

replicated copies should be consistent with the original data

block. Any write operation on the data block should be

reflected in its replicas to keep up with the general
consistency of the cluster data.

B. MapReduce:

MapReduce acts like the programming model for hadoop.

Working of Mapreduce paradigm is shown in fig 3 , as

explained below:

First, input is fragmented into smaller divisions of favorable

size. These partitions are then equipped to numerous map

tasks that perform process on them in keeping with the

planning of the map functions. Map tasks turn out the

intermediate result as sequence of key-value pairs that is

outlined by the code written for map operation. These
intermediate results are then passed to some scale back nodes

by some partition functions. Sorting takes place to assure that

very same key value ends with identical scale back tasks. The

code written for scale back tasks can then defines that how

combination method can manifest itself. Then, by operating

one key at a time, mapreduce tasks can combine all values

related to it.

The management and programming of the tasks is

accomplished through a job tracker running on master node.

Actual mapping and reducing task is done by task tracker

which runs on slave nodes. Job tracker, which runs on master

node, handles the management and programming of

the tasks. The slave nodes run task Tracker where actual

mapping and reducing takes place.

Master node uses ping method to detect any failure occurring
at any of the slave nodes. If a node doesn't reply for specific

interval of your time, then the master node take into account

it as failure of the node. Any mapping task which was

assigned to this node is now be re-executed. These map tasks

then marked as idle by master and get re-scheduled on

another working node once the node is available there. The

master should additionally update the data to every reduce

task relating to the modification of the placement of its input

from that map task.

Fig.3: Working process of MapReduce

III. PREVIOUS WORK

Fault tolrence in MapReduce Paradigm of Hadoop was also a

point of research previously. Peng Hu et al.[8], who

projected on another methodology for failure detection of

nodes instead of fully relying upon the timeout mechanism

of native hadoop. The authors projected a trust primarily
based failure finding formula to detect failures earlier as

compared to native hadoop. When a failure been detected, a

checkpoint primarily based recovery formula has also been

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3074 | P a g e

projected by the authors.

Matei Zaharia et al.[9], projected a technique to boost the
overall execution time of the cluster. Authors projected a

planning mechanism supported the longest approximate

time taken to finish a task and uses longest remaining time

as a means for planning varied tasks.

Borthakur et al.[10], projected a technique to handle Single

point Of Failure (SPOF) i.e. failure at master node
(namenode), that contains all the data of all datanodes.

Author introduced an inspiration of avatar node that takes

place of a master node just in case of master node failure.

Quan bird genus et al.[11], projected a self – adaptive

MapReduce scheduling formula by adjusting time weight of

every stage of map and reduce in line with the historical

data collected earlier that was on each node and updated
after every execution. This planning reduces the general

execution time of the work and therefore increases the

performance of the cluster.

In our paper, we've proposed a mechanism to boost the

overall execution time of task by identifying and removing

those specific nodes (faulty nodes) that are consistently

decreasing the performance of cluster by not completing the

task at time.

IV. PROPOSED WORK

In hadoop, execution engine i.e. MapReduce perform in

three phases. Firstly, Map tasks are performed and their

intermediate results saved to the native storage. Note that

we've to re-execute all the map tasks just in case of failure

as their results are on the local disk(s) of the failing

machine and thence, are inaccessible during failure of the
machine[12]. Second, sorting and shuffling of intermediate

result takes place. Sorting takes place to assure that same

key worth ends with an equivalent reduce tasks. Local

results are transferred reduce tasks throughout the shuffling

stage. Third, the results are saved to filing system (HDFS)

when the completion reduce tasks[13].

In this section, we proposed a blacklist strategy for faulty

node that is significantly degrading the performance of the

cluster. These nodes are then aloof from the cluster so future

jobs don't seem to be assigned to them and master doesn't

got to apply further overhead in spontaneously sending

heartbeat messages to those nodes to visualize their

“liveness”.

ALGORITHM –Faulty Node Detection based on Blacklisting:

1. To begin, we have to setup a Hadoop cluster having three
nodes by adding metadata information to the ‘masters’

and ‘slaves’ for each node.

2. A threshold value ‘θf ‘ must be set for each node in cluster

which defines the maximum limit of failures for any node.

3. Let ‘Nf’ be the failure count variable for a node.

4. Now assign a job to the cluster and check if ‘Nf’< ‘θf ‘. If

true, keep executing the job till completion. Else, add that

particular node to the blacklisted nodes and make sure no

job is assigned to it further.
5. Remove this node from blacklisted nodes after the job

completion.

6. To keep a record for how many times a node has been

blacklisted, lets define a variable Nb

7. Let ‘θb‘ be threshold variable that states the maximum limit of

being blacklisted for a particular node such that if Nb = θb ,

the node is considered as faulty node.

8. Remove this node from the cluster and don’t assign any
job to it further.

Once the faulty node has been detected using above

mentioned algorithm, then that node will be removed from the

cluster. The threshold values θf and θb must be chosen

carefully depending upon the size of the cluster and the type and

size of the job to be assigned to the cluster.

V. EXPERIMENT AND RESULT

For the purposed experiment, we have setup a multinode

cluster. We've put in four Ubuntu machines on one computer

in Vmware. Every machine is assigned 1GB RAM and 20GB

disk space. We have a tendency to let one of these nodes to

be a master node and other act as slave nodes.

Master node can run namenode, secondary namenode and

nodemanager on its machine and datanode and resource

manager can run on every of the slave node. Note that, node

manager will track jobs and resource manager will track

tasks accomplished and they would run on master and slave

nodes in the same order.

For the value of ‘pi’ in the cluster, we have used a command:

pi 64 and 100000000, we have a tendency to set 64 map

tasks for the job and 100000000 samples are generated per

map task. We would check the execution time of this job

before and after applying our mechanism for this experiment.

Total execution time of job is reduced once the removal of

faulty node. This happened because native hadoop takes time

consider a node as a failed node even it is going through too

many faults[14]. In our experiment, we've a faulty node that

stops operating for a while however it starts operating once

more before it is thought of as failure. This ends up in re-

assigning of tasks to this node that is failing occasionally and

that further ends up in failing and re-execution of tasks. As a

result, total execution time for the job is increased.

IJRECE VOL. 7 ISSUE 2 APR.-JUNE 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3075 | P a g e

However, if the node had failing fully, it'd have taken far

more time to complete the job because native hadoop would

have taken much more time to consider it as a failure and
then only its tasks would be scheduled to a different node.

This delay would have added additional time to the

execution time of the job.

Chart -1: Comparison of execution time

Note that, not every fault reaches the stage of failure but it still

degrade the performance to some extent. Here, these faults are

detected and handled before they become any major failure

and have any serious impact on the job completion efficiency
of the cluster. And hence, the execution time for the job is

reduced.

VI. CONCLUSION

The research work in this paper, is concerned with specifying a
mechanism to identify those faulty nodes which are majorly

responsible for the degradation of the overall efficiency of the

cluster. Some nodes are referred as stragglers which increase

the total execution time of the job by lagging behind during the

final phase of job completion. If these nodes fall under the

specifications of our proposed mechanisms, then they will also

be detected as faulty nodes and will be removed from the

cluster to increase the overall performance.

Some faulty nodes show errors for repeated but short

intervals. These intervals are shorter than the timeout interval

of detecting failures. These faults needed to be detected and
handled because it is not practical to wait for them to become

any major failure which we seriously need to be concerned with

at later stage.

VII. REFERENCES

[1]. Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1), 107-113.

[2]. T. White, “Hadoop: the definitive guide”, O’Reilly, (2012).
[3]. Sivaraman, E., & Manickachezian, R. (2014, March). High

performance and fault tolerant distributed file system for big data
storage and processing using hadoop. In Intelligent Computing
Applications (ICICA), 2014 International Conference on (pp. 32-

36). IEEE.
[4]. Shvachko, K., et al. 2010. The Hadoop Distributed File

System.IEEE.
http://storageconference.org/2010/Papers/MSST/Shva chko.pdf.

[5]. http://hadoop.apache.org
[6]. Li, B., & Jain, R. (2013). Survey of Recent Research Progress and

Issues in Big Data. Washington University in St. Louis, USA.
[7]. Kwon, O., Lee, N., & Shin, B. (2014). Data quality management,

data usage experience and acquisition intention of big data
analytics. International Journal of Information Management,
34(3), 387-394.

[8]. Hu, P., & Dai, W. (2014). Enhancing fault tolerance based on Hadoop
cluster. International Journal of Database Theory and Application,
7(1), 37-48.

[9]. Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., & Stoica, I.
(2008, December). Improving MapReduce performance in

heterogeneous environments. In Osdi (Vol. 8, No. 4, p. 7).
[10]. Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg,

N., Kuang, H., ... & Schmidt, R. (2011, June). Apache Hadoop goes
realtime at Facebook. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data (pp.
1071-1080). ACM.

[11]. Chen, Q., Zhang, D., Guo, M., Deng, Q., & Guo, S. (2010, June).
Samr: A self-adaptive mapreduce scheduling algorithm in

heterogeneous environment. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on
(pp. 2736-2743). IEEE.

[12]. Egwutuoha, I. P., Levy, D., Selic, B., & Chen, S. (2013). A survey of
fault tolerance mechanisms and checkpoint/restart
implementations for high performance computing systems. The
Journal of Supercomputing, 65(3), 1302-1326..

[13]. Goranson, C., Huang, X., Bevington, W., & Kang, J. (2014). Data
Visualization for Big Data.

[14]. Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data:
issues, challenges, tools and good practices. In Contemporary
Computing (IC3), 2013 Sixth International Conference on (pp.
404-409). IEEE.

Deepak kumar is a M.Tech student in department of Computer

Science & Engineering from OM Institute of Technology and

Management, Hisar(Haryana)

http://storageconference.org/2010/Papers/MSST/Shva
http://hadoop.apache.org/

